Package ‘distrEllipse’

July 23, 2018

Version 2.7.0
Date 2018-07-08
Title S4 Classes for Elliptically Contoured Distributions
Description Distribution (S4-)classes for elliptically contoured distributions (based on package ‘distr’).
Depends R(>= 2.8.0), methods, graphics, mvtnorm, setRNG(>= 2006.2-1),
 distr(>= 2.2), distrEx(>= 2.2), distrSim(>= 2.2)
Suggests distrMod(>= 2.2), distrTEst(>= 2.2)
Imports startupmsg, stats
ByteCompile yes
License LGPL-3
URL http://distr.r-forge.r-project.org/
Encoding latin1

R topics documented:

 distrEllipse-package .. 2
 distrEllipse-defunct 4
 distrEllipseMASK ... 5
 distrEllipseoptions 6
distrEllipse-package

distrEllipse – S4 Classes for Elliptically Contoured Distributions

Description

distrEllipse provides infrastructure / (S4-)classes for elliptically contoured distributions (based on package distr).

Details

Package: distrEllipse
Version: 2.7.0
Date: 2018-07-08
Depends: R(>= 2.8.0), methods, graphics, mvtnorm, setRNG(>= 2006.2-1), distr(>= 2.2), distrEx(>= 2.2), distrSim(>= 2.2)
Suggests: distrMod(>= 2.2), distrTEst(>= 2.2)
Imports: startupmsg, stats
ByteCompile: yes
License: LGPL-3
URL: http://distr.r-forge.r-project.org/
SVNRevision: 1186

Classes

EllipticalDistribution . 7
EllipticalDistribution-class . 8
EllipticalParameter-class . 10
MultivarDistrList . 11
MultivarDistrList-class . 12
MultivarMixingDistribution . 13
MultivarMixingDistribution-class . 14
MVNormDistribution . 16
MVNormDistribution-class . 17
MVNormParameter-class . 18
MVtDistribution . 19
MVtDistribution-class . 20
MVtParameter-class . 21
plot-methods . 22
SphericalDistribution . 24
SphericalDistribution-class . 25

Index 28
distrEllipse-package

[*) there is a generating function with the same name

"Distribution" (from distr)
| > "MultivariateDistribution" (from distrEx)
| >| > "MultivarMixingDistribution" [*)
| >| > "SphericalDistribution" [*)
| >| >| > "EllipticalDistribution" [*)
| >| >| > "MVNormDistribution" [*)

"DistrList" (from distr)
| > "MultivarDistrList" [*/class union of "MVDistrList", "UnivarDistrList"]
| >| "MVDistrList"
| >| "UnivarDistrList" (from distr) [*)

Methods

- **plot-methods**: Methods for Function plot
 - (for SphericalDistribution)
- **show-methods**: Methods for Function show
 - (for Simulation/Contsimulation)

Functions

- **distrEllipseoptions**: Functions to change the global variables of the package 'distrEllipse'

Slot accessors / -replacement functions

All slots are inspected / modified by corresponding accessors / -replacement functions.

Start-up-Banner

You may suppress the start-up banner/message completely by setting options("StartupBanner"="off") somewhere before loading this package by library or require in your R-code / R-session.

If option "StartupBanner" is not defined (default) or setting options("StartupBanner"=NULL) or options("StartupBanner"="complete") the complete start-up banner is displayed.

For any other value of option "StartupBanner" (i.e., not in c(NULL,"off","complete")) only the version information is displayed.

The same can be achieved by wrapping the library or require call into either suppressStartupMessages() or onlytypeStartupMessages(.,atypes="version").

Package versions

Note: The first two numbers of package versions do not necessarily reflect package-individual development, but rather are chosen for the distrXXX family as a whole in order to ease updating "depends" information.
Start-up-Banner

You may suppress the start-up banner/message completely by setting `options("StartupBanner"="off")` somewhere before loading this package by `library` or `require` in your R-code / R-session.

If option "StartupBanner" is not defined (default) or setting `options("StartupBanner"=NULL)` or options("StartupBanner"="complete") the complete start-up banner is displayed.

For any other value of option "StartupBanner" (i.e., not in c(NULL,"off","complete")) only the version information is displayed.

