Package ‘corcounts’

February 19, 2015

Type Package
Title Generate correlated count random variables
Version 1.4
Date 2009-11-13
Author Vinzenz Erhardt
Maintainer Vinzenz Erhardt <erhardt@ma.tum.de>
Description Generate high-dimensional correlated count random variables with a prespecified Pearson correlation.
License GPL (>= 3)
LazyLoad yes
Repository CRAN
Date/Publication 2009-11-13 13:35:16
NeedsCompilation no

R topics documented:
corcounts-package .. 2
c2pc ... 2
modified.cvine.alg ... 4
modified.cvine.alg.reg ... 4
pc2c ... 4
pseudoinv.zigp ... 5
R11.AR1 .. 5
R11.exchangeable .. 6
rcounts ... 6
rcounts.reg ... 8
unstructured ... 9

Index 10
Description

Sample high-dimensional correlated count random variables with approximate prespecified Pearson correlation and exact margins.

Details

Package:	corcounts
Type:	Package
Version:	1.4
Date:	2009-11-13
License:	GPL (>= 3)
LazyLoad:	yes

Specify the marginal distributions and parameters and the desired correlation matrix and run 'rcounts()'. In order to allow for regression, i.e. for individual parameters for each cluster, run 'rcounts.reg()'.

Author(s)

Maintainer: Vinzenz Erhardt <erhardt@ma.tum.de>

References

c2pc

Calculate partial correlations from a correlation matrix

Description

'c2pc' is used to calculate partial correlations from a correlation matrix.

Usage
c2pc(Cin)
Arguments

Cin A symmetric positive definite correlation matrix.

Details

If you obtain values not in [-1,1], your correlation matrix is not positive definite.

This routine only calculates partial correlations conditional on 1, 12, 123, 1234, etc.. Partial corre-
lations conditional on other margins can be obtained by a permutation of margins.

Value

The partial correlations calculated will be

\[
\begin{array}{cccccccc}
12 & \ldots & 13 & \ldots & 14 & \ldots & 15 & \ldots & 16 \\
\ldots & 231 & \ldots & 241 & \ldots & 251 & \ldots & 261 \\
\ldots & \ldots & 341 & \ldots & 351 & \ldots & 361 & \ldots & 3612 \\
\ldots & \ldots & \ldots & 45123 & \ldots & 46123 \\
\ldots & \ldots & \ldots & \ldots & 561234 \\
\end{array}
\]

...

Author(s)

Vinzenz Erhardt

See Also

Package 'corpcor' calculates partial correlations conditional on ALL other margins.

Examples

create 8 dimensional symmetric positive correlation matrix with random entries
Cin <- unstructured(8)
Cin

Theta <- c2pc(Cin)
Theta

transform Theta back to obtain the correlation matrix
pc2c(Theta)

identical with Cin
pc2c(Theta) - Cin
pc2c

Description

`pc2c` is used to calculate the corresponding correlation matrix of dimension T times T out of partial correlations.

Usage

`pc2c(Theta)`

Arguments

- **Theta**
 A T times T matrix with partial correlations. See details.

Details

The partial correlations in Theta have to be specified as

```
Theta =
12........13........14........15........16
.........23I1......24I1......25I1......26I1
...............34I2......35I2......36I2 ...
.................................45I123......46I123
.................................56I1234
```

... and may be NA elsewhere. Theta has to be of dimension T times T.

This routine only calculates partial correlations conditional on 1, 12, 123, 1234, etc.. Partial correlations conditional on other margins can be obtained by a permutation of margins.
Value

A symmetric positive definite correlation matrix of dimension $T \times T$.

Author(s)

Vinzenz Erhardt

Examples

```r
# create random uniform(0,1) partial correlations in dimension 8
dimension <- 8
Theta <- matrix(NA, dimension, dimension)
for (i in 2:dimension) {
  for (j in 1:(i-1)) {
    Theta[j,i] <- runif(1,-1,1)
  }
}
Theta

# calculate corresponding correlation matrix
C <- pc2c(Theta)
C

# transform back to partial correlations
c2pc(C)

# equivalence with original Theta
Theta - c2pc(C)
```

descending

Description

auxiliary function

descending

Description

auxiliary function
R11.exchangeable

Auxiliary function

Description

auxiliary function

rcounts

Generate correlated count random variables

Description

'rcounts' is used to sample high-dimensional correlated count random variables with approximate prespecified Pearson correlation and exact margins.

Usage

```r
counts(N, margins, mu, phi=rep(NA, length(margins)),
       omega=rep(NA, length(margins)), psi=rep(NA, length(margins)),
       corstr, corpar, conv=0.01)
```

Arguments

- `N`: number of observations to be generated per margin (should be at least 500).
- `margins`: Vector of margin tokens. Its length T is the dimension. See details.
- `mu`: Vector of length T of means for the Poisson, GP, ZIP, ZIGP and NB margins.
- `phi`: Vector of length T of dispersion parameters for the GP, and ZIGP margins. For Poisson, ZIP and NB margins, an 'NA' can be provided.
- `omega`: Vector of length T of zero-inflation parameters for the ZIP and ZIGP margins. For Poisson, GP and NB margins, an 'NA' can be provided.
- `psi`: Vector of length T of size parameters for the NB margins. For Poisson, GP, ZIP and ZIGP margins, an 'NA' can be provided.
- `corstr`: Correlation structure. Can be 'ex' for exchangeable, 'AR1' for AR(1) and 'unstr' for unstructured.
- `corpar`: Correlation parameter. Scalar correlation for 'ex' and 'AR1' and matrix of dimension TxT for 'unstr'.
- `conv`: Convergence criterion

Details

The entries in 'margins' can be specified as 'Poi' for Poisson, 'GP' for generalized Poisson, 'ZIP' for zero-inflated Poisson, 'ZIGP' for zero-inflated generalized Poisson and 'NB' for negative-binomial.
Value

The function will return a matrix of counts of dimension N x T.

