Package ‘conting’

January 17, 2018

Type Package
Title Bayesian Analysis of Contingency Tables
Version 1.6.1
Date 2018-01-17
Author Antony M. Overstall
Maintainer Antony M. Overstall <A.M.Overstall@soton.ac.uk>
Description Bayesian analysis of complete and incomplete contingency tables.
Depends R (>= 2.15.0)
Imports mvtnorm, BMS, gtools, tseries, coda
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2018-01-17 12:08:59 UTC

R topics documented:

conting-package .. 2
accept_rate ... 5
add_term ... 6
AOH ... 8
bayespval ... 9
bcct ... 11
bcct.fit ... 16
beta_mode ... 19
bict ... 21
bict.fit ... 26
find_cens .. 29
formula2index ... 31
heart ... 32
index2model ... 33
inter_probs .. 35
inter_stats .. 37
Description

Performs Bayesian analysis of complete and incomplete contingency tables incorporating model uncertainty using log-linear models. These analyses can be used to identify associations/interactions between categorical factors and to estimate unknown closed populations.

Details

Package: conting
Type: Package
Version: 1.6.1
Date: 2018-01-17
License: GPL-2

For the Bayesian analysis of complete contingency tables the key function is \texttt{bcct} which uses MCMC methods to generate a sample from the joint posterior distribution of the model parameters and model indicator. Further MCMC iterations can be performed by using \texttt{bcctu}.

For the Bayesian analysis of incomplete contingency tables the key function is \texttt{bict} which uses MCMC methods to generate a sample from the joint posterior distribution of the model parameters, model indicator and the missing, and, possibly, censored cell entries. Further MCMC iterations can be performed by using \texttt{bictu}.
In both cases see Overstall & King (2014), and the references therein, for details on the statistical and computational methods, as well as detailed examples.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>

Maintainer: Antony M. Overstall <A.M.Overstall@soton.ac.uk>

References

Examples

```r
set.seed(1)  ## Set seed for reproducibility
data(AOH)
## Load AOH data
test1 <- bct(formula = y ~ (alc + hyp + obe)^3, data = AOH, n.sample = 100, prior = "UP")
## Bayesian analysis of complete contingency table. Let the saturated model
## be the maximal model and do 100 iterations.

summary(test1)
## Summarise the result. Will get:
# Posterior summary statistics of log-linear parameters:
#   post_prob post_mean post_var lower_lim upper_lim
# (Intercept) 1  2.877924  0.002574  2.78778  2.97185
# alc1        1 -0.060274  0.008845 -0.27772  0.06655
# alc2        1 -0.049450  0.006940 -0.20157  0.11786
# alc3        1  0.073111  0.005673 -0.05929  0.20185
# hyp1        1 -0.544988  0.003485 -0.65084 -0.42620
# obe1        1 -0.054672  0.007812 -0.19623  0.12031
# obe2        1  0.007809  0.004127 -0.11024  0.11783
# NB: lower_lim and upper_lim refer to the lower and upper values of the
# 95% highest posterior density intervals, respectively
#
# Posterior model probabilities:
#   prob model_formula
# 1 0.45 ~alc + hyp + obe
# 2 0.30 ~alc + hyp + obe + hyp:obe
# 3 0.11 ~alc + hyp + obe + alc:hyp + hyp:obe
# 4 0.06 ~alc + hyp + obe + alc:hyp + alc:obe + hyp:obe
# 5 0.05 ~alc + hyp + obe + alc:hyp
#
# Total number of models visited = 7
#
# Under the X2 statistic
#
# Summary statistics for T_pred
#   Min. 1st Qu.  Median    Mean  3rd Qu.    Max.
```
summary statistics for \(t_{obs} \)

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.18</td>
<td>24.22</td>
<td>31.51</td>
<td>30.12</td>
<td>35.63</td>
<td>42.49</td>
</tr>
</tbody>
</table>

Bayesian p-value = 0.28

```r
set.seed(1)
# Set seed for reproducibility
data(spina)
# Load spina data
test2<-bict(formula=y~(S1+S2+S3+eth)^2,data=spina,n.sample=100,prior="UIP")
# Bayesian analysis of incomplete contingency table. Let the model with two-way interactions be the maximal model and do 100 iterations.
summary(test2)
# Summarise the result. Will get:

# Posterior summary statistics of log-linear parameters:

<table>
<thead>
<tr>
<th>post_prob</th>
<th>post_mean</th>
<th>post_var</th>
<th>lower_lim</th>
<th>upper_lim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>1.0427</td>
<td>0.033967</td>
<td>0.6498</td>
</tr>
<tr>
<td>S1</td>
<td>1</td>
<td>-0.3159</td>
<td>-0.015785</td>
<td>-0.4477</td>
</tr>
<tr>
<td>S2</td>
<td>1</td>
<td>0.8030</td>
<td>0.018797</td>
<td>0.6127</td>
</tr>
<tr>
<td>S3</td>
<td>1</td>
<td>0.7951</td>
<td>0.003890</td>
<td>0.6703</td>
</tr>
<tr>
<td>eth1</td>
<td>1</td>
<td>2.8502</td>
<td>0.033455</td>
<td>2.4075</td>
</tr>
<tr>
<td>eth2</td>
<td>1</td>
<td>0.1435</td>
<td>0.072437</td>
<td>-0.4084</td>
</tr>
<tr>
<td>S21:S31</td>
<td>1</td>
<td>-0.4725</td>
<td>0.002416</td>
<td>-0.5555</td>
</tr>
</tbody>
</table>

# NB: lower_lim and upper_lim refer to the lower and upper values of the 95% highest posterior density intervals, respectively

# Posterior model probabilities:

<table>
<thead>
<tr>
<th>prob model_formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.36 ~S1 + S2 + S3 + eth + S2:S3</td>
</tr>
<tr>
<td>2 0.19 ~S1 + S2 + S3 + eth + S2:S3 + S2:eth</td>
</tr>
<tr>
<td>3 0.12 ~S1 + S2 + S3 + eth + S1:eth + S2:S3</td>
</tr>
<tr>
<td>4 0.12 ~S1 + S2 + S3 + eth + S1:S2 + S1:S3 + S1:eth + S2:S3 + S2:eth + S3:eth</td>
</tr>
<tr>
<td>5 0.10 ~S1 + S2 + S3 + eth + S1:S3 + S1:eth + S2:S3</td>
</tr>
<tr>
<td>6 0.06 ~S1 + S2 + S3 + eth + S1:S3 + S1:eth + S2:S3 + S2:eth</td>
</tr>
</tbody>
</table>
# Total number of models visited = 8

# Posterior mean of total population size = 726.75
# 95% highest posterior density interval for total population size = ( 706 758 )

# Under the X2 statistic

# Summary statistics for \( t_{pred} \)

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
</table>

# Summary statistics for \( t_{obs} \)

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.329</td>
<td>18.270</td>
<td>22.580</td>
<td>21.290</td>
<td>24.110</td>
<td>37.940</td>
</tr>
</tbody>
</table>
accept_rate

# Bayesian p-value = 0.45

accept_rate

### Description

This function computes the acceptance rates of the Metropolis-Hastings and reversible jump algorithms from the MCMC output of `bcct` and `bict` objects.

### Usage

```r
accept_rate(object)
```

### Arguments

- **object**: An object of class "bcct" or "bict".

### Details

Acceptance rates can be used to assess the performance of MCMC methods (in particular the performance of the reversible jump method, Brooks et al, 2003).

### Value

This function will return an object of class "acceptrate" which is a list with the following components.

- **rj_ar**: Acceptance rate (as a %) of the reversible jump algorithm.
- **mh_ar**: Acceptance rate (as a %) of the Metropolis-Hastings algorithm.

### Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

### References


### See Also

`print.acceptrate, bcct, bict`
Examples

```r
code
set.seed(1) ## set a seed for reproducibility
data(AOH)
test1 <- bcct(formula=y~(alc+hyp+obe)^3, data=AOH, n.sample=500, prior="UIP")
Create a bcct object for the AOH dataset for a very small number of
iterations (500).
accept_rate(test1)
Calculate accept rates. Will get:

Acceptance rate of reversible jump proposals = 32.5581 %
Acceptance rate of Metropolis-Hastings proposals = 76.8595 %
```

---

**add_term**  
Determines Model Moves Given Current Model

**Description**

These functions are used to determine which models we can propose moves to, given the current model in the MCMC algorithm, and the principle of marginality.

**Usage**

```r
add_term(curr.index, data, maximal.mod)
drop_term(curr.index, data, maximal.mod)
prop_mod(curr.index, data, maximal.mod, null.move.prob = 0.5)
```

**Arguments**

- `curr.index`: A binary vector, of the same length as the number of log-linear parameters in the maximal model, indicating which parameters are present in the current model.
- `data`: An object of class "data.frame" containing the variables in the model.
- `maximal.mod`: An object of class "glm" giving the fit of the maximal model.
- `null.move.prob`: An optional scalar argument giving the probability of performing a null move, i.e. proposing a move to the current model. The default value is 0.5.

**Details**

In the reversible jump algorithm we propose a move to a model given the current model. The function `prop_mod` implements a scheme whereby only local proposals are made, i.e. either a term is added or dropped. These types of move are called birth and death moves, respectively, by Forster et al (2012).

When a term is either added or dropped, we preserve the principle of marginality, e.g. we can only propose to add a three-way interaction if all the possible two-way interactions between the three factors are included in the present model.
The functions `add_term` and `drop_term` determine which terms can be added or dropped whilst preserving the principle of marginality.

The function `prop_mod` will call `add_term` and `drop_term` thus determining which terms can be added or dropped. With probability `null.move.prob` it will choose to remain in the current model; otherwise it will choose one of the possible terms to add or drop.

**Value**

The functions `add_term` and `drop_term` will output a character vector containing the names of terms that can be dropped.

The function `prop_mod` will return a list with the following components.

- `new.index`: A binary vector, of the same length as the number of log-linear parameters in the maximal model, indicating which parameters are present in the proposed model.
- `type`: A character string which will be one of c("null", "drop", "add") depending on the type of move proposed.
- `total.choices`: If `type` is not "null", then `total.choices` will be scalar giving the total number of non-null moves available. If `type` is equal to "null", then `total.choices` will be 0.
- `null.move.prob`: A scalar giving the probability of a null move.

**Note**

This function will not typically be called by the user.

**Author(s)**

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

**References**


**Examples**

data(AOH)
## Load the AOH data

maximal.mod<-glm(formula=y~(alc+hyp+obe)^3,data=AOH,x=TRUE,y=TRUE, contrasts=list(alc="contr.sum",hyp="contr.sum",obe="contr.sum"))
## Set up the maximal model which in this case is the saturated model.

curr.index<-formula2index(big.X=maximal.mod$x,formula=y~alc+hyp+obe+hyp:obe,data=AOH)
## Set up the binary vector for the model containing all main effects and the
## hyp:obe interaction.

add_term(curr.index=curr.index,data=AOH,maximal.mod=maximal.mod)
## See what terms we can add - will get:

```r
#[1] "alc:hyp" "alc:obe"
```

```r
drop_term(curr.index=curr.index, data=AOH, maximal.mod=maximal.mod)
```

## See what terms we can drop - will get:

```r
#[1] "hyp:obe"
```

```r
set.seed(4)
```

## Set the seed for reproducibility.