As for general packageStartupMessage’s, you may also suppress all the start-up banner by wrapping the library or require call into `suppressPackageStartupMessages()` from startupmsg-version 0.5 on.

Note

Global options controlling the plots and summaries of Dataclass and Simulation/Contsimulation objects may be inspected / set by `distrEllipseoptions()` and `getdistrEllipseOption()`.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Maintainer: Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

A vignette for packages distr, distrSim, distrTEst, distrEx, distrTeach, distrMod, and distrEllipse is included into the mere documentation package distrDoc and may be called by `require("distrDoc");vignette("distr")`

A homepage to this package is available under
http://distr.r-forge.r-project.org/.

distrEllipse-defunct Defunct Functions in Package distrEllipse

Description

Functions which are no longer provided in distrEllipse due to clashes with S3-method inheritance.

Methods

From version 2.7 on, former versions of S4-methods rRd, dRd, pRd, qRd, and plotRd of style <name>.rd are defunct due to clashes with S3-method inheritance. More specifically, this concerns the following methods:

r.rd signature(object = "SphericalDistribution"): wrapped access method for slot r of slot radDistr.
distrEllipseMASK

See Also

Defunct

distrEllipseMASK

Masking off by other functions in package "distrEllipse"

Description

Provides information on the (intended) masking of and (non-intended) masking by other other functions in package **distrEllipse**

Usage

```r
distrEllipseMASK(library = NULL)
```

Arguments

- `library`
a character vector with path names of R libraries, or NULL. The default value of NULL corresponds to all libraries currently known. If the default is used, the loaded packages are searched before the libraries

Value

no value is returned

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

```r
distrEllipseMASK()
```
distrEllipseOptions

functions to change the global variables of the package 'distrEllipse'

Description

With distrEllipseOptions and getdistrEllipseOption you may inspect and change the global variables used by package distrEllipse.

Usage

distrEllipseOptions(...)
getdistrEllipseOption(x)

Arguments

... any options can be defined, using name = value or by passing a list of such tagged values.
x a character string holding an option name.

Details

Invoking distrEllipseOptions() with no arguments returns a list with the current values of the options. To access the value of a single option, one should use getdistrEllipseOption("WarningSim"), e.g., rather than distrEllipseOptions("WarningSim") which is a list of length one.

Value

distrEllipseOptions() returns a list of the global options of distrEllipse.
distrEllipseOptions("Nsims") returns the global option Nsim as a list of length 1.
distrEllipseOptions("Nsims" = 3000) sets the value of the global option Nsim to 3000. getdistrEllipseOption("Nsim") the current value set for option Nsim.

Currently available options

Nsims for plotting: number of (simulated) points to be plotted.
withED for plotting: logical; shall principal axes of the contour ellipsoid be plot in (for each panel)?
1wd.ED for plotting: line width of principal axes (for each panel).
col.ED for plotting: color of principal axes (for each panel).
withMean for plotting: logical; shall mean be plot in (for each panel)?
cex.mean for plotting: size of the mean symbol (for each panel).
pch.mean for plotting: mean symbol (for each panel).
col.mean for plotting: color of the mean symbol (for each panel).

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>
EllipticalDistribution

See Also

options, getOption

Examples

distrEllipseOptions("Nsim") # returns the value of Nsim, by default = 5
currentDistrOptions <- distrEllipseOptions()
distrEllipseOptions(Nsim = 6000)
distrEllipseOptions("Nsim")
getDistrEllipseOption("Nsim")
distrEllipseOptions(c("Nsim","withED"))

EllipticalDistribution

Generating function for EllipticalDistribution-class

Description

Generates an object of class "EllipticalDistribution".

