Package ‘dblcens’

February 19, 2015

Title Compute the NPMLE of distribution from doubly censored data

Version 1.1.7

Depends R (>= 2.15.0)

Author Mai Zhou, Li Lee, Kun Chen.

Description Use EM algorithm to compute the NPMLE of CDF and also the
two censoring distributions. For doubly censored data (as
also specify a constraint, it will return the constrained NPMLE
and the -2 log empirical likelihood ratio. This can be used to
test the hypothesis about the constraint and find confidence
intervals for probability or quantile via empirical likelihood
ratio theorem. Influence function of hat F may also be
calculated (but may be slow).

Maintainer Mai Zhou <mai@ms.uky.edu>

License GPL (>= 2)

Repository CRAN

Date/Publication 2012-12-17 05:50:03

NeedsCompilation yes

R topics documented:

d011 2
d011ch 4
IVaids 7

Index 8
Compute NPMLE of CDF from doubly censored data

Description

dP11 computes the NPMLE of CDF from doubly censored data via EM algorithm starting from an initial estimator that have jumps at (1) uncensored points; (2) (mid-point of) consecutive survival times with censoring indicator pattern of (0,2), (see below for definition).

When there are ties, the left (right) censored points are treated as happened slightly before (after), to break tie. Also when the last observation happens to be right censored and/or when the first observation happens to be left censored, they are changed to uncensored. This is to ensure we obtain a proper distribution as the CDF estimator. (though this can be modified easily as they are written in R language).

It also computes the NPMLE of the two censoring distributions. There is an option that you may also try to compute the three influence functions (but could slow and memory hungry).

Usage

dP11(z, d, identical = rep(0, length(z)),
 maxiter = 49, error = 0.00001, influence.fun = FALSE)

Arguments

z a vector of length n denoting observed times, (ties permitted)
d a vector of length n that contains censoring indicator: d= 2 or 1 or 0, (according to z being left, not, right censored)
identical optional. A vector of length n that has values either 0 or 1. identical[i]=1 means: even if (z[i],d[i]) is identical to (z[j],d[j]), for some j ≠ i, they still stay as 2 observations, (not 1 obs. with weight 2, which only happen if identical[i]=0 and identical[j] =0). One reason for this is because they may have different covariates not shown here. This adds more flexibility for regression applications. Default value is identical = 0, (i.e. collapse if identical observations).
maxiter optional integer value. default to 49
error optional. Default to 0.00001
influence.fun optional. Default to FALSE. If TRUE, the code will try to compute the influence functions (3 of them) at the censored times. This computation can be very slow and memory intensive (for data with >500 censored times).

Value

a list contain the NPMLE of CDF and other information.
time Times of input z, with time corresponding to status=2 removed.
status Censoring status of the above times. Status = -1 means this is an added time because of the censoring pattern (0,2).
surv Survival probability at the above times.
jump Jumps of the NPMLE at the above times.
extime Similar to times but those with status =2 not removed.
extatus status of exttime
extjump jump pf NPMLE at exttime.
extsurvsx Estimated lifetime distribution.
surv0.sy One of the censoring distributions.
jumph0 Jump of surv0.sy
surv2.sz Another censoring distribution.
jumph2 Jump of surv2.sz
conv A vector of length 2: the actual number of iterations, and the actual error of successive iteration. If the iteration number equal to the maxiter you set, then the iteration has not converged.

Nodes Points where the influence function is computed.
ic1tu Influence function value at the nodes. See Chang (1990) for details.
ic1tu2 Influence function value at other points. See Chang (1990) for details.
ic2tu ditto IC1tu
ic3tu ditto IC1tu
varft Estimated variances of F(t) at the Nodes.

Author(s)
Mai Zhou <mai@ms.uky.edu>, Li Lee.

References

Examples
d011(z=c(1,2,3,4,5), d=c(1,0,2,2,1))
#
you should get something like below (and more)
#
$time:
[1] 1.0 2.0 2.5 5.0 (notice the times, (3,4), corresponding
to d=2 are removed, and time 2.5 added
$status: since there is a (0,2) pattern at
[1] 1 0 -1 1 times 2, 3. The status indicator of -1 show that it is an added time
#
$surv
[1] 0.5000351 0.5000351 0.3333177 0.0000000
#
$jump
[1] 0.4999649 0.0000000 0.1667174 0.3333177
#
$exttime
[1] 1.0 2.0 2.5 3.0 4.0 5.0
#
$extstatus
[1] 1 0 -1 2 2 1
#
......
#
$conv
[1] 3.3000000e+01 8.788214e-06 ### did 33 iterations
#
BTW, the true NPMLE of surv is (1/2, 1/2, 1/3, 0) at times (1,2,2.5,5).
Example 2.
d011(c(1,2,3,4,5), c(1,2,1,0,1), influence.fun=TRUE)
we get
#
$conv:
[1] 3 0
#
$Nodes:
[1] 2 4
#
$IC1tu:
[,1] [,2]
[1,] -1 0
[2,] -1 -2
#
$IC2tu:
[,1] [,2]
[1,] 0.0000000 0
[2,] -0.3333333 0
#
$IC3tu:
[,1] [,2]
[1,] -1 -0.6666667
[2,] -1 -1.000000
#
$VarFt:
[1] 0.24 0.24 ## est var of F(t) at t=nodes

##
Compute NPMLE of CDF from doubly censored data, with and without a constraint, plus an empirical likelihood ratio

Description

d011ch computes the NPMLE of CDF, with and without a constraint, from doubly censored data. It also computes the -2 log empirical likelihood ratio for testing the given constraint via empirical likelihood theorem, i.e. under Ho it should be distributed as chi-square with df=1.