```r
prop_mod(curr.index=curr.index, data=AOH, maximal.mod=maximal.mod)
```

## Propose a model. Will be a drop move, proposing the independence model by dropping the hyp:obe interaction. The total.choices object is 3, i.e. one drop move and two add moves. Specifically:

```r
#$new.index
[1] 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#
#$type
[1] "drop"
#
#$total.choices
[1] 3
#
#$null.move.prob
[1] 0.5
```

---

### Alcohol, Obesity and Hypertension: A Complete 4 * 3 * 2 Table

#### Description

491 subjects are cross-classified according to the three factors: hypertension (hyp; 2 levels), obesity (obe; 3 levels) and alcohol (alc; 4 levels). There are a total of 24 cells in the table.

#### Usage

```r
data(AOH)
```

#### Format

A `data.frame` with 24 observations on the following 4 variables.

- `y` Counts in each cell of table.
- `alc` A factor with levels 0 1-2 3-5 6+ indicating the classification of alcohol intake of drinks per day.
- `obe` A factor with levels low average high indicating the classification of obesity.
- `hyp` A factor with levels yes no indicating the classification of hypertension.
Details

These data are from a study in Western Australia. The study copied a larger study from USA. See Knuiman & Speed (1988) for more details.

For details on the function `bcct` applied to these data, see Overstall & King (2014).

Source


References


Examples

```r
data(AOH)
summary(AOH)
```

bayespval  
Compute Bayesian p-value

Description

This function will compute the Bayesian (or posterior predictive) p-value. This can be used as a diagnostic tool to check model adequacy. Additionally this function outputs predictions from the model which can also be used in other assessments of model adequacy.

Usage

```r
bayespval(object, n.burnin = 0, thin = 1, statistic = "X2")
```

Arguments

- `object`: An object of class "bcct" or "bict" object.
- `n.burnin`: An optional argument giving the number of iterations to use as burn-in. The default value is 0.
- `thin`: An optional argument giving the amount of thinning to use, i.e. the computations are based on every thin-th value in the MCMC sample. The default value is 1, i.e. no thinning.
- `statistic`: An optional argument giving the discrepancy statistic to use for calculating the Bayesian p-value. It can be one of c("X2","FreemanTukey","deviance") which correspond to the different statistics: "X2" = Chi-squared statistic, "FreemanTukey" = Freeman-Tukey statistic, "deviance" = deviance statistic. See Overstall & King (2014), and references therein, for descriptions of these statistics.
Details

See Gelman et al (2004, Chapter 6) for more details on Bayesian p-values and see Overstall & King (2014), and references therein, for details of their application to contingency tables.

The use of thinning is recommended when the number of MCMC iterations and/or the number of log-linear parameters in the maximal model are/is large, which may cause problems with computer memory storage.

Value

The function will produce an object of class "pval" which is a list with the following components.

- **pred**: An (n.sample-n.burnin) by n* matrix where (n* is the number of observed cell counts) containing the predictions of the observed cell counts.
- **tpred**: A vector of length (n.sample-n.burnin) containing the discrepancies between the predicted cell counts and their means.
- **tobs**: A vector of length (n.sample-n.burnin) containing the discrepancies between the observed cell counts and their means.
- **pval**: A scalar giving the Bayesian p-value, i.e. the proportion of Tpred>Tobs.
- **statnum**: A numeric scalar identifying which statistic is used.
- **statistic**: A character string identifying which statistic is used.
- **thin**: The value of the argument thin.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

References


See Also

- bict, bcct, print.pval.

Examples

```r
set.seed(1)
Set seed for reproducibility
data(spina)
Load spina data
test1<-bict(formula=y~(S1+S2+S3+eth)^2, data=spina, n.sample=50, prior="U1P")
Do 50 iterations starting at maximal model containing all two-way interactions.
```
test1p<-bayesval(object=test1, statistic="FreemanTukey", n.burnin=5)
## Use the Freeman-Tukey statistic and a burn-in phase of 5 iterations.
test1p
## Will get following output

# Under the Freeman-Tukey statistic
#
# Summary statistics for T_pred
#  Min. 1st Qu.  Median  Mean  3rd Qu.  Max. 
#  2.812  4.695  5.190  5.777  6.405  14.490
#
# Summary statistics for T_obs
#  Min. 1st Qu.  Median  Mean  3rd Qu.  Max. 
#  4.566  4.861  5.197  5.430  6.108  6.460
#
# Bayesian p-value = 0.4667

## Can do a plot

## Not run: plot(test1p)

---

**bcct**

*Bayesian Analysis of Complete Contingency Tables*

**Description**

These functions implement a Bayesian analysis of complete contingency tables. This is accomplished using an MCMC algorithm where the null moves are performed using a Metropolis-Hastings algorithm and the between models moves are performed using a reversible jump algorithm.

`bcct` should be used initially, and `bcctu` should be used to do additional MCMC iterations, if required.

`bcctsubset` and `bcctsubsetu` operate on a subset of models.

**Usage**

```r
test1p<-bayesval(object=test1, statistic="FreemanTukey", n.burnin=5)
Use the Freeman-Tukey statistic and a burn-in phase of 5 iterations.
test1p
Will get following output

Under the Freeman-Tukey statistic
#
Summary statistics for T_pred
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.812 4.695 5.190 5.777 6.405 14.490
#
Summary statistics for T_obs
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.566 4.861 5.197 5.430 6.108 6.460
#
Bayesian p-value = 0.4667

Can do a plot

Not run: plot(test1p)
```
Arguments

formula
An object of class "formula": a symbolic description of the maximal model.

subsetformula
A list with elements of class "formula": symbolic description of the subset of models. The first element in the list should be the maximal model.

object
An object of class "bcct" produced as a previous call to bcct or bcctu.

data
An object of class "data.frame" (or "table") containing the variables in the model. If the model variables are not found in data, the variables are taken from environment(formula), typically the environment from which bcct is called.

n.sample
A numeric scalar giving the number of (additional, in the case of bcctu) MCMC iterations to perform.

prior
An optional argument giving the prior to be used in the analysis. It can be one of c("UIP", "SBH"), where "UIP" = unit information prior; and "SBH" = Sabanes-Bove & Held prior. The default value is "SBH".

start.formula
An optional argument giving an object of class "formula": a symbolic description of the starting model in the MCMC algorithm. If NULL (the default) the starting model will be the maximal model.

start.beta
An optional argument giving the starting values of the log-linear parameters for the MCMC algorithm. It should be a vector of the same length as the number of log-linear parameters in the starting model implied by the argument start.formula. If NULL (the default) the starting value will be the posterior mode under the maximal model.

start.sig
An optional argument giving the starting value of sigma^2 (under the Sabanes-Bove & Held prior) for the MCMC algorithm when the argument of prior is "SBH". If NULL (the default) the starting value will be one.

save
An optional argument for saving the MCMC output mid-algorithm.

For bcct and bcctsubset, if positive, the function will save the MCMC output to external text files every save iterations. If zero (the default), the function will not save the MCMC output to external files.

For bcctu and bcctsubsetu, if non-NULL, the function will save the MCMC output to external text files every save iterations. If NULL (the default), it will inherit the value of save from the previous call to bcct or bcctu.

name
An optional argument giving a prefix to the file name of the external files saved if the argument save is positive. For bcct, a value of NULL means the external files will not have a prefix. For bcctu, a value of NULL, means the prefix will be inherited from the previous call to bcct or bcctu.

null.move.prob
An optional scalar argument giving the probability of performing a null move in the reversible jump algorithm, i.e. proposing a move to the current model. The default value is 0.5.

a
The shape hyperparameter of the Sabanes-Bove & Held prior, see Overstall & King (2014). The default value is 0.001. A value of a = -1 gives the Gelman prior (Gelman, 2006), i.e. a uniform prior on the standard deviation.

b
The scale hyperparameter of the Sabanes-Bove & Held prior, see Overstall & King (2014). The default value is 0.001. A value of b = 0 gives the Gelman prior (Gelman, 2006), i.e. a uniform prior on the standard deviation.
progress Logical argument. If TRUE, then a progress bar will be displayed. The default value is FALSE.

Details

For identifiability, the parameters are constrained. The `conting-package` uses sum-to-zero constraints. See Overstall & King (2014), and the references therein, for more details.

The Metropolis-Hastings algorithm employed is the iterated weighted least squares method for generalised linear models (GLMs) proposed by Gamerman (1997). The reversible jump algorithm employed is that orthogonal projections method for GLMs proposed by Forster et al (2012). For details on these methods applied to log-linear models see Overstall & King (2014), and the references therein.

For details on the unit information and Sabanes-Bove & Held priors for generalised linear models see Ntzoufras et al (2003) and Sabanes-Bove & Held (2011), respectively. See Overstall & King (2014), and the references therein, for their application to log-linear models and contingency tables.

Value

The functions will return an object of class "bcct" which is a list with the following components:

- **BETA** An \(n\).sample by \(p\) matrix containing the sampled values of the log-linear parameters, where \(p\) is the number of log-linear parameters in the maximal model. For elements of this matrix which correspond to a log-linear parameter which is not present for the current model a zero is returned.

- **MODEL** A vector of length \(n\).sample giving the sampled model indicators in hexadecimal format.

- **SIG** A vector of length \(n\).sample giving the sampled values for \(\sigma^2\) under the Sabanes-Bove & Held prior. If the unit information prior is used then the components of this vector will be one.

- **rj_acc** A binary vector of the same length as the number of reversible jump moves attempted. A 0 indicates that the proposal was rejected, and a 1 that the proposal was accepted.

- **mh_acc** A binary vector of the same length as the number of Metropolis-Hastings moves attempted. A 0 indicates that the proposal was rejected, and a 1 that the proposal was accepted.

- **priornum** A numeric scalar indicating which prior was used: 1 = "UIP", 2 = "SBH".

- **maximal.mod** An object of class "glm" giving the fit of the maximal model.

- **IP** A \(p\) by \(p\) matrix giving the inverse of the prior scale matrix for the maximal model.

- **eta.hat** A vector of length \(n\) (number of cells) giving the posterior mode of the linear predictor under the maximal model.

- **save** The argument save.

- **name** The argument name.

- **null.move.prob** The argument null.move.prob.

- **time** The total computer time (in seconds) used for the MCMC computations.
a  The argument a.
b  The argument b.
subset.index  Model indicators (in hexadecimal format) of the subset of models.

Note

These functions are wrappers for `bcct.fit`.

In Version 1.0 of `conting-package`, note that the default value for `prior` was "UIP". From Version 1.1 onwards, the default value is "SBH".

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

References


See Also

`bcct.fit`, `AOH`, `heart`.

Examples

```r
set.seed(1)
Set seed for reproducibility.

data(AOH)
Load the AOH data

test1<-bcct(formula=y~(alc+hyp+ohe)*3,data=AOH,n.sample=50,prior="UIP")
Let the maximal model be the saturated model. Starting from the
posterior mode of the maximal model do 50 iterations under the unit
information prior.

test1<-bcctu(object=test1,n.sample=50)
```
## bcct

### Do another 50 iterations

```r
Printing out a bcct object produces this simple summary

Number of cells in table = 24
Maximal model =
y ~ (alc + hyp + obe)^3
Number of log-linear parameters in maximal model = 24
Number of MCMC iterations = 100
Computer time for MCMC = 00:00:01
Prior distribution for log-linear parameters = UIP

summary(test)
Printing out a summary produces a bit more:

Posterior summary statistics of log-linear parameters:
post_prob post_mean post_var lower_lim upper_lim
(Intercept) 1 2.877924 0.002574 2.78778 2.97185
alc1 1 -0.060274 0.008845 -0.27772 0.06655
alc2 1 -0.049450 0.006940 -0.20157 0.11786
alc3 1 0.073111 0.005673 -0.05929 0.20185
hyp1 1 -0.544988 0.003485 -0.65004 -0.42620
obe1 1 -0.054672 0.007812 -0.19623 0.12031
obe2 1 0.007809 0.004127 -0.11024 0.11783
NB: lower_lim and upper_lim refer to the lower and upper values of the 95 % highest posterior density intervals, respectively
Posterior model probabilities:
prob model_formula
1 0.45 -alc + hyp + obe
2 0.30 -alc + hyp + obe + hyp:obe
3 0.11 -alc + hyp + obe + alc:hyp + hyp:obe
4 0.06 -alc + hyp + obe + alc:hyp + alc:obe + hyp:obe
5 0.05 -alc + hyp + obe + alc:hyp
Total number of models visited = 7
Under the X2 statistic
Summary statistics for T_pred
Min. 1st Qu. Median Mean 3rd Qu. Max.
11.79 20.16 23.98 24.70 28.77 52.40
Summary statistics for T_obs
Min. 1st Qu. Median Mean 3rd Qu. Max.
8.18 24.22 37.51 30.12 35.63 42.49
```
#Bayesian p-value = 0.28

## For more examples see Overstall & King (2014).

---

**bcct.fit**  
Bayesian Analysis of Complete Contingency Tables

### Description

These functions are the workhorses behind bcct, bcctu, bcctsubset, and bcctsubsetu.

### Usage

```r
bcct.fit(priornum, maximal.mod, IP, eta.hat, ini.index, ini.beta, ini.sig, iters, save, name, null.move.prob, a, b, progress)
```