Usage

EllipticalDistribution(radDistr = sqrt(Chisq(df = length(loc))),
loc = c(0,0), scale = diag(length(loc)), p = NULL, q = NULL)

Arguments

radDistr an object of class UnivariateDistribution with positive support, i.e. p(radDistr(0) == 0; the radial distribution.
loc real number: location / center of the elliptical distribution.
scale a square matrix (with nrow(scale) == ncol(scale) == length(loc)) of full rank: the / a scale matrix of the elliptical distribution — unique only upto scale*%*t(scale), i.e. if A1 and A2 are two square matrices of full rank such that A1*%*t(A1) == A2*%*t(A2), then we obtain the same elliptical distribution for scale = A1 and for scale = A2.
p optional: p-slot of the corresponding distribution;
q optional: q-slot of the corresponding distribution;

Value

Object of class "EllipticalDistribution"

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>
See Also

EllipticalDistribution-class

Examples

E0 <- EllipticalDistribution()
plot(E0)
E1 <- diag(1,2)%*%E0+c(1,2)
plot(E1)
E(E1)
var(E1)
EllipticalDistribution-class

.logExact logical: used internally to flag the case where there are explicit formulae for the log version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the lower tail version of cdf and quantile function

Symmetry object of class "EllipticalSymmetry" about center loc; used internally to avoid unnecessary calculations.

Extends

Class "SphericalDistribution", directly.
Class "MultivariateDistribution", by class "SphericalDistribution". Class "Distribution", by class "MultivariateDistribution".

Methods

location signature(object = "EllipticalDistribution"): wrapped access method for slot location of slot param.

scale signature(x = "EllipticalDistribution"): wrapped access method for slot scale of slot param.

location<- signature(object = "EllipticalDistribution"): wrapped replace method for slot location of slot param.

scale<- signature(x = "EllipticalDistribution"): wrapped replace method for slot scale of slot param.

E signature(object = "EllipticalDistribution", fun = "missing", cond = "missing"): expectation of an elliptically symmetric distribution; exact.

E signature(object = "EllipticalDistribution", fun = "function", cond = "missing"): expectation of an elliptically symmetric distribution; by simulation.

var signature(x = "EllipticalDistribution"): expectation of an elliptically symmetric distribution; exact.

+ signature(e1 = "EllipticalDistribution", e2 = "numeric"): affine linear transformation; exact.

- signature(e1 = "EllipticalDistribution", e2 = "numeric"): affine linear transformation; exact.

* signature(e1 = "EllipticalDistribution", e2 = "numeric"): affine linear transformation; exact.

% signature(e1 = "numeric", e2 = "EllipticalDistribution"): affine linear transformation; exact.

coerce signature(from = "EllipticalDistribution", to = "UnivariateDistribution"): create a UnivariateDistribution object from a (one-dimensional) elliptically symmetric distribution.

coerce signature(from = "UnivariateDistribution", to = "EllipticalDistribution"): create a EllipticalDistribution object from a (symmetric) univariate distribution.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>
Examples

new("EllipticalDistribution") ## better use EllipticalDistribution()

EllipticalParameter-class

Paramter of an Elliptical distributions

Description
The class of the parameter of Elliptical distributions.

Objects from the Class
Objects can be created by calls of the form new("EllipticalParameter", ...).

Slots

loc numeric; center / location of the distribution.
scale matrix; the scale matrix; the number of rows of this matrix must be the same as the length of location.
name default name is “parameter of a Elliptical distribution”.

Extends
Class "Parameter", directly.
Class "OptionalParameter", by class "Parameter".

Methods

location signature(object = "EllipticalParameter"): access method for slot location.
scale signature(x = "EllipticalParameter"): access method for slot scale.
location<- signature(object = "EllipticalParameter"): replace method for slot location.
scale<- signature(object = "EllipticalParameter"): replace method for slot scale.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

EllipticalDistribution-class, Parameter-class

Examples

new("EllipticalParameter")
MultivarDistrList

Generating function for MultivarDistrList-class

Description

Generates an object of class "MultivarDistrList".

Usage

MultivarDistrList(..., Dlist)

Arguments

... Objects of class "MultivariateDistribution" (or subclasses)
Dlist an optional list or object of class "MultivarDistrList"; if not missing it is appended to argument ...; this way MultivarMixingDistribution may also be called with a list (or "MultivarDistrList"-object) as argument as suggested in an e-mail by Krunoslav Sever (thank you!)

Value

Object of class "MVDistrList" or of class "UnivarDistrList", hence of class union "MultivarDistrList"

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

DistrList-class, MultivarDistrList-class, MultivarDistrList

Examples

(DL1 <- MultivarDistrList(Norm(), Exp(), Pois()))
(DL2 <- MultivarDistrList(MVNorm(),
 EllipticalDistribution(radDist=Exp(), loc=c(1,2),
 scale=diag(c(3,1))), MvT()))
MultivarDistrList-class

List of multivariate distributions

Description

Create a list of multivariate distributions

Objects from the Class

Objects can be created by calls of the form new("MVdistrList", ...). More frequently they are created via the generating function MultivarDistrList.

