Package ‘crmn’

Version 0.0.20
Date 2012-06-19
Author Henning Redestig
Maintainer Henning Redestig <henning.red@gmail.com>
Title CCMN and other noRMalization methods for metabolomics data
Depends R (>= 2.10), pcaMethods (>= 1.56.0), Biobase, methods
Description Implements the Cross-contribution Compensating Multiple standard Normalization (CCMN) method and other normalization algorithms.
License GPL (>= 3)
Collate 'classes.R' 'crmn-package.R' 'norm.R' 'misc.R' 'generic.R'
Repository CRAN
Date/Publication 2014-11-20 08:08:19
NeedsCompilation no

R topics documented:

- analytes .. 2
- analytes_eset ... 3
- analytes_other ... 3
- crmn .. 4
- dropunusedlevels ... 5
- makeX-methods ... 5
- method-methods .. 6
- mexprs-methods .. 7
- mexprs-rep-methods ... 7
- mix .. 8
- model-methods ... 9
- nFit ... 10
- normalize ... 10
- normFit .. 11
- normPred ... 13
analytes

Accessor for the analytes

Description

Subset an data set to only contain the analytes.

Usage

```r
analytes(object, standards=NULL, ...)
```

Arguments

- `object` an ExpressionSet, matrix or data.frame
- `standards` a logical vector indicating which rows are internal analytes
- `...` not used

Value

subsetted dataset

Author(s)

Henning Redestig

Examples

```r
data(mix)
analytes(mix)
analytes(exprs(mix), fData(mix)$tag == 'IS')
```
analytes_est

Description
Subset an expression set to remove the internal standards

Usage
```r
analytes_est(object, where = "tag", what = "IS", ...)
```

Arguments
- **object**: an ExpressionSet
- **where**: Column index or name of fData which equals what for the ISs (and something else for the analytes)
- **what**: What the column where does not equal for analytes. Can be vector values too.
- **...**: not used

Value
ExpressionSet

Author(s)
Henning Redestig

Examples
```r
data(mix)
analytes(mix)
fData(mix)$test <- fData(mix)$tag
analytes(mix, where="test")
```

analytes_other

Description
Subset an expression set to remove the internal standards

Usage
```r
analytes_other(object, standards, ...)
```
Arguments

- object: an ExpressionSet
- standards: a logical vector indicating which rows are internal standards
- ... not used

Value

ExpressionSet

Author(s)

Henning Redestig

Examples

data(mix)
analyses(exprs(mix), fData(mix)$tag == 'IS')

Description

Normalize metabolomics data using CCMN and other methods

Details

Package: crmn
Type: Package
Developed since: 2009-05-14
Depends: Biobase, pcaMethods (>= 1.20.2), pls, methods
License: GPL (>=3)
LazyLoad: yes

A package implementing the 'Cross-contribution compensating multiple standard normalization'. Can be used to normalize metabolomics data. Do openVignette("crmn") to see the manual.

Author(s)

Henning Redestig
dropunusedlevels

Description

Drop unused factor levels in a data frame.

Usage

```r
dropunusedlevels(x)
```

Arguments

- `x` the data frame

Author(s)

Henning Redestig

Examples

```r
iris[1:10]$Species
dropunusedlevels(iris[1:10]$Species)
```

makeX

Description

Construct a design matrix

Usage

```r
makeX(object, factors, ...)
```

S4 method for signature 'ANY,matrix'
```r
makeX(object, factors, ...)
```

S4 method for signature 'ExpressionSet,character'
```r
makeX(object, factors, ...)
```

Arguments

- `object` an ExpressionSet
- `factors` column names from the pheno data of object or a design matrix
- `...` not used
Details

Make a design matrix from the pheno data slot of an expression set, taking care that factors and numerical are handled properly. No interactions are included and formula is the most simple possible, i.e. \(y \sim -1 + \text{term1} + \text{term2} + \ldots \). Can also be given anything as object in which case factor must be a design matrix. In that case the same design matrix is returned.

