Package ‘diffractometry’

March 16, 2018

Type Package

Title Baseline Identification and Peak Decomposition for x-Ray Diffractograms

Version 0.1-10

Date 2018-03-16

Author P.L. Davies, U. Gather, M. Meise, D.Mergel, T. Mildenberger. Additional Code by T. Bernholt and T. Hofmeister

Maintainer T. Mildenberger

Description

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-03-16 17:24:35 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>diffractometry-package</td>
<td>2</td>
</tr>
<tr>
<td>baselinefit</td>
<td>3</td>
</tr>
<tr>
<td>diffractogram</td>
<td>4</td>
</tr>
<tr>
<td>indiumoxide</td>
<td>6</td>
</tr>
<tr>
<td>pkdecomp</td>
<td>7</td>
</tr>
<tr>
<td>pkdecompint</td>
<td>9</td>
</tr>
</tbody>
</table>

Index 11
diffractometry-package

Baseline identification and peak decomposition for x-ray diffractograms

Description

Residual-based baseline identification and peak decomposition for x-ray diffractograms as introduced in Davies et al. (2008).

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>diffractometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.1-02</td>
</tr>
<tr>
<td>Date:</td>
<td>2010-03-05</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>= 2)</td>
</tr>
</tbody>
</table>

The package diffractometry contains an implementation of the automatic procedure for analysing x-ray diffractograms of thin films introduced in Davies et al. (2008). The function diffractogram can be used for a complete analysis, while baselinefit and pkdecomp perform baseline estimation and peak decomposition separately. The dataset indiumoxide is the diffractogram used as an example in the article.

Author(s)

Maintainer: T. Mildenberger <mildenbe@statistik.tu-dortmund.de>

References

See Also

diffractogram, baselinefit, pkdecomp
baselinefit

Baseline and peak intervals for diffractometry data

Description

Calculates Taut String and Weighted Smoothing Spline approximations of a diffractogram and identifies the baseline and peak intervals.

Usage

baselinefit(data, tau=2.5, gam=1, scl.factor=1.2, maxwdth=5)

Arguments

data A diffractogram given as a matrix, where the first column gives the angles of diffraction in degrees 2θ and the second column gives the corresponding photon counts. Angles of diffraction are taken to be equidistant.

tau Value of Parameter tau used in the residual criterion.

gam Factor which is used in the separation between peaks and baseline.

scl.factor Factor which is used in the heteroscedastic residual criterion.

maxwdth Maximum width of the peaks. By default set to 5 degrees.

Value

Returns a list with components

pmg Output (list) of the taut string procedure fnpreg(). Contains the estimated fit pmg$fn.

spl Output (list) of the weighted smoothing spline procedure wsspoiss(). Contains the estimated fit spl$reg.

baseline Output (list) of the baseline fit procedure basiserg(). Contains the baseline fit baseline$basisl.

npks Number of peaks.

indlsep Left indices of the peak intervals.

indrsep Right indices of the peak intervals.

indextr Indices of the extreme values.

bs Output of the weighted smoothing spline procedure for the data with removed peaks. Contains the baseline for non-peak intervals bs$reg.

pks A vector which contains the data for the peak intervals and zero otherwise.

exb Output (list) of the routine exber.maxwdth() which computes the peak intervals. Contains again indlsep and indrsep.

x x values of the data.

y y values of the data.
diffractogram

Author(s)

M. Meise and P.L. Davies

References

See Also
diffractogram, pkdecomp

Examples

```r
## baseline fit and peak interval identification for a small segment of the indiumoxide data
## baseline plotted in red and data plotted in peak intervals in blue

data(indiumoxide)
indox<-indiumoxide[1901:2400,]
plot(indox,xlab="",ylab="")
base<baselinefit(indox)
lines(indox[,1],base$baseline$basisl,col="red")
points(indox[base$indextr[,],col="blue"]
```

diffractogram

Complete analysis of diffractograms as described in Davies et al. (2008)

Description

Performs a complete analysis of x-ray diffractogram, i.e. calculation of the baseline and the peak intervals as well as decomposition of the peaks.