Slots

.Data: Object of class "list". A list of multivariate distributions of the same dimension.

Extends

Class "DistrList", directly.
Class "list", by class "DistrList".
Class "vector", by class "DistrList".

Methods

coatrace signature(from = "MultivariateDistribution", to = "MultivarDistrList"):
create a MultivarDistrList object from a univariate distribution

dimension
dim of the range space.
dim synonym to dimension.

Details

In fact, class "MultivarDistrList" is an inbetween class between class "DistrList" and class "UnivarDistrList", which is a case for setIs, but we would have to modify the metadata information in package distr to realize this. So we introduce a new (sister) class "MVdistrList" which implements strictly lists of multivariate distributions, and which together with "UnivarDistrList" is a subclass of the common class union class "MultivarDistrList".

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

MultivarDistrList, DistrList-class, MultivariateDistribution-class
MultivarMixingDistribution

Examples

(DL1 <- MultivarDistrList(Norm(), Exp(), Pois()))
(DL2 <- MultivarDistrList(MVNorm(),
 EllipticalDistribution(radDistr=Exp(), loc=c(1,2),
 scale=diag(c(3,1))), Mvt()))

Description

Generates an object of class "MultivarMixingDistribution".

Usage

MultivarMixingDistribution(..., Dlist, mixCoeff

Arguments

...
 Objects of class "MultivariateDistribution" (or subclasses)
Dlist
 an optional list or object of class "MultivarDistrList"; if not missing it is appended to argument ...; this way MultivarMixingDistribution may also be called with a list (or "MultivarDistrList"-object) as argument as suggested in an e-mail by Krunoslav Sever (thank you!)
mixCoeff
 Objects of class "numeric" : a vector of probabilities for the mixing components (must be of same length as arguments in ...).

Details

If mixCoeff is missing, all elements in ... are equally weighted.

Value

Object of class "MultivarMixingDistribution", or if argument withSimplify is TRUE and the resulting object would have one mixing component with probability (almost) 1, MultivarMixingDistribution will return this component.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

MultivarMixingDistribution-class
Examples

```r
mylist <- MultivarMixingDistribution(Binom(3,.3), Dirac(2), Norm(),
        mixCoeff=c(1/4,1/5,1/20))
```

MultivarMixingDistribution-class

Class "MultivarMixingDistribution"

Description

The `MultivarMixingDistribution-class` is a class to formalize multivariate mixing distributions; it is a subclass to class `MultivariateDistribution`.

Objects from the Class

Objects can be created by calls of the form `new("MultivarMixingDistribution", ...)`. More frequently they are created via the generating function `MultivarMixingDistribution`.

Slots

- `mixCoeff`: Object of class "numeric": a vector of probabilities for the mixing components.
- `mixDistr`: Object of class "MultivarDistrList": a list of multivariate distributions containing the mixing components; must be of same length as `mixCoeff`.
- `img`: Object of class "Reals": the space of the image of this distribution which has dimension 1 and the name "Real Space".
- `param`: Object of class "Parameter": the parameter of this distribution, having only the slot name "Parameter of a discrete distribution".
- `r`: Object of class "function": generates random numbers.
- `d`: fixed to NULL.
- `p`: Object of class "OptionalFunction": if non-null cumulative distribution function.
- `q`: Object of class "OptionalFunction": if non-null quantile function.
 - `.withArith`: logical: used internally to issue warnings as to interpretation of arithmetics.
 - `.withSim`: logical: used internally to issue warnings as to accuracy.
 - `.logExact`: logical: used internally to flag the case where there are explicit formulae for the log version of density, cdf, and quantile function.
 - `.lowerExact`: logical: used internally to flag the case where there are explicit formulae for the lower tail version of cdf and quantile function.
- `Symmetry`: object of class "DistributionSymmetry": used internally to avoid unnecessary calculations.