```r
bcctsubset.fit(priornum, subset.index, maximal.mod, IP, eta.hat, ini.index, ini.beta, ini.sig, iters, save, name, null.move.prob, a, b, progress)
```

### Arguments

- `priornum`  
  A numeric scalar indicating which prior is to be used: 1 = "UIP", 2 = "SBH".

- `subset.index`  
  A matrix where each row gives the index for each model in the subset of models under consideration.

- `maximal.mod`  
  An object of class "glm" giving the fit of the maximal model.

- `IP`  
  A p by p matrix giving the inverse of the prior scale matrix for the maximal model.

- `eta.hat`  
  A vector of length n (number of cells) giving the posterior mode of the linear predictor under the maximal model.

- `ini.index`  
  A binary vector, of the same length as the number of log-linear parameters in the maximal model, indicating which parameters are present in the initial model.

- `ini.beta`  
  A numeric vector giving the starting values of the log-linear parameters for the MCMC algorithm.

- `ini.sig`  
  A numeric scalar giving the starting value of sigma^2 for the MCMC algorithm.

- `iters`  
  The number of iterations of the MCMC algorithm to perform.

- `save`  
  If positive, the function will save the MCMC output to external text files every save iterations. If zero, the function will not save the MCMC output to external files.

- `name`  
  A prefix to the external files saved if the argument save is positive. If NULL, then the external files will have no prefix.

- `null.move.prob`  
  A scalar argument giving the probability of performing a null move, i.e. proposing a move to the current model.
a The shape hyperparameter of the Sabanes-Bove & Held prior, see Overstall & King (2014).

b The scale hyperparameter of the Sabanes-Bove & Held prior, see Overstall & King (2014).

progress Logical argument. If TRUE, then a progress bar will be displayed.

Value

The function will return a list with the following components:

BETA An \texttt{iters} by \texttt{p} matrix containing the sampled values of the log-linear parameters, where \texttt{p} is the number of log-linear parameters in the maximal model. For elements of this matrix which correspond to a log-linear parameter which is not present for the current model a zero is returned.

MODEL A vector of length \texttt{iters} giving the sampled model indicators in hexadecimal form.

SIG A vector of length \texttt{iters} giving the sampled values for \(\sigma^2\) under the Sabanes-Bove & Held prior. If the unit information prior is used then the components of this vector will be one.

rj_acc A binary vector of the same length as the number of reversible jump moves attempted. A 0 indicates that the proposal was rejected, and a 1 that the proposal was accepted.

mh_acc A binary vector of the same length as the number of Metropolis-Hastings moves attempted. A 0 indicates that the proposal was rejected, and a 1 that the proposal was accepted.

Note

This function will not typically be called by the user.

Author(s)

Antony M. Overstall \texttt{<A.M.Overstall@soton.ac.uk> prosec}.

References


See Also

\texttt{bcct, bcctu}. 
Examples

data(AOH)
## Load the AOH data.

maximal.mod<-glm(formula=y~(alc+hyp+obe)*3, data=AOH, x=TRUE, y=TRUE, contrasts=list(alc="contr.sum", hyp="contr.sum", obe="contr.sum"))
## Set up the maximal model which in this case is the saturated model.

curr.index<-formula2index(big.X=maximal.mod$x, formula=y~alc+hyp+obe+hyp:obe, data=AOH)
## Set up the maximal model which in this case is the saturated model.

IP=t(maximal.mod$x)%*%maximal.mod$x/length(maximal.mod$y)
IP[,1]<-0
IP[,1]<-0
## Set up the binary vector for the model containing all main effects and the hyp:obe interaction.

ip<-beta_mode(X=maximal.mod$x, prior="UIP", y=maximal.mod$y, IP=IP)
## Find the posterior mode under the maximal model.

eta.hat<-as.vector(maximal.mod$x%*%bmod)
## Find the posterior mode of the linear predictor under the maximal model.

set.seed(1)
## Set seed for reproducibility

test1<-bcct.fit(priornum=1, maximal.mod=maximal.mod, IP=IP, eta.hat=eta.hat, ini.index=curr.index, ini.beta=bmod[curr.index==1], ini.sig=1, iters=5, save=0, name=NULL, null.move.prob=0.5, a=0.001, b=0.001, progress=TRUE)
## Run for 5 iterations starting at model defined by curr.index.

test1$MODEL
## Look at sampled model indicators. Should be:
## [1] "fe00c0" "fe0000" "fe000c" "fe0000" "fe0000"

model2index(test1$MODEL, dig=24)
## Convert these to binary indicators of the log-linear parameters.
## Will get:

# 
# fe00c0 1 1 1 1 1 1 1 1 0 0 0 0 0 
# fe0000 1 1 1 1 1 1 1 1 0 0 0 0 0 
# fe000c 1 1 1 1 1 1 1 1 0 0 0 0 0 
# fe0000 1 1 1 1 1 1 1 1 0 0 0 0 0 
# fe0000 1 1 1 1 1 1 1 1 0 0 0 0 0 
# fe000c 1 1 1 1 1 1 1 1 0 0 0 0 0 

# fe00c0 0 0 0 1 1 0 0 0 0 0 0 0 
# fe0000 0 0 0 0 0 0 0 0 0 0 0 0 
# fe000c 0 0 0 0 0 0 0 0 0 0 0 0 
# fe0000 0 0 0 0 0 0 0 0 0 0 0 0 
# fe0000 0 0 0 0 0 0 0 0 0 0 0 0
beta_mode

#fe0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#fe0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## See how the hyp:obe interactions in columns 17 and 18 gets dropped after
## the 1st iteration.

<table>
<thead>
<tr>
<th>beta_mode</th>
<th>Posterior Mode</th>
</tr>
</thead>
</table>

**Description**

This function finds the posterior mode of the log-linear parameters of a log-linear model with a given design matrix and prior distribution.

**Usage**

beta_mode(X, prior = "SBH", y, IP, a = 0.001, b = 0.001)

**Arguments**

- **X**: The n by p design matrix where n is the number of cells and p is the number of log-linear parameters.
- **prior**: The prior distribution. It can be one of c("UIP", "SBH"), where "UIP" = unit information prior; and "SBH" = Sabanes-Bove & Held prior. The default value is "SBH".
- **y**: The n by 1 vector of cell counts.
- **IP**: A p by p matrix giving the inverse of the prior scale matrix.
- **a**: The shape hyperparameter of the Sabanes-Bove & Held prior, see Overstall & King (2014).
- **b**: The scale hyperparameter of the Sabanes-Bove & Held prior, see Overstall & King (2014).

**Details**

The posterior mode is found by maximising the log unnormalised posterior pdf given by the sum of the log-likelihood and the log of the prior pdf. This optimisation is achieved using a quasi Newton-Raphson method.

For details on the unit information and Sabanes-Bove & Held priors for generalised linear models see Ntzoufras et al (2003) and Sabanes-Bove & Held (2011), respectively. See Overstall & King (2014), and the references therein, for their application to log-linear models and contingency tables.

The posterior mode is required for the reversible jump algorithm implemented from Forster et al (2012).

**Value**

beta_mode will return a p by 1 vector containing the posterior mode of the log linear parameters.
beta_mode

Note

This function will not typically be called by the user.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

References


Examples

data(AOH) ## loads the AOH data

X<model.matrix(~alc+hyp+obe,data=AOH, contrasts=list(alc="contr.sum",hyp="contr.sum",obe="contr.sum"))
## Sets up the design matrix for the independence model

IP<-(t(X)%*%X)/dim(X)[1]
## Set up inverse of prior scale matrix

beta_mode(X=X,prior="UIP",y=AOH$y,IP=IP)
## Finds the posterior mode of the log-linear parameters under the
## independence model with the unit information prior. Will get:
#(Intercept)   Xalc1   Xalc2   Xalc3   Xhyp1   Xobe1
# 2.894278420  -0.045859743 -0.071775824  0.089541868 -0.50414954  0.008163604
# 0.016327209

beta_mode(X=X,prior="SBH",y=AOH$y,IP=IP)
## Finds the posterior mode of the log-linear parameters under the
## independence model with the Sabanes-Bove & Held prior. Will get:
#(Intercept)   Xalc1   Xalc2   Xalc3   Xhyp1   Xobe1
# 2.908298763  -0.043704371  0.068212247  0.085338704 -0.473628107  0.007762839
# 0.015525678
Bayesian Analysis of Incomplete Contingency Tables

Description

These functions implement a Bayesian analysis of incomplete contingency tables. This is accomplished using a data augmentation MCMC algorithm where the null moves are performed using the Metropolis-Hastings algorithm and the between models moves are performed using the reversible jump algorithm. This function can also accommodate cases where one of the sources observes a mixture of individuals from target and non-target populations. This results in some of the cell counts being censored.

bict should be used initially, and bictu should be used to do additional MCMC iterations, if needed.

Usage

bict(formula, data, n.sample, prior = "SBH", cens = NULL, start.formula = NULL, start.beta = NULL, start.sig = NULL, start.y0 = NULL, save = 0, name = NULL, null.move.prob=0.5, a = 0.001, b = 0.001, progress = FALSE)

bictu(object, n.sample, save = NULL, name = NULL, progress = FALSE)

Arguments

- **formula**: An object of class "formula": a symbolic description of the maximal model.
- **object**: An object of class "bict" produced as a previous call to bict or bictu.
- **data**: An object of class "data.frame" (or "table") containing the variables in the model. If the model variables are not found in data, the variables are taken from environment(formula), typically the environment from which bict is called.
- **n.sample**: A numeric scalar giving the number of MCMC iterations to perform.
- **prior**: An optional argument giving the prior to be used in the analysis. It can be one of c("UIP", "SBH") where "UIP" = unit information prior; and "SBH" = Sabanes-Bove & Held prior. The default value is "SBH".
- **cens**: A numeric vector indicating the row numbers of the data.frame in data which correspond to the censored cells. This can be found using the function find_cens.
- **start.formula**: An optional argument giving an object of class "formula": a symbolic description of the starting model in the MCMC algorithm. If NULL (the default) the starting model will be the maximal model.
- **start.beta**: An optional argument giving the starting values of the log-linear parameters for the MCMC algorithm. It should be a vector of the same length as the number of log-linear parameters in the starting model implied by the argument start.formula. If NULL (the default) the starting value will be the posterior mode under the maximal model.
An optional argument giving the starting value of sigma^2 (under the Sabanes-Bove & Held prior) for the MCMC algorithm when the argument of prior is "SBH". If NULL (the default) the starting value will be one.

An optional argument giving the starting values of the missing and censored cell counts. This should have the same length as the number of missing and censored cell counts.

An optional argument for saving the MCMC output mid-algorithm. For bict, if positive, the function will save the MCMC output to external text files every save iterations. If zero (the default), the function will not save the MCMC output to external files. For bictu, if non-NULL, the function will save the MCMC output to external text files every save iterations. If NULL (the default), it will inherit the value of save from the previous call to bict or bictu.

An optional argument giving a prefix to the external files saved if the argument save is positive. For bict, a value of NULL means the external files will not have a prefix. For bictu, a value of NULL, means the prefix will be inherited from the previous call to bict or bictu.

An optional scalar argument giving the probability of performing a null move in the reversible jump algorithm, i.e. proposing a move to the current model. The default value is 0.5.

The shape hyperparameter of the Sabanes-Bove & Held prior, see Overstall & King (2014). The default value is 0.001. A value of a = -1 gives the Gelman prior (Gelman, 2006), i.e. a uniform prior on the standard deviation.

The scale hyperparameter of the Sabanes-Bove & Held prior, see Overstall & King (2014). The default value is 0.001. A value of b = 0 gives the Gelman prior (Gelman, 2006), i.e. a uniform prior on the standard deviation.

Logical argument. If TRUE, then a progress bar will be displayed. The default value is FALSE.

For identifiability, the parameters are constrained. The `conting-package` uses sum-to-zero constraints. See Overstall & King (2014), and the references therein, for more details.

The Metropolis-Hastings algorithm employed is the iterated weighted least squares method for generalised linear models (GLMs) proposed by Gamerman (1997). The reversible jump algorithm employed is the orthogonal projections method for GLMs proposed by Forster et al (2012). For details on these methods applied to log-linear models through the data-augmentation algorithm see Overstall & King (2014), and the references therein. For details on the censored approach see Overstall et al (2014).

For details on the unit information and Sabanes-Bove & Held priors for generalised linear models see Ntzoufras et al (2003) and Sabanes-Bove & Held (2011), respectively. See Overstall & King (2014), and the references therein, for their application to log-linear models and contingency tables.

The functions will return an object of class "bict" which is a list with the following components.
BETA  An n.sample by p matrix containing the sampled values of the log-linear parameters, where p is the number of log-linear parameters in the maximal model. For elements of this matrix which correspond to a log-linear parameter which is not present for the current model a zero is returned.

MODEL  A vector of length n.sample giving the sampled model indicators in hexadecimal format.

SIG  A vector of length n.sample giving the sampled values for \( \sigma^2 \) under the Sabanes-Bove & Held prior. If the unit information prior is used then the components of this vector will be one.

Y0  An n.sample by k matrix giving the sampled values of the missing and censored cell counts, where k is the total number of missing and censored cell counts.

missing1  A vector of the same length as the number of missing cell counts giving the row numbers of the data.frame in data (or the elements of the variables) which correspond to the missing cell counts.

missing2  A vector of the same length as the number of censored cell counts giving the row numbers of the data.frame in data (or the elements of the variables) which correspond to the censored cell counts.

missing_details  The rows of the data.frame in data (or the elements of the variables) which correspond to the missing cell counts.

censored_details  The rows of the data.frame in data (or the elements of the variables) which correspond to the censored cell counts.

rj_acc  A binary vector of the same length as the number of reversible jump moves attempted. A 0 indicates that the proposal was rejected, and a 1 that the proposal was accepted.

mh_acc  A binary vector of the same length as the number of Metropolis-Hastings moves attempted. A 0 indicates that the proposal was rejected, and a 1 that the proposal was accepted.

priornum  A numeric scalar indicating which prior was used: 1 = "UIP", 2 = "SBH".

maximal.mod  An object of class "glm" giving the fit of the maximal model.

IP  A p by p matrix giving the inverse of the prior scale matrix for the maximal model.

eta.hat  A vector of length n (number of cells) giving the posterior mode of the linear predictor under the maximal model.

save  The argument save.

name  The argument name.

null.move.prob  The argument null.move.prob.

time  The total computer time (in seconds) used for the MCMC computations.

a  The argument a.

b  The argument b.
Note

These functions are wrappers for \texttt{bict.fit}.

In Version 1.0 of \texttt{conting-package}, note that the default value for \texttt{prior} was "UIP". From Version 1.1 onwards, the default value is "SBH".

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

References


See Also

\texttt{bict.fit}, \texttt{spina}, \texttt{ScotPWID}.

Examples

\begin{verbatim}
set.seed(1)
## Set seed for reproducibility.

data(spina)
## Load the spina data

test1<-bict(formula=y~(S1 + S2 + S3 + eth)^2, data=spina, n.sample=50, prior="UIP")
## Let the maximal model be the model with two-way interactions. Starting from the
## posterior mode of the model with two-way interactions, do 50 iterations under the
## unit information prior.

test1<-bictu(object=test1, n.sample=50)
## Do another 50 iterations
\end{verbatim}
# Number of cells in table = 24
# Maximal model = 
# y = (S1 + S2 + S3 + eth)^2
# Number of log-linear parameters in maximal model = 15
# Number of MCMC iterations = 100
# Computer time for MCMC = 00:00:01
# Prior distribution for log-linear parameters = UIP
# Number of missing cells = 3
# Number of censored cells = 0

summary(test1)

## Summarise the result. Will get:

# Posterior summary statistics of log-linear parameters:

<table>
<thead>
<tr>
<th></th>
<th>post_prob</th>
<th>post_mean</th>
<th>post_var</th>
<th>lower_lim</th>
<th>upper_lim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>1.0427</td>
<td>0.033967</td>
<td>0.6498</td>
<td>1.4213</td>
</tr>
<tr>
<td>S1</td>
<td>1</td>
<td>-0.3159</td>
<td>0.001585</td>
<td>-0.4477</td>
<td>-0.1203</td>
</tr>
<tr>
<td>S2</td>
<td>1</td>
<td>0.8030</td>
<td>0.018797</td>
<td>0.6127</td>
<td>1.1865</td>
</tr>
<tr>
<td>S3</td>
<td>1</td>
<td>0.7951</td>
<td>0.003890</td>
<td>0.6703</td>
<td>0.8818</td>
</tr>
<tr>
<td>eth1</td>
<td>1</td>
<td>2.8502</td>
<td>0.033455</td>
<td>2.4075</td>
<td>3.1764</td>
</tr>
<tr>
<td>eth2</td>
<td>1</td>
<td>0.1435</td>
<td>0.072437</td>
<td>-0.4084</td>
<td>0.5048</td>
</tr>
<tr>
<td>S21:S3</td>
<td>1</td>
<td>-0.4725</td>
<td>0.002416</td>
<td>-0.5555</td>
<td>-0.3928</td>
</tr>
</tbody>
</table>

NB: lower_lim and upper_lim refer to the lower and upper values of the 95% highest posterior density intervals, respectively

# Posterior model probabilities:

<table>
<thead>
<tr>
<th>#</th>
<th>prob</th>
<th>model_formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.36</td>
<td>~S1 + S2 + S3 + eth + S2:S3</td>
</tr>
<tr>
<td>2</td>
<td>0.19</td>
<td>~S1 + S2 + S3 + eth + S2:S3 + S2:eth</td>
</tr>
<tr>
<td>3</td>
<td>0.12</td>
<td>~S1 + S2 + S3 + eth + S1:eth + S2:S3</td>
</tr>
<tr>
<td>4</td>
<td>0.12</td>
<td>~S1 + S2 + S3 + eth + S1:S2 + S1:S3 + S1:eth + S2:S3 + S2:eth + S3:eth</td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
<td>~S1 + S2 + S3 + eth + S1:S3 + S1:eth + S2:S3</td>
</tr>
<tr>
<td>6</td>
<td>0.06</td>
<td>~S1 + S2 + S3 + eth + S1:S3 + S1:eth + S2:S3 + S2:eth</td>
</tr>
</tbody>
</table>

# Total number of models visited = 8

# Posterior mean of total population size = 726.75
# 95% highest posterior density interval for total population size = ( 706 758 )

# Under the X2 statistic

<table>
<thead>
<tr>
<th>#</th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
</table>
#Summary statistics for T_obs
#  Min. 1st Qu. Median  Mean 3rd Qu.  Max.  
#  5.329  18.270  22.580  21.290  24.110  37.940  
#Bayesian p-value = 0.45

bict.fit

Bayesian Analysis of Incomplete Contingency Tables

Description
This function is the workhorse behind bict and bictu.

Usage
bict.fit(priornum, missing1, missing2, maximal.mod, IP, eta.hat, ini.index,
inibieta, ini.sig, ini.y0, iters, save, name, null.move.prob, a, b, progress)

Arguments
priornum  A numeric scalar indicating which prior is to be used: 1 = "UDP", 2 = "SBH".
missing1  A vector of the same length as the number of missing cell counts giving the row
numbers of the data.frame in data which correspond to the missing cell counts.
missing2  A vector of the same length as the number of censored cell counts giving the
row numbers of the data.frame in data which correspond to the censored cell
counts.
maximal.mod  An object of class "glm" giving the fit of the maximal model.
IP  A p by p matrix giving the inverse of the prior scale matrix for the maximal
model.
eta.hat  A vector of length n (number of cells) giving the posterior mode of the linear
predictor under the maximal model.
ini.index  A binary vector, of the same length as the number of log-linear parameters in the
maximal model, indicating which parameters are present in the initial model.
inibieta  A numeric vector giving the starting values of the log-linear parameters for the
MCMC algorithm.
inisi sig  A numeric scalar giving the starting value of sigma^2 for the MCMC algorithm.
inify0  A numeric vector giving the starting values of the missing and censored cell
entries for the MCMC algorithm.
iters  The number of iterations of the MCMC algorithm to perform.
save  If positive, the function will save the MCMC output to external text files every
save iterations. If zero, the function will not save the MCMC output to external
files.
name  A prefix to the external files saved if the argument `save` is positive. If `NULL`, then the external files will have no prefix.

`null.move.prob`  A scalar argument giving the probability of performing a null move, i.e. proposing a move to the current model.

`a`  The shape hyperparameter of the Sabanes-Bove & Held prior, see Overstall & King (2014).

`b`  The scale hyperparameter of the Sabanes-Bove & Held prior, see Overstall & King (2014).

`progress`  Logical argument. If `TRUE`, then a progress bar will be displayed.

**Value**

The function will return a list with the following components.

**BETA**  An `iters` by `p` matrix containing the sampled values of the log-linear parameters, where `p` is the number of log-linear parameters in the maximal model. For elements of this matrix which correspond to a log-linear parameter which is not present for the current model a zero is returned.

**MODEL**  A vector of length `iters` giving the sampled model indicators in hexadecimal format.

**SIG**  A vector of length `iters` giving the sampled values for `sigma^2` under the Sabanes-Bove & Held prior. If the unit information prior is used then the components of this vector will be one.

**Y0**  An `iters` by `k` matrix giving the sampled values of the missing and censored cell counts, where `k` is the total number of missing and censored cell counts.

**rj_acc**  A binary vector of the same length as the number of reversible jump moves attempted. A 0 indicates that the proposal was rejected, and a 1 that the proposal was accepted.

**mh_acc**  A binary vector of the same length as the number of Metropolis-Hastings moves attempted. A 0 indicates that the proposal was rejected, and a 1 that the proposal was accepted.

**Note**

This function will not typically be called by the user.

**Author(s)**

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

**References**

See Also

bict, bictu.

Examples

data(spina)
## Load spina data.

spina$spina$z <- spina$y
spina$z[is.na(spina$y)] <- 0
## Define a new variable in spina data.frame which is equal to y except where
## y is NA, in which case z=0. This is just so we can fit maximal model to the
## complete contingency table.

maximal.mod <- glm(formula = z ~ (S1 + S2 + S3 + eth)^2, data = spina, x = TRUE, y = TRUE,
contrasts = list(S1 = "contr.sum", S2 = "contr.sum", S3 = "contr.sum",
eth = "contr.sum"))
## Fit maximal model to complete contingency table.

curr.index <- formula2index(big.X = maximal.mod$x, formula = z ~ S1 + S2 + S3 + eth, data = spina)
## Set up binary vector for independence model.

IP <- t(maximal.mod$x) %*% maximal.mod$x / length(maximal.mod$y)
IP[,1] <- 0
IP[1,1] <- 0
## Set up the inverse scale matrix for the prior distribution under
## the maximal model.

bmod <- beta_mode(X = maximal.mod$x[!is.na(spina$y)], prior = "U1U", y = maximal.mod$y[!is.na(spina$y)], IP = IP)
## Find the posterior mode under the maximal model fitted to observed cell counts.
eta.hat <- as.vector(maximal.mod$xx %*% bmod)
## Find the posterior mode of the linear predictor
## under the maximal model.

set.seed(1)
## Set seed for reproducibility

test$< bict.fit(prior.num = 1, missing = list(1:length(maximal.mod$y))[is.na(spina$y)],
missing2=NULL,maximal.mod=maximal.mod, IP=IP, eta.hat=eta.hat, ini.index=cuurr.index, ini.beta=bmod[cuurr.index==1], ini.sig=1, ini.y0=c(500,200,20),iters=10, save=0, name=NULL, null.move.prob=0.5, a=0.005, b=0.001, progress = FALSE)
## Run for 10 iterations starting at model defined by curr.index.

test1$MODEL
## Look at sampled model indicators. Should be:
# [1] "7e00" "7e00"

model2index(test1$MODEL, dig=15)
## Convert these to binary indicators of the log-linear parameters.
## Will get:

#7e00 1 1 1 1 1 1 1 0 0 0 0
### Description

Given all the sources and the censored source of an incomplete contingency table, this function will find the censored cells.

### Usage