Usage

```r
diffractogram(data, tau=2.5, gam=1, scl.factor=1.2, maxwidth=5, intnum=0, alpha=0.1, maxiter1=500, maxiter=10000, hmax=5, maxsolutions=3, heterosk=TRUE, baselim=c(0.05,5), dispers=1)
```
Arguments

data A diffractogram given as a matrix, where the first column gives the angles of diffraction in 2θ and the second column gives the corresponding photon counts. Angles of diffraction are taken to be equidistant.

tau Value of Parameter tau used in the residual criterion.

gam Factor which is used in the separation between peaks and baseline.

scl.factor Factor which is used in the heteroscedastic residual criterion.

maxwdth Maximum width of the peaks. By default set to 5 degrees.

intnum Vector of numbers of intervals. If intnum = 0, all intervals are used

alpha Test level for residual criterion

maxiter1 Number of attempts to fit a model with 1 component

maxiter Number of attempts to fit a model with $k > 1$ components

hmax Maximum number of components

maxsolutions Number of solutions with k components

heterosk If TRUE, the estimate of noise level given in baslfit is used (default); otherwise noise level is taken to be proportional to signal height

baselim Limits for changes in the baseline estimate; first component is given in percent of the baseline height, second in counts per 2θ

dispers Additional dispersion factor; not used if heterosk==T

Details

diffractogram first calls baselinefit with the specified parameters and then pkdecomp for the output of baselinefit. For further details, see the corresponding help pages.

Value

Returns a LIST with components

basl Output of baselinefit

pks Output of pkdecomp

Author(s)

P.L. Davies, M. Meise, T.Mildenberger

References

See Also

`baselinefit`, `pkdecomp`

Examples

```r
set.seed(0)
pardiffr dred
data(indiumoxide)
indox<-indiumoxide[1901:2400,]
sol<-diffractogram(index, maxsolutions=7, maxiter1=50, maxiter2=250)
ind<-c(sol$bas$indlsep[1], sol$bas$indrsep[1])
plot(indox, xlab="", ylab="")
lines(indox[,1], sol$bas$baseline$basisl1, col="red")
points(indox[ind[1]:ind[2]], col="blue")

plot(indox[ind[1]:ind[2],1], sol$bas$baseline$peaks[ind[1]:ind[2]], xlab="", ylab="")
lines(indox[ind[1]:ind[2],1], sol$pks[ind[1]:ind[2]]$fit1, col="red")
plot(indox[ind[1]:ind[2],1], sol$pks[ind[1]:ind[2]]$fitpk1, ylim=c(0,1800), type="l", xlab="", ylab="")
lines(indox[ind[1]:ind[2],1], sol$pks[ind[1]:ind[2]]$fitpk2)
```

indiumoxide

Diffractogram of Indium oxide doped with tin

Description

Example of a diffractogram used in Davies et al. (2008)

Usage

`data(indiumoxide)`
Details

The diffractogram was taken on a thin film of \(\text{In}_2\text{O}_3 : \text{Sn} \), i.e. indium oxide doped with tin. This material is usually called ITO (indium-tin-oxide). It has a good electrical conductivity and is transparent in the visible wavelength region. The first column of the matrix contains the angles of diffraction, the second column contains the corresponding photon counts.

Author(s)

D. Mergel

References

pKDecomp

Decomposition of peaks for the whole data set

Description

Calculates decompositions of peaks for the whole diffractogram

Usage

pKDecomp(baslfit, intnum=0, alpha=0.1, maxiter1=500, maxiter=10000, hmax=5, maxsolutions=3, heterosk=TRUE, baselim=c(0.05,5), dispers=1)

Arguments

baslfit Output of baselinefit
intnum Vector of numbers of intervals. If intnum = 0, all intervals are used
alpha Test level for residual criterion
maxiter1 Number of attempts to fit a model with 1 component
maxiter Number of attempts to fit a model with k > 1 components
hmax Maximum number of components
maxsolutions Number of solutions with k components
heterosk If TRUE, the estimate of noise level given in baslfit is used (default); otherwise noise level is taken to be proportional to signal height
baselim Limits for changes in the baseline estimate; first component is given in percent of the baseline height, second in counts/2theta
dispers Additional dispersion factor; not used if heterosk==T
pkdecomp

Details

Calls `pkdecompint` to decompose the peaks found by `baselinefit` into Pearson Type VII kernels. For every interval, first one kernel is tried. The number of kernels is increased until either a solution accepted by the residual criterion is found or the maximum number of kernels `hmax` is reached. After a solution is accepted, for `maxsolutions` greater than 1, further decompositions with the same number of kernels can be produced.