Extends

Class "MultivariateDistribution" class "Distribution" by class "MultivariateDistribution".
Methods

show signature(object = "MultivarMixingDistribution") prints the object

mixCoeff<- signature(object = "MultivarMixingDistribution") replaces the corresponding slot

mixCoeff signature(object = "MultivarMixingDistribution") returns the corresponding slot

mixDistr<- signature(object = "MultivarMixingDistribution") replaces the corresponding slot

mixDistr signature(object = "MultivarMixingDistribution") returns the corresponding slot

support signature(object = "MultivarMixingDistribution") returns the corresponding slot

gaps signature(object = "MultivarMixingDistribution") returns the corresponding slot

.logExact signature(object = "Distribution"): returns slot .logExact if existing; else tries to convert the object to a newer version of its class by conv2NewVersion and returns the corresponding slot of the converted object.

.lowerExact signature(object = "Distribution"): returns slot .lowerExact if existing; else tries to convert the object to a newer version of its class by conv2NewVersion and returns the corresponding slot of the converted object.

Symmetry returns slot Symmetry if existing; else tries to convert the object to a newer version of its class by conv2NewVersion and returns the corresponding slot of the converted object.

plot signature(x = "MultivarMixingDistribution", y = "missing"): plot for an spherically symmetric distribution; see plot-methods.

E corresponding expectation — see E.

dimension dim of the range space.

dim synonym to dimension.

show signature(object = "MultivarMixingDistribution"): show method for spherically symmetric distributions.

showobj signature(object = "MultivarMixingDistribution"): showobj method for spherically symmetric distributions.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

Parameter-class, MultivariateDistribution-class, LatticeDistribution-class, AbscontDistribution-class, simplifyD-methods, flat.mix
Examples

```r
mylist <- MultivarMixingDistribution(Binom(3,3), Dirac(2), Norm(),
  mixCoeff=c(1/4,1/5,11/20))
mylist2 <- MultivarMixingDistribution(Binom(3,3), mylist,
  mixCoeff=c(1/4,1/5,11/20))
mylist2
p(mylist)(0.3)
mixDistr(mylist2)
E(mylist)
var(mylist)

# multivariate
E1 <- diag(1,2)%*%EllipticalDistribution(radDistr=Gammad(),c(1,2))
mylistD <- MultivarMixingDistribution(MVNorm(), E1, Mvt(),
  mixCoeff=c(1/4,1/5,11/20))
mylistD2 <- MultivarMixingDistribution(E1+c(-2,2), mylistD,
  mixCoeff=c(1/4,1/5,11/20))
mylistD2
p(mylistD)
mixDistr(mylistD2)
E(mylistD2)
var(mylistD2)
```

Description

Generates an object of class "MVNormDistribution".

Usage

```r
MVNorm(loc=c(0,0), scale = diag(length(loc)))
```

Arguments

- **loc**: real number: location / center of the elliptical distribution.
- **scale**: a square matrix (with nrow(scale)==ncol(scale)==length(loc)) of full rank: the / a scale matrix of the elliptical distribution — unique only up to scale, i.e. if A1 and A2 are two square matrices of full rank such that A1%*%t(A1)==A2%*%t(A2), then we obtain the same elliptical distribution for scale = A1 and for scale = A2.

Value

Object of class "MVNormDistribution"

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>
MVNormDistribution-class

See Also

MVNormDistribution-class

Examples

E0 <- MVNorm()
plot(E0)
E1 <- diag(1,2)%*%E0+c(1,2)
plot(E1)
E(E1)
var(E1)

MVNormDistribution-class
MVNorm distribution class

Description

Class MVNormDistribution implements a general multivariate distribution using code from package mvtnorm. For details to this implementation confer to the references given in this package.

Objects from the Class

Objects could in principle be created by calls to new, but more frequently you would create them via the generating function MVNormDistribution.

Slots

img: Object of class "Reals".
param: Object of class "MVtParameter".
r: function with argument n; random number generator
d: the density of this distribution, pmvnorm
p: the (vectorized) function pmvnorm.
q: (the vectorized) function qmvnorm.
raddistr: the distribution sqrt(Chisq(df=dim))
.withArith: FALSE
.withSim: FALSE
.logExact: TRUE
.lowerExact: TRUE

Symmetry: object of class "EllipticalSymmetry" about center loc; used internally to avoid unnecessary calculations.
Extends

Class "EllipticalDistribution", directly.
Class "SphericalDistribution", by class "EllipticalDistribution".
Class "MultivariateDistribution", by class "SphericalDistribution". Class "Distribution", by class "MultivariateDistribution".