```r
find_cens(sources, cens_source, data=NULL, unobs.level = "un", obs.level = "obs")
```

### Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sources</td>
<td>An object of class &quot;formula&quot;, which details the sources in the incomplete contingency table.</td>
</tr>
<tr>
<td>cens_source</td>
<td>An object of class &quot;formula&quot;, which details the source which is subject to censoring in the incomplete contingency table.</td>
</tr>
<tr>
<td>data</td>
<td>An object of class &quot;data.frame&quot; (or &quot;table&quot;) containing the variables in the model. If the model variables are not found in data, the variables are taken from environment(formula), typically the environment from which <code>find_cens</code> is called.</td>
</tr>
<tr>
<td>unobs.level</td>
<td>The character string used to label the source level corresponding to not observing the individuals in the cell.</td>
</tr>
<tr>
<td>obs.level</td>
<td>The character string used to label the source level corresponding to observing the individuals in the cell.</td>
</tr>
</tbody>
</table>
Details

Sometimes one of the sources (termed the censored source) used to estimate closed populations observes individuals which are not members of the target population. In this case we assume that when this source observes an individual that has been observed by at least one other source, then it is a member of the target population. However those individuals only observed by the censored source contain a mixture of members of the target and non-target populations. This means that the observed cell count acts as an upper bound on the true cell count. For more details on this approach, see Overstall et al (2014) and Overstall & King (2014). This function identifies the cells which are censored (i.e. correspond to only being observed by the censored source).

Value

The function will output a numeric vector containing the cell numbers of the censored cells. These are used by the `bict` and `bictu` functions.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

References


See Also

`bict`.

Examples

data(ScotPWID)
## Load the ScotPWID data. In this dataset, the S4 source corresponding
## to the HCV database is subject to censoring. We use find_cens to find
## the censored cells.
find_cens(sources=S1+S2+S3+S4,cens_source=S4,data=ScotPWID)
## It will produce the vector with the following elements:
##[1] 9 25 41 57 73 89 105 121
## Let's look at these cells
ScotPWID[find_cens(sources=S1+S2+S3+S4,cens_source=S4,data=ScotPWID),]
## It will produce:
#  y S1 S2 S3 S4 Region Gender Age
#9 122 un un un obs  GGC  Male  Young
#25 135 un un un obs  GGC  Male  Old
#41  48 un un un obs  GGC Female Young
#57  38 un un un obs  GGC Female  Old
#73 134 un un un obs   Rest  Male  Young
**formula2index**

Convert Between Formula and Index

**Description**

These functions will convert a formula object to a binary index and vice versa.

**Usage**

```r
formula2index(big.X, formula, data)
index2formula(index, maximal.mod)
```

**Arguments**

- `big.X`: The design matrix under the maximal model.
- `formula`: An object of class "formula": a symbolic description of the model to convert to a binary index.
- `data`: An object of class "data.frame" containing the variables in the model.
- `maximal.mod`: An object of class "glm" giving the fit of the maximal model.
- `index`: A binary vector, of the same length as the number of log-linear parameters in the maximal model, indicating which parameters are present in the model to be converted to a formula.

**Value**

The function `formula2index` will produce a binary vector of the same length as the number of log-linear parameters in the maximal model, indicating which parameters are present in the model represented by the argument `formula`.

The function `index2formula` will produce an object of class "formula": a symbolic description of the model given by the argument `index`.

**Note**

This function will not typically be called by the user.

**Author(s)**

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.
Examples

data(ScotPWID)
## Load the ScotPWID data

maximal.mod<-glm(y~(S1+S2+S3+S4+Region+Gender+Age)^2,family=poisson,contrasts=list( S1="contr.sum",S2="contr.sum",S3="contr.sum",S4="contr.sum", Region="contr.sum",Gender="contr.sum",Age="contr.sum"),data=ScotPWID,x=TRUE)
## Fit the maximal model containing all two-way interactions.

big.X<-maximal.mod$x
## Set the design matrix under the maximal model

index<-formula2index(big.X=big.X, formula=~S1+S2+S3+S4+Region+Gender+Age+S1:S2+S1:Age+S2:Gender+S3:S4+S4:Age, data=ScotPWID)
## Find the index under the model with the following interactions:
## S1:S2
## S1:Age
## S2:Gender
## S3:S4
## S4:Age

index
## Print index
# [1] 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0

index2formula(index=index,maximal.mod=maximal.mod)
## Go back to formula
# y ~ S1 + S2 + S3 + S4 + Region + Gender + Age + S1:S2 + S1:Age +
#   S2:Gender + S3:S4 + S4:Age

---

Risk Factors for Coronary Heart Disease: A Complete 2^6 Table

Description

1841 men are cross-classified according to six risk factors for coronary heart disease: smoking (A; 2 levels), strenuous mental work (B; 2 levels), strenuous physical work (C; 2 levels), systolic blood pressure (D; 2 levels), ratio of alpha and beta lipoproteins (E; 2 levels) and family anamnesis of coronary heart disease (F; 2 levels).

Usage

data(heart)

Format

A "data.frame" with 64 observations on the following 7 variables.

y  Counts in each cell of table.
index2model

A factor with levels yes no indicating smoking status.
B A factor with levels yes no indicating strenuous mental work.
C A factor with levels yes no indicating strenuous physical work.
D A factor with levels yes no indicating systolic blood pressure.
E A factor with levels yes no indicating high ratio of alpha and beta lipoproteins.
F A factor with levels yes no indicating a family anamnesis of coronary heart disease.

Details

For more details on this data see Edwards & Havranek (1985).
For details on the function bcct applied to this data, see Overstall & King (2014).

Source

Edwards, D. & Havranek, T. (1985) A fast procedure for model search in multidimensional contingen-

References


Examples

data(heart)
summary(heart)

---

**index2model**

*Convert Between Index and Model Indicator*

**Description**

These functions convert the binary vector, indicating which terms are in the current model, to the hexadecimal model indicator, and vice versa.

**Usage**

index2model(index)

model2index(model, dig)
Arguments

index: A binary vector, of the same length as the number of log-linear parameters in the maximal model, indicating which parameters are present in the model to be converted to a hexadecimal.

dig: A scalar argument giving the number of columns of the design matrix for the maximal model.

model: A character string giving a hexadecimal model indicator.

Value

index2model will return a hexadecimal model indicator.

model2index will return a binary vector, of the same length as the number of log-linear parameters in the maximal model, indicating which parameters are present in the model converted from hexadecimal.

Note

This function will not typically be called by the user.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

Examples

```r
data(ScotPWID)
 ## Load the ScotPWID data

maximal.mod<-glm(y~(S1+S2+S3+S4+Region+Gender+Age)^2,family=poisson,contrasts=list(
 S1="contr.sum",S2="contr.sum",S3="contr.sum",S4="contr.sum",
 Region="contr.sum",Gender="contr.sum",Age="contr.sum"),data=ScotPWID,x=TRUE)
 ## Fit the maximal model containing all two-way interactions.

big.X<-maximal.mod$x
 ## Set the design matrix under the maximal model

index<-formula2index(big.X=big.X,
 formula="S1+S2+S3+S4+Region+Gender+Age+S1:S1+S1:Age+S2:Gender+S3:S4+S4:Age,
 data=ScotPWID)
 ## Find the index under the model with the following interactions:
 ## S1:S2
 ## S1:Age
 ## S2:Gender
 ## S3:S4
 ## S4:Age

index
 ## Print the index, will get:
 # [1] 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0
Calculate Posterior Probability of Each Term

Description

This function computes the posterior probability of each term using the MCMC output of "bcct" and "bict" objects.

Usage

```
inter_probs(object, cutoff = 0.75, n.burnin = 0, thin = 1)
```

Arguments

- **object**: An object of class "bcct" or "bict".
- **cutoff**: An optional argument giving the cutoff posterior probability for displaying posterior summary statistics of the log-linear parameters. Only those log-linear parameters with a posterior probability greater than cutoff will be returned as part of the output. The default value is 0.75.
- **n.burnin**: An optional argument giving the number of iterations to use as burn-in. The default value is 0.
- **thin**: An optional argument giving the amount of thinning to use, i.e. the computations are based on every thin-th value in the MCMC sample. The default value is 1, i.e. no thinning.

Details

This function provides a scaled back version of what `inter_stats` provides.

The use of thinning is recommended when the number of MCMC iterations and/or the number of log-linear parameters in the maximal model are/is large, which may cause problems with computer memory storage.
Value

This function returns an object of class "interprob" which is a list with the following components.