Value

a design matrix

Author(s)

Henning Redestig

Examples

data(mix)
makeX(mix, "runorder")
runorder <- mix$runorder
makeX(mix, model.matrix(~-1+runorder))
Description

Get the expression data from an ExpressionSet or just return the given matrix

Usage

mexprs(object)

mexprs(object)

S4 method for signature 'ExpressionSet'
mexprs(object)

Arguments

object an ExpressionSet or matrix

Value

the expression data

Author(s)

Henning Redestig

Examples

data(mix)
head(mexprs(mix))
head(mexprs(exprs(mix)))

Description

Matrix safe accessor of expression slot

Description

Matrix safe setter of expression slot
Usage

mexprs(object) <- value

S4 replacement method for signature 'ExpressionSet,matrix'
mexprs(object) <- value

Arguments

object an ExpressionSet or matrix
value the value to assign

Details

Set the expression data in an ExpressionSet or just return the given matrix

Value

the expression data

Author(s)

Henning Redestig

Examples

data(mix)
test <- mix
mexprs(test) <- exprs(mix) * 0
head(mexprs(test))
test <- exprs(mix)
mexprs(test) <- test * 0
head(mexprs(test))

mix Dilution mixture dataset.

Description

Mixture dilution series

Usage

data(mix)
Details

Multi-component dilution series. GC-TOF/MS measurements by Miyako Kusano. Input concentrations are known and given in the original publication.

Author(s)

Henning Redestig

Examples

data(mix)
fData(mix)
exprs(mix)
pData(mix)

model-methods

Accessor for the model

Description

Get the model

Usage

model(object, ...)
model(object, ...)

Arguments

object an nFit object

... not used

Value

the model (content differs between normalization models)

Author(s)

Henning Redestig
nFit

Normalization model

Description

Common class representation for normalization models.

Author(s)

Henning Redestig

normalize

Normalize a metabolomics dataset

Description

Normalization methods for metabolomics data

Usage

```r
normalize(object, method, segments = NULL, ...)
```

Arguments

- `object` : an `ExpressionSet`
- `method` : the desired method
- `segments` : normalization in a cross-validation setup, only to use for validation/QC purposes.
- `...` : passed on to `normFit` and `normPred`

Details

Wrapper function for `normFit` and `normPred`

Value

the normalized dataset

Author(s)

Henning Redestig

See Also

`normFit`, `normPred`
normFit

Examples

data(mix)
normalize(mix, "crmn", factor="type", ncomp=3)
other methods
normalize(mix, "one")
normalize(mix, "avg")
normalize(mix, "nomis")
normalize(mix, "tI")
normalize(mix, "ri")
normalize(mix, "median")
normalize(mix, "totL2")
can also do normalization with matrices
Y <- exprs(mix)
G <- with(pData(mix), model.matrix(~-1+type))
isIS <- with(fData(mix), tag == "IS")
normalize(Y, "crmn", factor=G, ncomp=3, standards=isIS)

normFit Fit a normalization model

Description

Fit the parameters for normalization of a metabolomics data set.

Usage

normFit(object, method, one = "Succinate_d4", factors = NULL, lg = TRUE,
fitfunc = lm, formula = TRUE, ...)

Arguments

object an ExpressionSet or a matrix (with samples as columns) in which case the
standards must be passed on via ...
method chosen normalization method
one single internal standard to use for normalization
factors column names in the pheno data slot describing the biological factors. Or a
design matrix directly.
lg logical indicating that the data should be log transformed
fitfunc the function that creates the model fit for normalization, must use the same in-
terfaces as lm.
formula if fitfunc has formula interface or not
... passed on to standardsFit, standards, analytes
Details

Normalization is first done by fitting a model and then applying that model either to new data or the same data using \texttt{normPred}. Five different methods are implemented.