Methods

sigma signature(object = "MVNormDistribution"): wrapped access method for slot sigma of slot param.
mean signature(object = "MVNormDistribution"): wrapped access method for slot location of slot param.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

Package mvtnorm

Examples

new("MVNormDistribution") ## better use generating function MVNormDistribution()

__

MVNormParameter-class Paramter of a multivariate normal distribution

__

Description

The class of the parameter of MVNorm distributions.

Objects from the Class

Objects can be created by calls of the form new("MVNormParameter", ...).

Slots

 loc: numeric; center / location of the distribution.
 scale: matrix; the scale matrix; the number of rows of this matrix must be the same as the length of location.
 name: default name is “parameter of a Elliptical distribution”.

Extends

Class "EllipticalParameter", directly.
Class "Parameter", by class "EllipticalParameter".
Class "OptionalParameter", by class "Parameter".
MVtDistribution

Methods

- **mean** signature(object = "MVNormParameter"): access method for slot location.
- **sigma** signature(x = "MVNormParameter"): utility function; returns $S^\times t(S)$ for $S = scale(x)$.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

MVNormDistribution-class, Parameter-class

Examples

`new("MVNormParameter")`

MVtDistribution

Generating function for MVtDistribution-class

Description

Generates an object of class "MVtDistribution".

Usage

`MVt(loc = c(0,0), scale = diag(length(loc)), df = 1, ncp = 0)`

Arguments

- **loc**
 - real number: location / center of the elliptical distribution.
- **scale**
 - a square matrix (with `nrow(scale) == ncol(scale) == length(loc)`) of full rank: the / a scale matrix of the elliptical distribution — unique only up to $scale^\times t(scale)$, i.e. if A_1 and A_2 are two square matrices of full rank such that $A_1^\times t(A_1) = A_2^\times t(A_2)$, then we obtain the same elliptical distribution for $scale = A_1$ and for $scale = A_2$.
- **df**
 - integer; degrees of freedom
- **ncp**
 - positive real number; non-centrality parameter

Value

Object of class "MVtDistribution"

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>
See Also

MVtDistribution-class

Examples

E0 <- MVt()
pplot(E0)
E1 <- diag(1,2)%*%E0+c(1,2)
plot(E1)
E(E1)
var(E1)

MVtDistribution-class MVt distribution class

Description

Class MVtDistribution implements multivariate t distributions using code from package mvt-
norm. For details to this implementation confer to the references given in this package.

Objects from the Class

Objects could in principle be created by calls to new, but more frequently you would create them
via the generating function MVtDistribution.

Slots

img: Object of class "Reals".
param: Object of class "MVTParameter".
r: function with argument n; random number generator
d: the density of this distribution, dmvt
p: the (vectorized) function pmvt.
q: the (vectorized) function qmvt.
raddistr: an object of class AbscontDistribution with density

\[\frac{\Gamma\left(\frac{\dim + df - 1}{2}\right)}{\Gamma\left(\frac{df}{2}\right)} \times \frac{1}{\sqrt{\gamma}} \left(\frac{x^2}{df}\right) \left(\frac{1}{1 + \frac{x^2}{df}}\right)^{(\dim + df)/2} \]

.withArith: FALSE
.withSim: FALSE
.logExact: TRUE
.lowerExact: TRUE

Symmetry: object of class "EllipticalSymmetry" about center loc; used internally to avoid un-
necessary calculations.
MVtParameter-class

Description

The class of the parameter of MVt distributions.

Objects from the Class

Objects can be created by calls of the form `new("MVtParameter", ...)`.

Slots

- `loc`: numeric; center / location of the distribution.
- `scale`: matrix; the scale matrix; the number of rows of this matrix must be the same as the length of `location`.
- `df`: integer; the degrees of freedom.
- `ncp`: positive real; the non-centrality parameter.
- `name`: default name is “parameter of a Elliptical distribution”.

