Package ‘compoisson’

February 19, 2015

Type Package
Title Conway-Maxwell-Poisson Distribution
Version 0.3
Date 2008-05-07
Author Jeffrey Dunn
Maintainer Jeffrey Dunn <jsd115@gmail.com>
Description Provides routines for density and moments of the Conway-Maxwell-Poisson distribution as well as functions for fitting the COM-Poisson model for over/under-dispersed count data.
License BSD
Depends stats, MASS
Repository CRAN
Date/Publication 2012-10-29 08:58:27
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>compoisson-package</td>
<td>2</td>
</tr>
<tr>
<td>com.compute.z</td>
<td>2</td>
</tr>
<tr>
<td>com.confint</td>
<td>4</td>
</tr>
<tr>
<td>com.expectation</td>
<td>5</td>
</tr>
<tr>
<td>com.fit</td>
<td>6</td>
</tr>
<tr>
<td>com.log.density</td>
<td>7</td>
</tr>
<tr>
<td>com.loglikelihood</td>
<td>8</td>
</tr>
<tr>
<td>com.logspace</td>
<td>9</td>
</tr>
<tr>
<td>com.mean</td>
<td>10</td>
</tr>
<tr>
<td>com.var</td>
<td>11</td>
</tr>
<tr>
<td>compoisson-data</td>
<td>12</td>
</tr>
<tr>
<td>dcom</td>
<td>12</td>
</tr>
</tbody>
</table>

Index 14
compoisson-package Conway-Maxwell Poisson Distribution

Description

Provides routines for computing the density of the Conway-Maxwell Poisson distribution and fitting parameters to data.

Details

Package: compoisson
Type: Package
Version: 0.2
Date: 2008-04-21
License: BSD

Author(s)

Jeffrey Dunn
Maintainer: Jeffrey Dunn <jsd115@gmail.com>

References

See Also

See dcom for calculating the pmf of the distribution, see com.fit for fitting parameters.

com.compute.z Compute COM-Poisson Normalizing Constant

Description

Computes the normalizing constant in the COM-Poisson model for given values of the parameters.

Usage

com.compute.z(lambda, nu, log.error = 0.001)
com.compute.log.z(lambda, nu, log.error = 0.001)
com.compute.z

Arguments

- **lambda**: Lambda value in COM-Poisson distribution
- **nu**: Nu value in COM-Poisson distribution
- **log.error**: Precision in the log of the normalizing constant

Details

The function `com.compute.z` computes the COM-Poisson normalizing constant

\[z = \sum_{i=0}^{\infty} \frac{\lambda^i}{(j!)^\nu} \]

to the specified precision. If no precision is specified, then the package default is used.

`com.compute.log.z` is equivalent to `log(com.compute.z(lambda, nu))` but provides additional precision.

Value

The normalizing constant as a real number with specified precision.

Author(s)

Jeffrey Dunn

References

See Also

`com.fit`

Examples

```r
data(insurance);
fit = com.fit(Lemaire);
z = com.compute.z(fit\$lambda, fit\$nu);
```
com.confint

Computes a confidence interval for parameter estimates of the COM-Poisson Distribution

Description

Computes a pivotal bootstrap confidence interval for maximum likelihood parameter estimates.

Usage

```r
com.confint(data, level=0.95, B=1000, n=1000)
```

Arguments

- `data`: the matrix of data to fit
- `level`: the level of the confidence interval
- `B`: number of repetitions of the bootstrap
- `n`: number of data points in each bootstrap sample

Details

Uses a standard pivotal confidence interval from a bootstrap sample.

Value

A matrix containing the confidence intervals for each parameter

Author(s)

Akshaya Jha, Jeffrey Dunn

References

See Also

`com.fit`
com.expectation

Description

Computes an expectation of a function of a COM-Poisson random variable.