\begin{description}
\item[t1] divide by row-means of the L_2 scaled internal standards
\item[one] divide by value of a single, user defined, internal standard
\item[totL2] divide by the square of sums of the full dataset
\item[nomis] See Sysi-Aho et al.
\item[crmn] See Redestig et al.
\end{description}

Value

a normalization model

Author(s)

Henning Redestig

References

See Also

\texttt{normPred}, \texttt{standards}, \texttt{model.matrix}

Examples

\begin{verbatim}
data(mix)
nfit <- normFit(mix, "crmn", factors="type", ncomp=3)
slplot(sFit(nfit)fitpc, scol=as.integer(mix$runorder))
same thing
Y <- exprs(mix)
G <- model.matrix(~-1+mix$type)
isIS <- fData(mix)$tag == 'IS'
nfit <- normFit(Y, "crmn", factors=G, ncomp=3, standards=isIS)
slplot(sFit(nfit)fitpc, scol=as.integer(mix$runorder))
\end{verbatim}
Predict for normalization

Description

Predict the normalized data using a previously fitted normalization model.

Usage

```r
normPred(normObj, newdata, factors = NULL, lg = TRUE, predfunc = predict, 
...)
```

Arguments

- `normObj` the result from `normFit`
- `newdata` an `ExpressionSet` or a matrix (in which case the standards must be passed on via ...), possibly the same as used to fit the normalization model in order to get the fitted data.
- `factors` column names in the pheno data slot describing the biological factors. Or a design matrix.
- `lg` logical indicating that the data should be log transformed
- `predfunc` the function to use to get predicted values from the fitted object (only for crmn)
- `...` passed on to `standardsPred`, `standardsFit`, `odestandards`, `analytes`

Details

Apply fitted normalization parameters to new data to get normalized data. Current can not only handle matrices as input for methods 'RI' and 'one'.

Value

the normalized data

Author(s)

Henning Redestig

See Also

`normFit`
Examples

```r
data(mix)
nfit <- normFit(mix, "crmn", factor="type", ncomp=3)
normedData <- normPred(nfit, mix, "type")
slplot(pca(t(logR(exprs(normedData)))), scol=as.integer(mix$"type"))
## same thing
Y <- exprs(mix)
G <- with(pData(mix), model.matrix(-1+type))
isIS <- fData(mix)$tag == 'IS'
nfit <- normFit(Y, "crmn", factors=G, ncomp=3, standards=isIS)
normedData <- normPred(nfit, Y, G, standards=isIS)
slplot(pca(t(log2(normedData))), scol=as.integer(mix$"type"))
```

pcaMuffle

Muffle the pca function

Description

PCA and Q2 issues warnings about biasedness and poorly estimated PCs. The first is non-informative and the poorly estimated PCs will show up as poor overfitting which leads to a choice of fewer PCs i.e. not a problem. This function is mean to muffle those warnings. Only used for version of pcaMethods before 1.26.0.

Usage

```r
pcaMuffle(w)
```

Arguments

- `w` a warning

Value

nothing

Author(s)

Henning Redestig
plot.nFit

Plot a statistics for CRMN normalization model

Description
Simple plot function for a CRMN normalization model.

Usage
S3 method for class 'nFit'
plot(x, y = NULL, ...)

Arguments
x an nFit object
y not used
... passed on to the scatter plot calls

Details
Shows Tz and the optimization (if computed) of the PCA model. The number of components used for normalization should not exceed the maximum indicated by Q2. The structure shown in the Tz plot indicate the analytical variance which is exactly independent of the experimental design. The corresponding loading plot shows how this structure is capture by the used ISs.

Value
nothing

Author(s)
Henning Redestig

See Also
slplot

Examples
data(mix)
nfit <- normFit(mix, "crmn", factors="type", ncomp=2)
plot(nfit)
sFit-method

Accessor for the standards model

Description
Get the sFit

Usage
sFit(object, ...)
sFit(object, ...)

