A tutorial dbEmpLikeGOF R package

Jeffrey C. Miecznikowski*, Albert Vexler†, and Lori A. Shepherd⋄

August 23, 2013

Statistical Genetics and Genomics Research Group
Department of Biostatistics, University at Buffalo
New York State Center of Excellence in Bioinformatics and Life Sciences
Roswell Park Cancer Institute

*jcm38@buffalo.edu, †avexler@buffalo.edu, ⋄las65@buffalo.edu

Contents

1 Introduction 2
2 Examples 2
3 References 4
1 Introduction

The dbEmplikeGOF package provides a function dbEmplikeGOF to be used for density based empirical likelihood (EL) goodness-of-fit tests based on sample entropy, as well as to perform the two sample EL ratio test for distribution equality. The function provides the test statistic and associated p-values. The p-value can be calculated by Monte-Carlo methods or estimated based on pre-calculated tables of selected sample sizes and alpha values. For details and algorithms:

2 Examples

The following performs a density-based empirical likelihood based goodness-of-fit tests based on sample entropy and calculates the p-value based on Monte-Carlo methods. The examples examine three null hypothesis, 1) data follows a normal distribution with unknown mean and standard deviation, 2) data follows a uniform distribution on 0 to 1 and 3) data from two samples are from the same distribution. The example below tests the data (normData) against the normal distribution.

```r
> library(dbEmpLikeGOF)
> normData = rnorm(25)
> dbEmpLikeGOF(x=normData, testcall="normal", pvl.Table=FALSE)
```

```
...Working on teststat
...Working on p-value
$teststat
[1] 3.746553

$pvalue
[1] 0.981
```

>
The p-value can be estimated based on precalculated tables rather than pre-
forming Monte-Carlo methods. This is controlled by the argument pvl.Table.
To estimate based on tables pvl.Table argument is TRUE, which is the default
setting.

```r
> dbEmpLikeGOF(x=normData, testcall="normal", pvl.Table=TRUE)

...Working on teststat
estimating pvalue based on table
$teststat
[1] 3.746553

$pvalue
[1] 0.9848558
```

Similar calculations can be made to test data against a uniform distribution
on zero to one.

```r
> unifData = runif(30)
> # calculates pvalue based on Monte-Carlo methods
> dbEmpLikeGOF(x=unifData, testcall="uniform", pvl.Table=FALSE)

...Working on teststat
...Working on p-value
$teststat
[1] 8.692456

$pvalue
[1] 0.064
```

```r
> # estimates pvalue based on tables
> dbEmpLikeGOF(x=unifData, testcall="uniform", pvl.Table=TRUE)

...Working on teststat
estimating pvalue based on table
$teststat
[1] 8.692456

$pvalue
[1] 0.06285791
```

Notice the data in each of the above examples was designed to match the
proposed distribution. Below is an example where the data does not follow the
proposed distribution.
> dbEmpLikeGOF(x=unifData, testcall="normal", pv1.Table=TRUE)

...Working on teststat
estimating pvalue based on table
$teststat
[1] 11.79232

$pvalue
[1] 0.005150142
>

It is also possible to test for distribution equality between two samples. When specifying an x and y samples, the dbEmpLikeGOF function will test for distribution equality between the two samples.

> dbEmpLikeGOF(x=unifData, y=normData, pv1.Table=TRUE)

...Working on teststat
estimating pvalue based on table
$teststat
[1] 23.42204

$pvalue
[1] 0.001

> normDataSet2 = rnorm(40)
> dbEmpLikeGOF(x=normDataSet2, y=normData, pv1.Table=TRUE)

...Working on teststat
estimating pvalue based on table
$teststat
[1] 10.94152

$pvalue
[1] 0.4913884
>

Notice the sample vectors do not have to be of equal length.

3 References

For additional details and examples please see:

http://www.jstatsoft.org/v54/i03/