Usage

```r
com.expectation(f, lambda, nu, log.error = 0.001)
```

Arguments

- `f`: function taking as a single argument the value of x
- `lambda`: value of lambda parameter
- `nu`: value of nu parameter
- `log.error`: precision in the log of the expectation

Details

Computes the expectation \(E[f(X)] \) where X is a COM-Poisson random variable.

Value

The expectation as a real number.

Author(s)

Jeffrey Dunn

References

See Also

`com.mean, com.var, com.fit`
Computes COM-Poisson Regression

Description
Computes the maximum likelihood estimates of the COM-Poisson model for given count data.

Usage
com.fit(x)

Arguments
x matrix of count data

Details
The argument x should consist of a matrix where the first column is the level and the second column is the count for the corresponding level.

Value
Returns an object containing four fields:

lambda Estimate of the lambda parameter
nu Estimate of the nu parameter
z Normalizing constant
fitted.values Estimated counts at given levels

Author(s)
Jeffrey Dunn

References

See Also
com.compute.z, com.loglikelihood

Examples
data(insurance)
com.fit(Lemaire);
com.log.density

Description
Computes the log probability mass function of the COM-Poisson distribution for given values of the parameters.

Usage
\[
\text{com.log.density}(x, \lambda, \nu, \log Z = \text{NULL})
\]

Arguments
- \(x\) level to evaluate the log PMF at
- \(\lambda\) value of the lambda parameter
- \(\nu\) value of the nu parameter
- \(\log Z\) log of the normalizing constant, computed if not specified

Details
Computes the log probability mass function of the COM-Poisson distribution

\[
\log f(x) = x \log \lambda - \log(Z(\lambda, \nu)) - \nu \sum_{i=1}^{x} x.
\]

Value
The log probability that a random COM-Poisson variable \(X\) takes value \(x\).

Author(s)
Jeffrey Dunn

References

See Also
com.loglikelihood, dcom

Examples
\[
\text{data(insurance);}
\text{fit = com.fit(Lemaire);}
\text{com.log.density(0, fit$lambda, fit$nu, fit$z);}
\]
com.loglikelihood

Computes Log-Likelihood of COM-Poisson

Description

Given a set of data, computes the log-likelihood of the data under the COM-Poisson distribution for values of the parameters.

Usage

`com.loglikelihood(x, lambda, nu)`

Arguments

- `x`
 matrix of count data
- `lambda`
 value of lambda parameter
- `nu`
 value of nu parameter

Details

The argument `x` should consist of a matrix where the first column is the level and the second column is the count for the corresponding level.

Value

The log-likelihood of the data.

Author(s)

Jeffrey Dunn

References

See Also

`com.fit`, `dcom`
Operations in Log-space

Description

Computes the difference of two values in log-space.

Usage

\[
\begin{align*}
\text{com.log.difference}(x, y) \\
\text{com.log.sum}(x, y) \\
\text{com.log.factorial}(x)
\end{align*}
\]

Arguments

- \(x\) first value
- \(y\) second value

Details

- \text{com.log.difference} computes the difference of two values in log-space, \(\log(e^x - e^y)\), without significant chance of overflow or underflow.
- \text{com.log.sum} computes the sum of two values in log-space, \(\log(e^x + e^y)\), without significant change of overflow or underflow.
- \text{com.log.factorial} computes \(\log(x!)\) which is equivalent to a summation.

Value

The requested computation in log-space.

Author(s)

Jeffrey Dunn

Examples

\[
\begin{align*}
a &= \exp(\text{com.log.difference}(\log(100), \log(20))); \quad # \ a = 80 \\
b &= \exp(\text{com.log.sum}(\log(100), \log(20))); \quad # \ b = 120 \\
c &= \exp(\text{com.log.factorial}(4)); \quad # \ c = 24
\end{align*}
\]
Computes Mean of the COM-Poisson Distribution

Description
Computes the mean of the COM-Poisson distribution for given values of the parameters.