- **term**: A vector of term labels.
- **prob**: A vector of posterior probabilities.
- **thin**: The value of the argument `thin`.

The function will only return elements in the above list if `prob > cutoff`.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also

`bcct, bict, print.interprob, inter_stats`.

Examples

```r
set.seed(1)
## Set seed for reproducibility
data(AOH)
## Load AOH data
test1<-bcct(formula=y~(alc+hyp+obe)*3, data=AOH, n.sample=100, prior="UIP")
## Starting from maximal model of saturated model do 100 iterations of MCMC
## algorithm.
inter_probs(test1, n.burnin=10, cutoff=0)
## Calculate posterior probabilities having used a burn-in phase of
## 10 iterations and a cutoff of 0 (i.e. display all terms with
## non-zero posterior probability). Will get the following:

#Posterior probabilities of log-linear parameters:
#   post_prob
#   (Intercept)   1.0000
#   alc           1.0000
#   hyp           1.0000
#   obe           1.0000
#   alc:hyp       0.1778
#   alc:obe       0.0000
#   hyp:obe       0.4444
#   alc:hyp:obe   0.0000

## Note that the MCMC chain (after burn-in) does not visit any models
## with the alc:obe or alc:hyp:obe interactions.
```
inter_stats

Compute Posterior Summary Statistics of the Log-Linear Parameters.

Description

This function computes the posterior summary statistics of the log-linear parameters using the MCMC output of "bcct" and "bict" objects. The posterior summary statistics are posterior probability, posterior mean, posterior variance and lower and upper limits highest posterior density intervals (HPDIs).

Usage

`inter_stats(object, cutoff = 0.75, n.burnin = 0, thin = 1, prob.level = 0.95)`

Arguments

- **object**: An object of class "bcct" or "bict".
- **cutoff**: An optional argument giving the cutoff posterior probability for displaying posterior summary statistics of the log-linear parameters. Only those log-linear parameters with a posterior probability greater than cutoff will be returned as part of the output. The default value is 0.75.
- **n.burnin**: An optional argument giving the number of iterations to use as burn-in. The default value is 0.
- **thin**: An optional argument giving the amount of thinning to use, i.e. the computations are based on every thin-th value in the MCMC sample. The default value is 1, i.e. no thinning.
- **prob.level**: An optional argument giving the probability content of the HPDIs. The default value is 0.95.

Details

This function provides an expanded version of what `inter_probs` provides.

The use of thinning is recommended when the number of MCMC iterations and/or the number of log-linear parameters in the maximal model are/is large, which may cause problems with computer memory storage.

Value

This function will return an object of class "interstat" which is a list with the following components:

- **term**: A vector of term labels for each parameter.
- **prob**: A vector of posterior probabilities for each parameter.
- **post_mean**: A vector of posterior means for each parameter.
- **post_var**: A vector of posterior variances for each parameter.
lower A vector of lower limits for the 100*prob.level% HPDI for each parameter.
upper A vector of upper limits for the 100*prob.level% HPDI for each parameter.
prob.level The argument prob.level.

The function will only return elements in the above list if prob > cutoff.

Author(s)
Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also
bcct, bict, print.interstat inter_probs

Examples

set.seed(1)
Set seed for reproducibility
data(AOH)
Load AOH data
test1<-bct(formula=y~(alc+hyp+obe)*3, data=AOH, n.sample=100, prior="UIP")
Starting from maximal model of saturated model do 100 iterations of MCMC
algorithm.

inter.stats(test1, n.burnin=10, cutoff=0.5)
Calculate posterior summary statistics having used a burn-in phase of
10 iterations and a cutoff of 0 (i.e. display all terms with
non-zero posterior probability. Will get the following:

#Posterior summary statistics of log-linear parameters:
post_prob post_mean post_var lower_lim upper_lim
#(Intercept) 1 2.88291 0.002565 2.78778 2.97185
#alc1 1 -0.05246 0.008762 -0.27772 0.06655
#alc2 1 -0.05644 0.006407 -0.20596 0.11786
#alc3 1 0.06822 0.005950 -0.09635 0.18596
#hyp1 1 -0.53895 0.003452 -0.63381 -0.39888
#obe1 1 -0.04686 0.007661 -0.20929 0.12031
#obe2 1 0.01395 0.004024 -0.11024 0.11783
#NB: lower_lim and upper_lim refer to the lower and upper values of the
#95 % highest posterior density intervals, respectively

iwls_mh Iterated Weighted Least Square Metropolis Hastings Algorithm

Description

This function implements one iteration of the Iterated Weight Least Square Metropolis Hastings Algorithm as proposed by Gamerman (1997) for generalised linear models as applied to log-linear models.
iwls_mh

Usage

iwls_mh(curr.y, curr.X, curr.beta, iprior.var)

Arguments

curr.y A vector of length n giving the cell counts.
curr.X An n by p design matrix for the current model, where p is the number of log-linear parameters.
curr.beta A vector of length p giving the current log-linear parameters.
iprior.var A p by p matrix giving the inverse of the prior variance matrix.

Details

For details of the original algorithm see Gamerman (1997). For its application to log-linear models see Overstall & King (2014), and the references therein.

Value

The function will output a vector of length p giving the new values of the log-linear parameters.

Note

This function will not typically be called by the user.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

References

Examples

```r
set.seed(1)
## Set seed for reproducibility
data(AOH)
## Load AOH data

maximal.mod<-glm(y~alc+hypltobe, family=poisson, data=AOH, x=TRUE, contrasts=list(alc="contr.sum", hype="contr.sum", obe="contr.sum"), data=AOH)
## Fit independence model to get a design matrix

Ip<-t(maximal.mod$x) %*% maximal.mod$x/length(AOH$y)
Ip[,1]<-0
```
mod_probs

Compute Posterior Model Probabilities

Description

This function computes the posterior model probabilities using the MCMC output of "bcct" and "bict" objects.

Usage

mod_probs(object, n.burnin = 0, scale = 0.1, best = NULL, thin = 1)

Arguments

object

An object of class "bcct" or "bict".

n.burnin

An optional argument giving the number of iterations to use as burn-in. The default value is 0.

scale

An optional argument for controlling how the posterior model probabilities are returned as output. The function will return details on the models with the posterior model probability larger than scale times the probability of the posterior modal model. The default value is 0.1.

best

An optional argument for controlling how the posterior model probabilities are returned as output. The function will return details on the best models with the highest posterior model probabilities. For example, if best=4, then details on the four models with the highest posterior model probabilities will be returned. The default value is NULL. If not NULL, then this argument takes precedent over scale.

thin

An optional argument giving the amount of thinning to use, i.e. the computations are based on every thin-th value in the MCMC sample. The default value is 1, i.e. no thinning.
Details

It will output only the probabilities of the "best" models, as defined by the user specifying either the best or scale arguments.

The use of thinning is recommended when the number of MCMC iterations and/or the number of log-linear parameters in the maximal model are/is large, which may cause problems with computer memory storage.

Value

The function will return an object of class "modprobs" which is a list containing the following components.

table An object of class "data.frame" with number of rows defined by scale or best and columns: model_formula; giving the model (in terms of a printed formula), and prob; giving the posterior model probability.

totmodsvisit A numeric scalar giving the total number of models visited after the burn-in iterations.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also

bcct, bict, print.modprobs.

Examples

set.seed(1)
Set seed for reproducibility
data(AOH)
Load AOH data

test1<-bcct(formula=y~(alc+hyp+obe)^3,data=AOH,n.sample=100,prior="UIP")
Starting from maximal model of saturated model do 100 iterations of MCMC
algorithm.

mod_probs(object=test1,n.burnin=10,best=6)
Using a burn-in of 10 iterations find the posterior model probabilities
of the 6 models with the highest posterior model probability. Will get:

#Posterior model probabilities:
prob model_formula
#1 0.50000 -alc + hyp + obe
#2 0.32222 -alc + hyp + obe + hyp:obe
#3 0.12222 -alc + hyp + obe + alc:hyp + hyp:obe
#4 0.05556 -alc + hyp + obe + alc:hyp
#
#Total number of models visited = 4
Note that since the chain only visited 4 models we only get probabilities
for 4 models not 6.

plot.pval

Plot pval Objects

Description

This function plots objects of class “pval”.

Usage

```r
# S3 method for class 'pval'
plot(x, ...)
```

Arguments

- `x`
 An object of class “pval”.

- `...`
 Arguments to be passed to and from other methods.

Value

This function will produce a plot of T_{obs} against T_{pred} (see `bayespval`) along with a line through the origin with slope one. The proportion of points above the line (grey points) gives the Bayesian p-value.

Note

For an example see `bayespval`.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also

`bayespval`
plot.totpop

Plot totpop Objects

Description

This function plots objects of class "totpop".

Usage

S3 method for class 'totpop'
plot(x, ...)

Arguments

x An object of class "totpop".
...
Arguments to be passed to and from other methods.

Value

This function will produce a histogram of the MCMC sample from the posterior distribution of the total population size.

Note

For an example see total_pop.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also

total_pop

print.acceptrate

Prints acceptrate Objects

Description

This function prints objects of class "acceptrate".

Usage

S3 method for class 'acceptrate'
print(x, digits = max(3, getOption("digits") - 3), ...)
Arguments

 x An object of class "acceptrate".
 digits An optional argument controlling the rounding of output.
 ... Arguments to be passed to and from other methods.

Value

This function will simply print out the acceptance rates for the reversible jump and Metropolis-Hastings algorithms.

Note

For an example see accept_rate.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also

accept_rate

print.bcct

Description

This function prints objects of class "bcct" and "bict".

Usage

S3 method for class 'bcct'
print(x, ...)

S3 method for class 'bict'
print(x, ...)

Arguments

 x An object of class "bcct" or "bict".
 ... Arguments to be passed to and from other methods.
Value

These functions print out very simple details on the bcct or bict objects. They display the number of cells in the table, the maximal model considered, the number of log-linear parameters in the maximal model, the number of MCMC iterations, the computer time required for the MCMC (in hours, minutes and seconds) and the prior used.

In the case of objects of class "bict", it also prints out the number of missing and censored cells.

Note

For examples see bcct and bict.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also

bcct, bict.

print.interprob

Print interprob Objects

Description

This function prints objects of class "interprob".

Usage

S3 method for class 'interprob'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

 x An object of class "interprob".
 digits An optional argument controlling the rounding of output.
 ... Arguments to be passed to and from other methods.

Value

This function will print out the posterior probability of each term (subject to the argument cutoff).

Note

For an example see inter_probs.
print.interstat

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also

inter_probs.

print.interstat Print interstat Objects

Description

This function prints objects of class "interstat".