Arguments
object an nFit object
... not used

Value
the sFit is only defined for CRMN

Author(s)
Henning Redestig

show

Show method for nFit

Description
Show some basic information for an nFit model

Usage
S4 method for signature 'nFit'
show(object)

Arguments
object the nFit object

Value
prints some basic information
show_nfit

Author(s)
Henning Redestig

Examples
data(mix)
normFit(mix, "avg")

show_nfit

Description
Show method for nFit

Usage
show_nfit(object)

Arguments
object the nFit object

Value
prints some basic information

Author(s)
Henning Redestig

standards

Accessor for the Internal Standards

Description
Subset an data set to only contain the labeled internal standards.

Usage
standards(object, standards=NULL, ...)

Arguments
object an ExpressionSet, matrix or data.frame
standards a logical vector indicating which rows are internal standards
... not used
Value
subsetted dataset

Author(s)
Henning Redestig

Examples

```r
data(mix)
standards(mix)
standards(exprs(mix), fData(mix)$tag == 'IS')
```

Standards model

Description
Fit a model which describes the variation of the labeled internal standards from the biological factors.

Usage

```r
standardsFit(object, factors, ncomp = NULL, lg = TRUE, fitfunc = lm, ...)
```

Arguments

- `object`: an ExpressionSet or a matrix. Note that if you pass a matrix you have to specify the identity of the standards by passing the appropriate argument to `standards`.
- `factors`: the biological factors described in the pheno data slot if `object` is an ExpressionSet or a design matrix if `object` is a matrix.
- `ncomp`: number of PCA components to use. Determined by cross-validation if `null` is `NULL`.
- `lg`: logical indicating that the data should be log transformed.
- `fitfunc`: the function that creates the model fit for normalization, must use the same interfaces as `lm`.
- `...`: passed on to Q2, pca (if pcaMethods > 1.26.0), standards and analytes.

Details
There is often unwanted variation in the internal standards which is related to the experimental factors due to overlapping peaks etc. This function fits a model that describes that overlapping variation using a scaled and centered PCA / multiple linear regression model. Scaling is done outside the PCA model.
standardsPred

Value

a list containing the PCA/MLR model, the recommended number of components for that model, the standard deviations and mean values and Q2/R2 for the fit.

Author(s)

Henning Redestig

See Also

makeX, standardsPred

Examples

data(mixI
sfit <- standardsFit(mix, "type", ncomp=3)
splot(sfit$fitt$pc)
same thing
Y <- exprs(mix)
G <- model.matrix(~1+mix$type)
isIS <- fData(mix)$tag == 'IS'
sfit <- standardsFit(Y, G, standards=isIS, ncomp=3)

standardsPred Predict effect for new data (or get fitted data)

Description

Predicted values for the standards

Usage

standardsPred(model, newdata, factors, lg = TRUE, ...)

Arguments

model result from standardsFit
newdata an ExpressionSet or matrix with new data (or the data used to fit the model to get the fitted data)
factors the biological factors described in the pheno data slot if object is an ExpressionSet or a design matrix if object is a matrix.
lg logical indicating that the data should be log transformed
... passed on to standards and analytes
Details

There is often unwanted variation in among the labeled internal standards which is related to the experimental factors due to overlapping peaks etc. This predicts this effect given a model of the overlapping variance. The prediction is given by $\hat{X}_{IS} = X_{IS} - X_{IS}B$

Value

the corrected data

Author(s)

Henning Redestig

See Also

makeX, standardsFit

Examples

data(mix)
fullFit <- standardsFit(mix, "type", ncomp=3)
sfit <- standardsFit(mix[-1], "type", ncomp=3)
pred <- standardsPred(sfit, mix[1], "type")
cor(scores(sfitfitpc)[1,], scores(fullFitfitpc)[1,])
could just as well have been done as
Y <- exprs(mix)
G <- model.matrix(~-1+mix$type)
isIS <- fData(mix)$tag == 'IS'
fullFit <- standardsFit(Y, G, ncomp=3, standards=isIS)
sfit <- standardsFit(Y[-1], G[-1], ncomp=3,
 standards=isIS)
pred <- standardsPred(sfit, Y[1,drop=FALSE], G[1,drop=FALSE], standards=isIS)
cor(scores(sfitfitpc)[1,], scores(fullFitfitpc)[1,])

standards_eset

Accessor for the Internal Standards

Description

Subset an data set to only contain the labeled internal standards.