Usage
com.mean(lambdaL, nu)

Arguments
lambda value of lambda parameter
nu value of the nu parameter

Details
Uses com.expectation to compute the first moment of the distribution.

Value
The mean of the distribution.

Author(s)
Jeffrey Dunn

References

See Also
com.expectation, com.var

Examples
data(insurance)
model = com.fit(Lemaire);
com.mean(model$lambda, model$nu);
com.var

Computes Variance of the COM-Poisson Distribution

Description

Computes the variance of the COM-Poisson distribution for given values of the parameters.

Usage

```r
com.var(lambda, nu)
```

Arguments

- `lambda`: value of lambda parameter
- `nu`: value of the nu parameter

Details

Uses `com.expectation` to compute the second moment of the distribution and subtracts the squared mean, computed using `com.mean`.

Value

The variance of the distribution.

Author(s)

Jeffrey Dunn

References

See Also

`com.expectation`, `com.mean`

Examples

```r
data(insurance)
model = com.fit(Lemaire);
com.var(model$lambda, model$nu);
```
compoisson-data Insurance Count Datasets

Description

Two auto insurance datasets compiled from published works. The Lemaire dataset contains published aggregate claim numbers for automobile third-party liability insurance of a Belgian insurance company in the early 1990’s. The Buhlmann dataset originates from aggregate accident claims in 1961 for a class of auto insurance in Switzerland.

Usage

data(insurance)

Format

Each dataset is a matrix with two columns. The first column contains the levels and the second contains the number of customers who submitted the corresponding level of claims.

Source

Examples

data(insurance)
Lemaire
Buhlmann

dcom The COM-Poisson Distribution

Description

Probability mass function and random generation for the COM-Poisson distribution for given values of the parameters.

Usage

dcom(x, lambda, nu, z = NULL)
rcom(n, lambda, nu, log.z = NULL)
Arguments

- \(x \): level to evaluate the PMF at
- \(\lambda \): value of \(\lambda \) parameter
- \(\nu \): value of \(\nu \) parameter
- \(z \): normalizing constant, computed if not specified
- \(n \): number of random values to return
- \(\log Nz \): natural log of \(z \)

Details

Computes the probability mass function of the COM-Poisson distribution

\[
f(x) = \frac{1}{Z(\lambda, \nu)} \frac{\lambda^x}{(x!)^\nu},
\]

Value

\(dcom \) gives the probability that a random COM-Poisson variable \(X \) takes value \(x \). \(rcom \) gives a vector of \(n \) random values sampled from the COM-Poisson distribution.

Author(s)

Jeffrey Dunn

References

See Also

\(\text{com.loglikelihood, com.log.density} \)

Examples

```r
data(insurance);
fit = com.fit(Lemaire);
dcom(0, fit$lambda, fit$nu, fit$z);
r = rcom(10, fit$lambda, fit$nu);
```
Index

*Topic **datasets**
 compoisson-data, 12

*Topic **manip**
 com.logspace, 9

*Topic **models**
 com.compute.z, 2
 com.confint, 4
 com.expectation, 5
 com.fit, 6
 com.log.density, 7
 com.loglikelihood, 8
 com.mean, 10
 com.var, 11
 compoisson-package, 2
 dcom, 12

*Topic **package**
 compoisson-package, 2

*Topic **regression**
 com.fit, 6
 compoisson-package, 2

Buhlmann (compoisson-data), 12

 com.compute.log.z(com.compute.z), 2
 com.compute.z, 2, 6
 com.confint, 4
 com.expectation, 5, 10, 11
 com.fit, 2–5, 6, 8
 com.log.density, 7, 13
 com.log.difference (com.logspace), 9
 com.log.factorial (com.logspace), 9
 com.log.sum (com.logspace), 9
 com.loglikelihood, 6, 7, 8, 13
 com.logspace, 9
 com.mean, 5, 10, 11
 com.var, 5, 10, 11
 compoisson (compoisson-package), 2
 compoisson-data, 12
 compoisson-package, 2