Package ‘degenes’

February 19, 2015

Type Package

Title Detection of differentially expressed genes.

Version 1.1

Date 2012-10-30

Author Klaus Jung

Maintainer Klaus Jung <Klaus.Jung@ams.med.uni-goettingen.de>

Description Detection of differentially expressed genes between two distinct groups of samples.

License GPL-2

LazyLoad yes

Repository CRAN

Date/Publication 2012-10-30 13:41:16

NeedsCompilation no

R topics documented:

degenes-package .. 2
deg ... 3
kern .. 4
pdeg .. 4
z.b ... 5
z.s ... 5

Index 6
Description

Detects differentially expressed genes between two distinct groups of samples.

Details
Author(s)

Klaus Jung

Maintainer: Klaus Jung <Klaus.Jung@ams.med.uni-goettingen.de>

References

deg

Detection of differentially expressed genes.

Description

Detects differentially expressed genes between two distinct groups of samples.

Usage

`deg(treatment, control, alpha = 0.05)`

Arguments

- `treatment`
 Matrix of normalized expression levels in the first group. Rows represent genes, columns represent samples.

- `control`
 Matrix of normalized expression levels in the second group. Rows represent genes, columns represent samples.

- `alpha`
 Global significance level.

Details

The function controls the FWER at the specified alpha-level.

Value

A vector with the row numbers of the genes detected as differentially expressed.
Author(s)
Klaus Jung

References

Examples
X1 = matrix(rnorm(2000, 0, 1), 200, 10)
X2 = matrix(rnorm(2000, 0, 1), 200, 10)
index = sample(1:200, 5, replace=FALSE)
X2[index,] = X2[index,] + 5
D = deg(X1, X2)
PD = pdeg(X1, X2)
PDa = p.adjust(PD, method="bonferroni")
sort(index)
D
which(PDa<0.05)
which(PD<0.05)

kern
Kernel density estimation.

Description
Determines the density of the test statistics by kernel estimation.

pdeg
Detection of differentially expressed genes.

Description
Calculated gene-specific unadjusted p-values for the comparison of samples from two distinct groups.

Usage
pdeg(treatment, control, alpha = 0.05)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>treatment</td>
<td>Matrix of normalized expression levels in the first group. Rows represent genes, columns represent samples.</td>
</tr>
<tr>
<td>control</td>
<td>Matrix of normalized expression levels in the second group. Rows represent genes, columns represent samples.</td>
</tr>
<tr>
<td>alpha</td>
<td>Global significance level.</td>
</tr>
</tbody>
</table>
Value

A vector with the gene-specific unadjusted p-values.

Author(s)

Klaus Jung

References

Examples

```r
X1 = matrix(rnorm(2000, 0, 1), 200, 10)
X2 = matrix(rnorm(2000, 0, 1), 200, 10)
index = sample(1:200, 5, replace=FALSE)
X2[index,] = X2[index,] + 5
D = deg(X1, X2)
PD = pdeg(X1, X2)
PDa = p.adjust(PD, method="bonferroni")
sort(index)
D
which(PDa<0.05)
which(PD<0.05)
```

z.b Calculation of test statistic.

Description

Calculates test statistics for the functions 'deg' and 'pdeg'.

z.s Calculation of test statistic.

Description

Calculates test statistics for the functions 'deg' and 'pdeg'.
Index

deg, 3
degenes (degenes-package), 2
degenes-package, 2

kern, 4

pdeg, 4

z.b, 5
z.s, 5