Usage

standards_eset(object, where = "tag", what = "IS", ...)

standards_other

Arguments

object an ExpressionSet
where Column index or name in fData which equals what for the ISs
what What the column where equals for ISs
... not used

Value

subsetted dataset

Author(s)

Henning Redestig

Examples

data(mix)
standards(mix)
fData(mix)$test <- fData(mix)$tag
standards(mix, where="test")

standards_otherAccessor for the Internal Standards

Description

Subset an data set to only contain the labeled internal standards.

Usage

standards_other(object, standards, ...)

Arguments

object an matrix or data.frame
standards a logical vector indicating which rows are internal standards
... not used

Value

subsetted dataset

Author(s)

Henning Redestig
Examples

```r
data(mix)
standards(exprs(mix), fData(mix)$tag == 'IS')
```

weightnorm

Normalize by sample weight

Description

Normalize samples by their weight (as in grams fresh weight)

Usage

```r
weightnorm(object, weight = "weight", lg = FALSE)
```

Arguments

- `object`: an ExpressionSet
- `weight`: a string naming the pheno data column with the weight or a numeric vector with one weight value per sample.
- `lg`: is the assay data already on the log-scale or not. If `lg`, the weight value is also log-transformed and subtraction is used instead of division.

Details

Normalize each sample by dividing by the loaded sample weight. The weight argument is taken from the pheno data (or given as numerical vector with one value per sample). Missing values are not tolerated.

Value

the normalized expression set

Author(s)

Henning Redestig

Examples

```r
data(mix)
w <- runif(ncol(mix), 1, 1.3)
weightnorm(mix, w)
```
Index

analytes, 2
analytes.data.frame, logical-method
 (analytes_other), 3
analytes.ExpressionSet, missing-method
 (analytes_eset), 3
analytes.matrix, logical-method
 (analytes_other), 3
analytes_eset, 3
analytes_other, 3

crmn, 4
crmn-package (crmn), 4
dropunusedlevels, 5

makeX (makeX-methods), 5
makeX, ANY, matrix-method
 (makeX-methods), 5
makeX, ExpressionSet, character-method
 (makeX-methods), 5
makeX-methods, 5
method (method-methods), 6
method, nFit-method (method-methods), 6
method-methods, 6
mexprs (mexprs-methods), 7
mexprs, ExpressionSet-method
 (mexprs-methods), 7
mexprs, matrix-method (mexprs-methods), 7
mexprs-methods, 7
mexprs-rep-methods, 7
mexprs-rep-methods, 7
mexprs-rep-methods, 7
mix, 8
model (model-methods), 9
model, nFit-method (model-methods), 9
model-methods, 9

nFit, 10
nFit-class (nFit), 10
normalize, 10
normFit, 11
normPred, 13

pcaMuffle, 14
plot, nFit-method (plot.nFit), 15
plot.nFit, 15

sfit (sFit-method), 16
sFit, nFit-method (sFit-method), 16
sFit-method, 16
show, 16
show, nFit-method (show), 16
show_nfit, 17
standards, 17
standards.data.frame, logical-method
 (standards_other), 21
standards.ExpressionSet, missing-method
 (standards_eset), 20
standards.matrix, logical-method
 (standards_other), 21
standards_eset, 20
standards_other, 21
standardsFit, 18
standardsPred, 19

weightnorm, 22