Author(s)

Vinzenz Erhardt

Examples

```r
N <- 5000

# high precision in dimension 2
margins <- c("ZIP", "GP")
mu <- c(10, 15)
phi <- c(1.5, 3.5)
omega <- c(.25, NA)
corstr <- "ex"
corpar <- .5
Y <- rcounts(N=N, margins=margins, mu=mu, phi=phi, omega=omega, corstr=corstr, corpar=corpar, conv=0.0001)
cor(Y)

# five-dimensional examples
margins <- c("ZIP", "GP", "Poi", "NB", "ZIP")
mu <- c(10, 25, 12, 20, 28)
phi <- c(1.5, 2, NA, NA, NA)
omega <- c(.25, NA, NA, NA, .2)
psi <- c(NA, NA, NA, 7, NA)
corstr <- "ex"
corpar <- .5
Y <- rcounts(N=N, margins=margins, mu=mu, phi=phi, omega=omega, psi=psi, corstr=corstr, corpar=corpar)
cor(Y)

# Exchangeable structure with correlation of 0.5
corstr <- "ex"
corpar <- .5
Y <- rcounts(N=N, margins=margins, mu=mu, phi=phi, omega=omega, psi=psi, corstr=corstr, corpar=corpar)
cor(Y)

# AR(1) structure with correlation of corr(Y(t1), Y(t2)) = .8 ^ |t1-t2|
corstr <- "AR1"
corpar <- .8
Y <- rcounts(N=N, margins=margins, mu=mu, phi=phi, omega=omega, psi=psi, corstr=corstr, corpar=corpar)
cor(Y)

# Unstructured correlation. Create random symmetric positive definite
# matrix using function 'unstructured'
corstr <- "unstr"
corpar <- unstructured(5)
corpar
Y <- rcounts(N=N, margins=margins, mu=mu, phi=phi, omega=omega, psi=psi, corstr=corstr, corpar=corpar)
cor(Y)
```
rcounts.reg

Generate correlated count random variables with individual parameters for each cluster

Description

‘rcounts.reg’ is used to sample high-dimensional correlated count random variables with approximate prespecified Pearson correlation and exact margins.

Usage

rcounts.reg(N, margins, mu, phi=matrix(NA,N,length(margins)), omega=matrix(NA,N,length(margins)), psi=matrix(NA,N,length(margins)), corstr, corpar, conv=0.01)

Arguments

N number of observations to be generated per margin (should be at least 500).
margins Vector of margin tokens. Its length T is the dimension. See details.
mu Matrix of dimension N x T of means for the Poisson, GP, ZIP, ZIGP and NB margins.
phi Matrix of dimension N x T of dispersion parameters for the GP and ZIGP margins. For Poisson, ZIP and NB margins, an 'NA' can be provided.
omega Matrix of dimension N x T of zero-inflation parameters for the ZIP and ZIGP margins. For Poisson, GP and NB margins, an 'NA' can be provided.
psi Matrix of dimension N x T of size parameters for the NB margins. For Poisson, GP, ZIP and ZIGP margins, an 'NA' can be provided.
corstr Correlation structure. Can be 'ex' for exchangeable, 'AR1' for AR(1) and 'unstr' for unstructured.
corpar Correlation parameter. Scalar correlation for 'ex' and 'AR1' and matrix of dimension TxT for 'unstr'.
conv Convergence criterion

Details

The entries in 'margins' can be specified as 'Poi' for Poisson, 'GP' for generalized Poisson, 'ZIP' for zero-inflated Poisson, 'ZIGP' for zero-inflated generalized Poisson and 'NB' for negative-binomial.

NOTE: there is a tradeoff between too small N (decreasing accuracy of the resulting correlation) and too high N (dramatically increasing computation time).

Value

The function will return a matrix of counts of dimension N x T.
unstructured

Author(s)

Vinzenz Erhardt

Examples

N <- 500

bivariate example
margins <- c("ZIGP","GP")
mu <- matrix(runif(N*2,10,20),N,2)
phi <- matrix(runif(N*2,1,3),N,2)
omega <- matrix(c(runif(N,P,N),rep(NA,N)),N,2)
corstr <- "ex"
corpar <- .5
Y <- rcounds.reg(N=N, margins=margins, mu=mu, phi=phi, omega=omega,
 corstr=corstr, corpar=corpar)
cor(Y)

Description

'unstructured' generates a random correlation matrix of dimension T with random entries. To ensure positive definiteness, a matrix of partial correlations with random entries uniform on [-0.9, 0.9] will be generated and the corresponding correlation matrix be calculated from it using a bijective recursive relation between them.

Usage

unstructured(dimension)

Arguments

dimension Dimension T of the correlation matrix.

Value

A correlation matrix of dimension T x T.

Examples

unstructured(10)
Index

*Topic distribution
 pseudoinv.zigp, 5
 rcounts, 6
 rcounts.reg, 8
*Topic multivariate
 c2pc, 2
 modified.cvine.alg, 4
 modified.cvine.alg.reg, 4
 pc2c, 4
 R11.AR1, 5
 R11.exchangeable, 6
 rcounts, 6
 rcounts.reg, 8
 unstructured, 9
*Topic package
 corcounts-package, 2

 c2pc, 2
 corcounts (corcounts-package), 2
 corcounts-package, 2

 modified.cvine.alg, 4
 modified.cvine.alg.reg, 4

 pc2c, 4
 pseudoinv.zigp, 5

 R11.AR1, 5
 R11.exchangeable, 6
 rcounts, 6
 rcounts.reg, 8

 unstructured, 9