Value

A vector of lists as given by `pkdecompint`

Author(s)

T. Mildenberger; Algorithm for residual criterion by T. Bernholt and T. Hofmeister

References

See Also

diffractogram, baselinefit, pkdecompint

Examples

```r
## Decomposition of data in peak interval into two components

set.seed(0)
par(mfrow=c(2,1))
data(indiumoxide)
indox<-indiumoxide[1:2400,]
base<-baselinefit(indox)
ind<-c(base$indlsep[1],base$indrsep[1])
plot(indox[ind[1]:ind[2],], base$baseline$peaks[ind[1]:ind[2]],xlab="",ylab="")
pks<-pkdecomp(base,intnum=1,maxsolutions=1,maxiter1=50,maxiter=250)
lines(indox[ind[1]:ind[2],],pks[[2]]$fit,col="red")
plot(indox[ind[1]:ind[2],],pks[[2]]$fitpk[1],ylim=c(0,1800),type="l",xlab="",ylab="")
```
Description

Decomposition of peaks in an interval of the diffractogram.

Usage

```r
pkdecompint(baslfit, intnum, k, thresh=0, alpha=0.1, heterosk=TRUE, maxiter=10000, dispers=1, baselim=c(0.05,5))
```

Arguments

- `baslfit`: Output of `baslfit`.
- `intnum`: Number of interval.
- `k`: Number of peak components to fit.
- `thresh`: Threshold for residual criterion.
- `alpha`: Test level for residual criterion.
- `heterosk`: If `TRUE`, the estimate of noise level given in `baslfit` is used (default); otherwise, noise level is taken to be proportional to signal height.
- `maxiter`: Number of attempts to fit a model with `k` components.
- `dispers`: Additional dispersion factor; not used if `heterosk==T`.
- `baselim`: Limits for changes in the baseline estimate; first component is given in percent of the baseline height, second in counts/2theta.

Value

Returns a LIST with components:

- `intnr`: Number of interval.
- `x`: values of 2theta.
- `y`: the diffractogram with baseline removed.
- `fit`: the resulting fit, evaluated at all points of `x`.
- `fitpk`: a matrix with `num.ker` rows that contain fits of the individual peak components.
- `basl`: the baseline estimate as given in `baslfit`.
- `baslchg`: change of baseline estimate.
- `rss`: residual sum of squares, standardized by noise level estimate.
- `num.ker`: number of peak components.
par parameter vector as given in section 8 of Davies et al. (2008)
parbl intercept and slope of the baseline change
parpks physical characteristics of the peaks
accept is the fit accepted by the residual criterion
alpha test level for residual criterion
thresh threshold used in residual criterion

Author(s)
T. Mildenberger; Algorithm for residual criterion by T. Bernholt and T. Hofmeister

References

See Also
diffractogram, baselinefit, pkdecomp

Examples
Decomposition of data in peak interval into two components

```r
set.seed(0)
par(mfrow=c(2,1))
data(indiumoxide)
indox<-indiumoxide[1901:2400,]
base<-baselinefit(indox)
ind<-c(base$indlsep[1],base$indrsep[1])
plot(indox[ind[1]:ind[2]],base$baseline$peaks[ind[1]:ind[2]],xlab="",ylab="")
pks<-pkdecompint(base,ntnum=1,k=2)
lines(indox[ind[1]:ind[2]],pks$fitpk[,1],col="red")
plot(indox[ind[1]:ind[2]],pks$fitpk[,1],ylim=c(0,1800),type="l",xlab="",ylab="")
lines(indox[ind[1]:ind[2]],pks$fitpk[2,])
```
Index

*Topic **package**
 diffractometry-package, 2

baselinefit, 2, 3, 6, 8, 10
diffractogram, 2, 4, 4, 8, 10
diffractometry
 (diffractometry-package), 2
diffractometry-package, 2

indiumoxide, 2, 6

pkdecomp, 2, 4, 6, 7, 10
pkdecompint, 8, 9