Usage

```r
## S3 method for class 'interstat'
print(x, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

- `x` An object of class "interstat".
- `digits` An optional argument controlling the rounding of output.
- `...` Arguments to be passed to and from other methods.

Value

This function will print out the posterior probability, posterior mean, posterior variance and the 100*prob.level% highest posterior density intervals (HPDIs) of each log-linear parameter (subject to the argument cutoff).

Note

For an example see inter_stats.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also

inter_stats.
print.modprobs

Description

This function prints objects of class "modprobs".

Usage

```r
## S3 method for class 'modprobs'
print(x, digits = max(3,getOption("digits") - 3), ...)
```

Arguments

- `x` An object of class "modprobs".
- `digits` An optional argument controlling the rounding of output.
- `...` Arguments to be passed to and from other methods.

Value

This function will print out the posterior model probability of the "best" models as defined by the arguments `best` or `scale`.

Note

For an example see `mod_probs`.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also

`mod_probs`.

print.pval

Description

This function prints objects of class "pval".

Usage

```r
## S3 method for class 'pval'
print(x, digits = max(3,getOption("digits") - 3), ...)
```
Arguments

- `x`: An object of class "pval".
- `digits`: An optional argument controlling the rounding of output.
- `...`: Arguments to be passed to and from other methods.

Value

This function will print out summary statistics for the predictive (`T_pred`) and observed (`T_obs`) discrepancy statistics. Additionally it will output the associated Bayesian p-value.

Note

For an example see `bayespval`.

Author(s)

Antony M. Overstall (<A.M.Overstall@soton.ac.uk>).

See Also

`bayespval`

print.submod

Print submod Objects

Description

This function prints objects of class "submod".

Usage

```r
## S3 method for class 'submod'
print(x, ..., digits = max(3,getOption("digits") - 3))
```

Arguments

- `x`: An object of class "submod".
- `...`: Arguments to be passed to and from other methods.
- `digits`: An optional argument controlling the rounding of output.

Value

Firstly, conditional on the model of interest (defined by `formula` and `order`), this function will print out the posterior means, posterior variances and 100*`prob.level`% highest posterior density intervals (HPDIs) for each of the log-linear parameters. Secondly, conditional on the model of interest, it will print out summaries of the discrepancy statistics and the corresponding Bayesian p-value. Finally, if the class of the object passed to `sub_model` is "bict", then it will print out the posterior mean and 100*`prob.level`% HPDI for the total population size, conditional on the model of interest.
print.totpop

Note
For an example see sub_model.

Author(s)
Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also
sub_model.

print.totpop Print totpop Objects

Description
This function prints objects of class “totpop”.

Usage
S3 method for class ’totpop’
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments
x An object of class "totpop".
digits An optional argument controlling the rounding of output.
... Arguments to be passed to and from other methods.

Value
The function will print out the posterior mean and the 100*prob.1level% highest posterior density interval for the total population size.

Note
For an example see total_pop.

Author(s)
Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also
total_pop.
Reversible Jump Algorithm

Description

These functions implement one iteration of the orthogonal projection reversible jump algorithm for
generalised linear models proposed by Forster et al (2012) applied to log-linear models with and
without swap moves.

Usage

RJ_update_swap(prop.index, curr.index, curr.beta, eta.hat, curr.y, big.X,
 proposal.probs, i.prop.prior.var, i.curr.prior.var)

RJ_update(prop.index, curr.index, curr.beta, eta.hat, curr.y, big.X,
 proposal.probs, i.prop.prior.var, i.curr.prior.var)

Arguments

prop.index A binary vector, of the same length as the number of log-linear parameters in the
 maximal model, indicating which parameters are present in the proposed model.
curr.index A binary vector, of the same length as the number of log-linear parameters in the
 maximal model, indicating which parameters are present in the current model.
curr.beta A vector of length \(\sum\text{curr.index}\) giving the log-linear parameters under the
 current model.
eta.hat A vector of length \(n\) (number of cells) giving the posterior mode of the linear
 predictor under the maximal model.
curr.y A vector of length \(n\) giving the cell counts.
big.X The design matrix under the maximal model.
proposal.probs A numeric vector of length 2. The first element gives the probability of propos-
 ing a move from the proposed model to the current model. The second element
 gives the probability of proposing a move from the current model to the pro-
 posed model.
i.prop.prior.var A matrix giving the inverse of the prior variance matrix for the log-linear pa-
 rameters under the proposed model.
i.curr.prior.var A matrix giving the inverse of the prior variance matrix for the log-linear pa-
 rameters under the current model.
Details

For the original algorithm see Forster et al (2012). For details on its application to log-linear models see Overstall & King (2014), and the references therein.

\texttt{RJ_update_swap} performs birth/death and swap moves whereas \texttt{RJ_update} just performs birth/death moves.

Value

The function will return a list with the following components:

- \texttt{new.beta} A vector giving the new log-linear parameters.
- \texttt{new.index} A binary vector indicating which log-linear parameters are present in the new model.

Note

This function will not typically be called by the user.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

References

Examples

```r
set.seed(4)
## Set seed for reproducibility
data(AOH)
## Load data
maximal.mod<-glm(y~(alc+hyp+obe)^3,family=poisson,x=TRUE,contrasts=list(alc="contr.sum", hyp="contr.sum",obe="contr.sum"),data=AOH)
## Fit maximal model to get a design matrix
IP<-t(maximal.mod$x)%*%maximal.mod$x/length(AOH$y)
IP[1]=0
IP[1]<-0
## Calculate inverse prior scale matrix under maximal model. Under the UIP this
## is the inverse prior variance matrix. Under the SBH prior, we need to divide
## this matrix by the current value of SIG.

bmod<-beta_mode(X=maximal.mod$x,y=AOH$y,IP=IP)
## Find posterior mode under maximal model with UIP
eta.hat<-as.vector(maximal.mod$x%*%bmod)
```
Find posterior mode of linear predictor.

curr.index<-formula2index(big.X=maximal.mod$x,formula=y=alc+hyp+obe+alc:hyp, data=AOH)
Calculate index for current model including alc:hyp interaction
curr.index
Print out current index
[1] 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

pm<-prop_mod(curr.index,data=AOH,maximal.mod=maximal.mod)
Propose a model
p2<-(1-pm$null.move.prob)/pm$total.choices
p2
Calculate probability of proposing proposed model from current model
#[1] 0.1666667

prop.index<-pm$new.index
prop.index
Assign and print out proposal index
[1] 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

dm<-prop_mod(curr.index=prop.index,data=AOH,maximal.mod=maximal.mod,null.move.prob=0)
p1<-(1-pm$null.move.prob)/dm$total.choices
p1
Calculate probability of proposing current model from proposed model
#[1] 0.1666667

RJ_update(prop.index=prop.index,curr.index=curr.index, curr.beta=coef(maximal.mod)[curr.index==1],eta.hat=eta.hat,curr.y=AOH$y,big.X=maximal.mod$x, proposal.probs=c(p1,p2), i.prop.prior.var=IP[prop.index==1,prop.index==1], i.curr.prior.var=IP[curr.index==1,curr.index==1])

Do one iteration of reversible jump algorithm. Will get:

$new.beta
(Intercept) alc1 alc2 alc3 hyp1 obe1
2.87128918 -0.07098006 -0.07221330 0.08748803 -0.51899802 -0.07855115
obe2
0.02474727
#
$new.index
[1] 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

ScotPWID

People Who Inject Drugs in Scotland 2006: An Incomplete 2^7 Table

Description

5670 people who inject drugs (PWID) in Scotland in 2006 are observed by four sources: social enquiry reports (S1), hospital records (S2), Scottish drug misuse database (S3) and Hepatitis C.
virus (HCV) diagnosis database (S4). The PWID are further cross-classified according to three additional factors: region (Region; 2 levels), gender (Gender; 2 levels) and age (Age; 2 levels).

Usage

data(ScotPWID)

Format

A "data.frame" with 128 observations on the following 8 variables.

y Counts in each cell of the table with NAs for the cells corresponding to not being observed by any of the sources.

S1 A factor with levels un obs indicating whether source S1 observed the PWID.

S2 A factor with levels un obs indicating whether source S2 observed the PWID.

S3 A factor with levels un obs indicating whether source S3 observed the PWID.

S4 A factor with levels un obs indicating whether source S4 observed the PWID.

Region A factor with levels GCC Rest indicating the region (GCC = Greater Glasgow & Clyde, Rest = Rest of Scotland).

Gender A factor with levels Male Female indicating gender.

Age A factor with levels Young Old indicating age (Young = <35 years, Old=35+ years).

Details

Note that the PWID observed by source S4, the HCV database, are not necessarily current PWID. They are people who have a history of drug use. Therefore the count in the cell corresponding to only being observed by the HCV database is an overcount. Overstall et al (2014) use a modelling approach whereby the count in the cell corresponding to only being observed by the HCV database is missing and the observed value acts as an upper bound. For more details on the dataset see King et al (2013).

For details on the function bict applied to this data, see Overstall & King (2014).

Source

References

Examples

```r
data(ScotPWID)
summary(ScotPWID)
```

Description

621 people born with Spina Bifida (a congenital disorder) in the state of New York between 1969 and 1974 are observed by three sources: birth certificates (S1); death certificates (S2); and medical rehabilitation lists (S3). The people are also cross-classified according to their ethnicity (eth; 3 levels).

Usage

```r
data(spina)
```

Format

A "data.frame" with 24 observations on the following 5 variables.

- **y** Counts in each cell of the table with NAs for the cells corresponding to not being observed by any of the sources.
- **S1** A factor with levels un obs indicating whether the birth certificate source observed the person.
- **S2** A factor with levels un obs indicating whether the death certificate source observed the person.
- **S3** A factor with levels un obs indicating whether the medical rehabilitation source observed the person.
- **eth** A factor with levels afro-american caucasian codeother indicating the ethnicity of the person (afro-american = Afro-American, caucasian = Caucasian, other = Other).

Details

See Madigan & York (1997), and the references therein, for more details on the study.

For details on the function `bict` applied to this data, see Overstall & King (2014).

Source

References

sub_model

Examples
data(spina)
summary(spina)

sub_model

Compute Posterior Summary Statistics for (Sub-) Models

Description

This function computes posterior summary statistics for (sub-) models using the MCMC output of "bcct" and "bict" objects.

Usage

sub_model(object, formula = NULL, order = 1, n.burnin = 0, thin = 1, prob.level = 0.95, statistic = "X2")

Arguments

object An object of class "bcct" or "bict".
formula An optional argument of class "formula": a symbolic description of the model of interest. The default value is NULL. If not NULL then this argument takes precedent over order.
order A scalar argument identifying the model for which to compute summary statistics. The function will compute statistics for the model with the order-th largest posterior model probability. The default value is 1, meaning that, by default, the function will compute summary statistics for the posterior modal model.
n.burnin An optional argument giving the number of iterations to use as burn-in. The default value is 0.
thin An optional argument giving the amount of thinning to use, i.e. the computations are based on every thin-th value in the MCMC sample. The default value is 1, i.e. no thinning.
prob.level An optional argument giving the probability content of the highest posterior density intervals (HPDIs). The default value is 0.95.
statistic An optional argument giving the discrepancy statistic to use for calculating the Bayesian p-value. It can be one of c("X2","FreemanTukey","deviance") which correspond to the different statistics: "X2" = Chi-squared statistic, "FreemanTukey" = Freeman-Tukey statistic, "deviance" = deviance statistic. See Overstall & King (2014), and references therein, for descriptions of these statistics.

Details

If the MCMC algorithm does not visit the model of interest in the thinned MCMC sample, after burn-in, then an error message will be returned.

The use of thinning is recommended when the number of MCMC iterations and/or the number of log-linear parameters in the maximal model are/is large, which may cause problems with computer memory storage.
Value

This function will return an object of class "submod" which is a list with the following components. Note that, unless otherwise stated, all components are conditional on the model of interest.

- **term**: A vector of term labels for each log-linear parameter.
- **post_prob**: A scalar giving the posterior model probability for the model of interest.
- **post_mean**: A vector of posterior means for each of the log-linear parameters.
- **post_var**: A vector of posterior variances for each of the log-linear parameters.
- **lower**: A vector of lower limits for the 100*prob.level% HPDI for each log-linear parameter.
- **upper**: A vector of upper limits for the 100*prob.level% HPDI for each log-linear parameter.
- **prob.level**: The argument prob.level.
- **order**: The ranking of the model of interest in terms of posterior model probabilities.
- **formula**: The formula of the model of interest.
- **BETA**: A matrix containing the sampled values of the log-linear parameters, where the number of columns is the number of log-linear parameters in the model of interest.
- **SIG**: A vector containing the sampled values of sigma^2 under the Sabanes-Bove & Held prior. If the unit information prior is used then the components of this vector will be one.

If object is of class "bict", then sub_model will also return the following component.

- **Y0**: A matrix (with k columns) containing the sampled values of the missing and censored cell counts, where k is the total number of missing and censored cell counts.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

References

See Also

- `bcct`, `bict`
Examples

