Package ‘crrstep’

February 23, 2015

Type Package

Title Stepwise Covariate Selection for the Fine & Gray Competing Risks Regression Model

Version 2015-2.1

Date 2015-02.23

Author Ravi Varadhan & Deborah Kuk

Maintainer Ravi Varadhan <ravi.varadhan@jhu.edu>

Description
Performs forward and backwards stepwise regression for the Proportional subdistribution hazards model in competing risks (Fine & Gray 1999). Procedure uses AIC, BIC and BICcr as selection criteria. BICcr has a penalty of $k = \log(n^*)$, where n^* is the number of primary events.

Depends cmprsk

License GPL (>= 2)

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2015-02-23 23:17:17

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>crrstep-package</td>
<td>2</td>
</tr>
<tr>
<td>crrstep</td>
<td>3</td>
</tr>
</tbody>
</table>

Index 6
Description

Performs forward and backward stepwise regression for the Fine & Gray regression model in competing risks. Procedure uses AIC, BIC and BICcr as selection criteria. BICcr has a penalty of $k = \log(n^*)$, where n^* is the number of Type I events.

Details

- **Package**: crrstep
- **Type**: Package
- **Version**: 2014-07.16
- **Date**: 2014-07.16
- **License**: GPL (version 2)
- **LazyLoad**: yes

The package contains a single function `crrstep`, which implements backward and forward stepwise regression for the Fine & Gray regression model. The Fine & Gray model (Fine & Gray, 1999) estimates the hazard that corresponds to the cumulative incidence function of a certain event type. Selection criteria that can be used are: AIC, BIC and BICcr. BICcr is a selection criteria based on the work by Volinksy and Raftery in which the penalty is $k = \log(n^*)$, where n^* is the total number of Type I events.

Author(s)

Ravi Varadhan & Deborah Kuk.

Maintainers: Ravi Varadhan <rvaradhan@jhu.edu>

References

Examples

```r
set.seed(123)
n <- 500
ftime <- rexp(n)
```
crrstep <- sample(0:2,n,replace=TRUE)
cov1 <- matrix(runif(5*n),nrow=n)
ox1 <- as.factor(sample(3, size=n, rep=TRUE))
ox2 <- as.factor(sample(5, size=n, rep = TRUE))
cov1 <- cbind(cov1, x1, x2)
dimnames(cov1)[[2]] <- c('x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7')
formula1 <- ftime ~ 1 + x1 + x2 + x3 + x4 + x5 + as.factor(x6) + as.factor(x7)
crrstep(formula1, fstatus, data = as.data.frame(cov1), direction = "backward", criterion = "BIC")
crrstep(formula1, fstatus, data = as.data.frame(cov1), direction = "backward", criterion = "AIC")
ans2 <- crrstep(formula1, fstatus, data = as.data.frame(cov1), direction = "forward",
failcode=2, criterion = "AIC")
ans2

crrstep

Stepwise regression for competing risks regression

Description

Performs forward and backward stepwise regression for the Fine & Gray regression model in competing risks. Procedure uses AIC, BIC and BICcr as selection criteria. BICcr has a penalty of \(k = \log(n^*) \), where \(n^* \) is the number of Type I events.

Usage

```r
crrstep(formula, scope.min = ~1, etype, ..., subset,
data, direction = c("backward", "forward"),
criterion = c("AIC", "BICcr", "BIC"), crr.object = FALSE,
trace = TRUE, steps = 100)
```

Arguments

- `formula`: formula object where LHS is failure time and RHS is linear predictors; intercept ‘1’ should always be included.
- `scope.min`: formula object denoting final model for backward selection and starting model for forward selection.
- `etype`: integer variable that denotes type of failure for each person.
- `...`: variables passed to ‘crr’ function; two key variables are `failcode` and `cencode`; see below in Description.
- `subset`: subset of data to be used for model selection.
- `data`: data-frame containing all the variables. Only complete cases are used in the analysis, i.e. rows of dataframe with missing values in any of the predictors are deleted.
- `direction`: forward or backward direction for model selection.
criterion selection criterion; default is AIC. BIC uses log(n) as penalty, where 'n' is total sample size, and BICcr uses log(n*) as the penalty where n* is the number of primary events.
crr.object logical variable indicating whether to return final 'crr' object.
trace logical indicating whether to display stepwise model selection process.
steps maximum number of steps in stepwise selection.

Details

Based on the existing code of stepAIC in the MASS package. Variables passed to 'crr' function include two key variables: failcode and cencode. failcode is an integer value that denotes primary failure, and cencode is an integer denoting censoring event.

Value

variables Variables in the final model
coefficients The estimated coefficients of the variables
std.errors Standard errors of the estimated coefficients
log.lik The partial log-likelihood of the model

Author(s)

Ravi Varadhan & Deborah Kuk.

References

See Also

crr

Examples

set.seed(123)
n <- 500
ftime <- rexp(n)
fstatus <- sample(0:2,n,replace=TRUE)
cov1 <- matrix(runif(5*n),nrow=n)
x61 <- as.factor(sample(3, size=n, rep=TRUE))
x71 <- as.factor(sample(5, size=n, rep=TRUE))
cov1 <- cbind(cov1, x61, x71)
dimnames(cov1)[[2]] <- c('x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7')
crrstep

```r
formula1 <- ftime ~ x1 + x2 + x3 + x4 + x5 + as.factor(x6) + as.factor(x7)
crrstep(formula1, fstatus, data = as.data.frame(cov1), direction = "backward", criterion = "BIC")

ans2 <- crrstep(formula1, fstatus, data = as.data.frame(cov1), direction = "forward",
                failcode=2, criterion = "AIC")
ans2
```
Index

*Topic competing risks
 crrstep, 3
*Topic stepwise
 crrstep, 3

crr, 4
crrstep, 3
crrstep-package, 2