It uses EM algorithm starting from an initial CDF estimator that have jumps at uncensored points as well as the mid-point of those censoring times that have a pattern of (0,2), (see below for definition and example.)

The constraint on the CDF are given in the form F(K) = konst. where you specify the time K and probability ‘konst’.

When there are ties among censored and uncensored observations, the left (right) censored points are treated as happened slightly before (after), to break tie. Also the last right censored observation and first left censored observation are changed to uncensored, in order to obtain a proper distribution as estimator. (though this can be modified easily as they are written in R language).

Usage

d011ch(z, d, K, konst,
 identical = rep(0, length(z)), maxiter = 49, error = 0.00001)

Arguments

z a vector of length n denoting observed times, (ties permitted)
d a vector of length n that contains censoring indicator: d= 2 or 1 or 0, (according to z being left, not, right censored)
K the constraint time.
konst the constraint value, i.e. F(K)=konst.
identical optional. a vector of length n that has values either 0 or 1. identical[i]=1 means even if (z[i],d[i]) is identical with (z[j],d[j]), for some j ≠ i, they still stay as 2 observations, not 1 observation with weight 2, which only happen if identical[i]=0 and identical[j] =0. One reason to do this is because they may have different covariates not shown here. This flexibility may be useful for regression applications. Default value is identical = 0.
maxiter optional integer value. Default to 49
error optional. Default to 0.00001

Value

a list contain the NPMLE of CDF with and without the constraint, -2loglik ratio and other informations.
time survival times. Those corresponding to d=2 are removed. Those corresponding to (0,2) censoring pattern are added, at mid-point.
status Censoring status of the above times. Since left censored times are removed, there is no status =2. There may be -1, indicating that this is an added time for (0,2) censoring pattern.
surv The survival function at the above times.
jump Jumps of NPMLE at the above times.
exttime Similar to time but now include the left censored times.
extstatus Censoring status of exttime. -1 has same meaning as status before.
extjump Jumps of the unconstrained NPMLE on extended times.
extsurvNsx Survival probability at exttime.
konstdist The constrained NPMLE of distribution.
konstjump Jumps of the constrained NPMLE of CDF.
konsttime Location of the constraint, same as K in the input.
theta is the same value konst in the input.
"-2loglikR" the Wilks statistics. Distributed approximately chi-square df=1 under Ho
maxiter the actual number of iterations for the unconstrained NPMLE. The constrained NPMLE usually took less iterations to converge.

Author(s)
Kun Chen, Mai Zhou <mai@ms.uky.edu>

References

Examples
d011ch(z=c(1,2,3,4,5), d=c(1,0,2,2,1), K=3.5, konst=0.6)
Here we are testing Ho: F(3.5) = 0.6 with a two-sided alternative
you should get something like
#
$time:
[1] 1.0 2.0 2.5 5.0 (notice the times, (3,4), corresponding
to d=2 are removed, and time 2.5 added
$status: since there is a (0,2) pattern at
[1] 1 0 -1 1 times 2, 3. The status indicator of -1
show that it is an added time)
$surv
[1] 0.5000351 0.5000351 0.3333177 0.0000000
```r
# $jump
# [1] 0.4999649 0.000000 0.1667174 0.3333177
# $exttime
# [1] 1.0 2.0 2.5 3.0 4.0 5.0  (exttime include all the times, censor or not, plus the added time)
# $extstatus
# [1] 1 0 -1 2 2 1
# $extjump
# [1] 0.4999649 0.000000 0.1667174 0.000000 0.000000 0.3333177
# $extsurvSx
# [1] 0.5000351 0.5000351 0.3333177 0.3333177 0.3333177 0.000000
# $konstdist
# [1] 0.4999365 0.4999365 0.6000000 0.6000000 0.6000000 1.000000
# $konstjump
# [1] 0.4999365 0.0000000 0.1000635 0.0000000 0.0000000 0.400000
# $konsttime
# [1] 3.5
# $theta
# [1] 0.6
# $"-2loglikR"  (the Wilks statistics to test Ho: F(K)=konst)
# [1] 0.05679897
# $maxiter
# [1] 33
# The Wilks statistic is 0.05679897, there is no evidence against Ho: F(3.5)=0.6
```

IVaids

Data: AIDS patient among IV drug user

Description

Time to AIDS among 232 patients infected with HIV. 136 left AIDS-free. 14 died with AIDS. 82 had AIDS while in the program.

Usage

`data(IVaids)`

References

Index

*Topic datasets
 IVaids, 7

*Topic nonparametric
 d011, 2
 d011ch, 5

*Topic survival
 d011, 2
 d011ch, 5

d011, 2
d011ch, 4

IVaids, 7