```r
set.seed(1)
## Set seed for reproducibility.

data(AOH)
## Load the AOH data

test1<-'bcct(formula=y=(alc+hyp+obe)*3,data=AOH,n.sample=100,prior="UIP")
## Let the maximal model be the saturated model. Starting from the
## posterior mode of the maximal model do 100 iterations under the unit
## information prior.

test1sm<-'sub_model(object=test1,order=1,n.burnin=10)
## Obtain posterior summary statistics for posterior modal model using a
## burnin of 10.

test1sm

#Posterior model probability = 0.5
#
#Posterior summary statistics of log-linear parameters:
# post_mean post_var lower_lim upper_lim
#(Intercept) 2.907059 0.002311 2.81725 2.97185
#alc1 -0.023605 0.004009 -0.20058 0.06655
#alc2 -0.073832 0.005949 -0.22995 0.10845
#alc3 0.062491 0.006252 -0.09635 0.18596
#hyp1 -0.529329 0.002452 -0.63301 -0.43178
#obe1 0.005441 0.004742 -0.12638 0.12031
#obe2 -0.002783 0.004098 -0.17082 0.07727
#NB: lower_lim and upper_lim refer to the lower and upper values of the
#95% highest posterior density intervals, respectively
#
#Under the X2 statistic
#
#Summary statistics for T_pred
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 11.07 19.76 23.34 24.47 29.04 50.37
#
#Summary statistics for T_obs
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 30.82 34.78 35.74 35.28 37.45 42.49
#
#Bayesian p-value = 0.0444
```
Description

These functions produce summaries of objects of class "bcct" and "bict". They also control how these summaries are printed.

Usage

```r
## S3 method for class 'bcct'
summary(object, n.burnin = 0, thin = 1, cutoff = 0.75, statistic = "X2",
best = NULL, scale = 0.1, prob.level = 0.95, ...)

## S3 method for class 'sbcct'
print(x, ..., digits = max(3, getOption("digits") - 3))

## S3 method for class 'bict'
summary(object, n.burnin = 0, thin = 1, cutoff = 0.75, statistic = "X2",
best = NULL, scale = 0.1, prob.level = 0.95, ...)

## S3 method for class 'sbict'
print(x, ..., digits = max(3, getOption("digits") - 3))
```

Arguments

- `object` An object of class "bcct" or "bict".
- `x` An object of class "sbcct" or "sbict" produced as a result of a call to the functions `summary.bcct` or `summary.bict`, respectively.
- `n.burnin` An optional argument giving the number of iterations to use as burn-in. The default value is 0.
- `thin` An optional argument giving the amount of thinning to use, i.e. the computations are based on every `thin`-th value in the MCMC sample. The default value is 1, i.e. no thinning.
- `cutoff` An optional argument giving the cutoff posterior probability for displaying posterior summary statistics of the log-linear parameters. Only those log-linear parameters with a posterior probability greater than `cutoff` will be returned as part of the output. The default value is 0.75.
- `statistic` An optional argument giving the discrepancy statistic to use for calculating the Bayesian p-value. It can be one of c("X2", "FreemanTukey", "deviance") which correspond to the different statistics: "X2" = Chi-squared statistic, "FreemanTukey" = Freeman-Tukey statistic, "deviance" = deviance statistic. See Overstall & King (2014), and references therein, for descriptions of these statistics.
- `best` An optional argument for controlling how the posterior model probabilities are returned as output. The function will return details on the best models with the highest posterior model probabilities. The default value is `NULL`. If not `NULL` than this argument takes precedent over `scale`.
scale An optional argument for controlling how the posterior model probabilities are returned as output. The function will return details on the models with the posterior model probability larger than `scale` times the probability of the posterior modal model. The default value is 0.1.

prob.level An optional argument giving the probability content of the highest posterior density intervals (HPDIs). The default value is 0.95.

digits An optional argument controlling the rounding of output.

... Arguments to be passed to and from other methods.

Details

The functions `summary.bcct` and `summary.bict` rely on the functions `inter_stats`, `mod_probs`, `bayespval`, and (in the case of `summary.bict`) `total_pop`. For extra information about the output from these functions, see the associated help files.

The use of thinning is recommended when the number of MCMC iterations and/or the number of log-linear parameters in the maximal model are/is large, which may cause problems with computer memory storage.

Value

The function `summary.bcct` will return an object of class "sbccct" which is a list with the following components.

BETA An `n.sample` by `p` matrix containing the sampled values of the log-linear parameters, where `p` is the number of log-linear parameters in the maximal model. For elements of this matrix which correspond to a log-linear parameter which is not present for the current model a zero is returned.

MODEL A vector of length `n.sample` giving the sampled model indicators in hexadecimal format.

SIG A vector of length `n.sample` giving the sampled values for \(\sigma^2 \) under the Sabanes-Bove & Held prior. If the unit information prior is used then the components of this vector will be one.

rj_acc A binary vector of the same length as the number of reversible jump moves attempted. A 0 indicates that the proposal was rejected, and a 1 that the proposal was accepted.

mh_acc A binary vector of the same length as the number of Metropolis-Hastings moves attempted. A 0 indicates that the proposal was rejected, and a 1 that the proposal was accepted.

priornum A numeric scalar indicating which prior was used: 1 = "UIP", 2 = "SBH".

maximal.mod An object of class "glm" giving the fit of the maximal model.

IP A `p` by `p` matrix giving the inverse of the prior scale matrix for the maximal model.

eta.hat A vector of length `n` (number of cells) giving the posterior mode of the linear predictor under the maximal model.

save The argument `save`.
The argument `name`.

int_stats
A list which contains the same components as an object of class "interstats", i.e. summary statistics for the log-linear parameters, see `inter_stats`.

mod_stats
A list which contains the same components as an object of class "modprobs", i.e. summary statistics for the posterior model probabilities, see `mod_probs`.

pval_stats
A list which contains the same components as an object of class "pval", i.e. summary statistics for the posterior model probabilities, see `bayespval`.

The function `summary.bict` will return an object of class "sbict" which is a list with the same components as an object of class "sbcct" and the following additional components.

Y0
An n.sample by k matrix giving the sampled values of the missing and censored cell counts, where k is the total number of missing and censored cell counts.

tpop_stats
A list which contains the same components as an object of class "totpop", i.e. posterior summary statistics for the total population, see `total_pop`.

The functions `print.sbcct` and `print.sbict` will print out the MCMC acceptance rates, posterior summary statistics for the log-linear parameters, the posterior model probabilities, the Bayesian p-value and (in the case of `print.sbict`) posterior summary statistics for the total population size.

Note
For examples see the help files for `bcct` and `bict`.

Author(s)
Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

References

See Also
`bcct`, `bict`, `accept_rate`, `bayespval`, `inter_stats`, `mod_probs`, `total_pop`.

total_pop (Evaluate Posterior Distribution of Total Population Size)

Description

This function uses the MCMC output of a "bict" object to derive an MCMC sample from the posterior distribution of the total population size.
total_pop

Usage

```r
total_pop(object, n.burnin = 0, thin = 1, prob.level = 0.95)
```

Arguments

- `object`: An object of class "bict".
- `n.burnin`: An optional argument giving the number of iterations to use as burn-in. The default value is 0.
- `thin`: An optional argument giving the amount of thinning to use, i.e. the computations are based on every `thin`-th value in the MCMC sample. The default value is 1, i.e. no thinning.
- `prob.level`: An optional argument giving the target probability content of the highest posterior density intervals for the total population size. The default value is 0.95.

Details

The use of thinning is recommended when the number of MCMC iterations and/or the number of log-linear parameters in the maximal model are/is large, which may cause problems with computer memory storage.

Value

This function will return an object of class "totpop" which is a list with the following components.

- `tot`: A vector of length (`n.sample`-`n.burnin`) giving the MCMC sample from the posterior distribution of the total population size.
- `int`: The 100*`prob.level`% highest posterior density interval (HPDI) for the total population size.
- `meanTOT`: The posterior mean of the total population size.
- `prob.level`: The argument `prob.level`.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>.

See Also

`bict`, `print.totpop`.

Examples

```r
set.seed(1)
## Set seed for reproducibility

data(spina)
## Load spina data

test1<-bict(formula=y~(S1+S2+S3+eth)^2,data=spina,n.sample=100,prior="UIP")
```
For the spina dataset. We do 100 iterations under the unit information
prior. The maximal model is the model with two-way interactions and we
start from this model at the posterior model

tp<-total_pop(test1,n.burnin=10)
Use a burn-in phase of 10 iterations
tp
Print out results. Will get:

Posterior mean of total population size = 727.0667
95% highest posterior density interval for total population size = (706 757)

Could do a plot
Not run: plot(tp)

Do a summary of MCMC sample from total population size
summary(tp$TOT)
Will get

Min. 1st Qu. Median Mean 3rd Qu. Max.
697.0 716.2 727.0 727.1 735.8 763.0
Index

*Topic datasets
 AOH, 8
 heart, 32
 ScotPWID, 52
 spina, 54
*Topic package
 containing-package, 2

accept_rate, 5, 44, 60
add_term, 6
AOH, 8, 14
bayespval, 9, 42, 48, 59, 60
bcct, 2, 5, 9, 10, 11, 16, 17, 33, 36, 38, 41, 45, 56, 60
bcct.fit, 14, 16
bcctsubset, 16
bcctsubset(bcct), 11
bcctsubset.fit(bcct.fit), 16
bcctsubsetu, 16
bcctsubsetu(bcct), 11
bcctu, 2, 16, 17
bcctu(bcct), 11
beta_mode, 19
bict, 2, 5, 10, 21, 26, 28, 30, 36, 38, 41, 45, 53, 54, 56, 60, 61
bict.fit, 24, 26
bictu, 2, 26, 28, 30
bictu(bcict), 21
conting(conting-package), 2
conting-package, 2
drop_term(add_term), 6
find_cens, 21, 29
formula2index, 31

heart, 14, 32

index2model, 33
inter_probs, 35, 37, 38, 45, 46
inter_stats, 35, 36, 37, 46, 59, 60
iwls_mh, 38
mod_probs, 40, 47, 59, 60
model2index(index2model), 33
plot.pval, 42
plot.totpop, 43
print.acceptrate, 5, 43
print.bcct, 44
print.bict(print.bcct), 44
print.interprob, 36, 45
print.interstat, 38, 46
print.modprobs, 41, 47
print.pval, 10, 47
print.sbcct, 60
print.sbcct(summary.bcct), 57
print.sbict, 60
print.summary(bcct), 57
print.submod, 48
print.totpop, 49, 61
prop_mod(add_term), 6
RJ_update, 50
RJ_update_swap(RJ_update), 50
ScotPWID, 24, 52
spina, 24, 54
sub_model, 49, 55
summary.bcct, 57
summary.bict(summary.bcct), 57

total_pop, 43, 49, 59, 60, 60