Methods

- `sigma` signature: wrapped access method for slot `sigma` of slot `param`.
- `ncp` signature: wrapped access method for slot `ncp` of slot `param`.
- `df` signature: wrapped access method for slot `scale` of slot `param`.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

Package `mvtnorm`

Examples

```r
new("MVtDistribution") ## better use generating function MVtDistribution()
```
plot-methods

Description

plot-methods

Usage

plot(x, y, ...)
S4 method for signature 'SphericalDistribution,missing'
plot(x, Nsim = getdistrEllipseOption("Nsim"), ...,
 withED = getdistrEllipseOption("withED"),
 lwd.Ed = getdistrEllipseOption("lwd.Ed"),
 col.Ed = getdistrEllipseOption("col.Ed"),
 withMean = getdistrEllipseOption("withMean"),
 cex.mean = getdistrEllipseOption("cex.mean"),
 pch.mean = getdistrEllipseOption("pch.mean"),
 col.mean = getdistrEllipseOption("col.mean"))
S4 method for signature 'MultivarMixingDistribution,missing'
plot(x, Nsim = getdistrEllipseOption("Nsim"), ...,
 withED = getdistrEllipseOption("withED"),
 lwd.Ed = getdistrEllipseOption("lwd.Ed"),
 col.Ed = getdistrEllipseOption("col.Ed"),
 withMean = getdistrEllipseOption("withMean"),
 cex.mean = getdistrEllipseOption("cex.mean"),
 pch.mean = getdistrEllipseOption("pch.mean"),
 col.mean = getdistrEllipseOption("col.mean"))
lwd.Ed = getdistrEllipseOption("lwd.Ed"),
col.Ed = getdistrEllipseOption("col.Ed"),
withMean = getdistrEllipseOption("withMean"),
cex.mean = getdistrEllipseOption("cex.mean"),
pch.mean = getdistrEllipseOption("pch.mean"),
col.mean = getdistrEllipseOption("col.mean"))

Arguments

x object of class "SphericalDistribution" distribution to be plotted
y missing
Nsim number of (simulated) points to be plotted.
withED logical; shall principal axes of the contour ellipsoid be plot in (for each panel)?
lwd.Ed line width of principal axes (for each panel).
col.Ed color of principal axes (for each panel).
withMean logical; shall mean be plot in (for each panel)?
cex.mean size of the mean symbol (for each panel).
pch.mean mean symbol (for each panel).
col.mean color of the mean symbol (for each panel).
... additional arguments for plot — see plot.default, plot.stepfun

Details

Using pairs, plots all pairs of coordinates of the object, using simulated values. Any parameters of pairs may be passed on to this particular plot method.

See Also

pairs, plot.plot.default, plot.stepfun, par

Examples

E0 <- matrix(c(2,1,1,4),2,2) %*% EllipticalDistribution() + c(2,1)
E1 <- matrix(c(3,2,2,4),2,2) %*% EllipticalDistribution(radistr = exp(Binom(10, .8)))
plot(E0)
plot(E1, withED=FALSE, Nsim=5000)
mylist <- MultivarMixingDistribution(E0, E1, mixCoeff=c(1/4, 3/4))
plot(mylist)
SphericalDistribution

Generating function for SphericalDistribution-class

Description

Generates an object of class "SphericalDistribution".

Usage

SphericalDistribution(radDistr = sqrt(Chisq(df=dim)), dim = 2,
 p = NULL, q = NULL)

Arguments

radDistr an object of class UnivariateDistribution with positive support, i.e. \(p(radDistr)(0) = 0 \); the radial distribution.

dim positive integer: dimension of the distribution.

p optional: \(p \)-slot of the corresponding distribution;

q optional: \(q \)-slot of the corresponding distribution;

Value

Object of class "SphericalDistribution"

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

SphericalDistribution-class

Examples

E0 <- SphericalDistribution()
plot(E0)
E1 <- diag(1,2)%*%E0+c(1,2)
plot(E1)
E(E1)
var(E1)
SphericalDistribution-class

Spherical distribution class

Description

Class SphericalDistribution implements general spherically symmetric distributions, i.e. starting from a random variable L distributed according to a univariate distribution radDistr with positive support serving as radial distribution, and an independent random variable U distributed uniformly on the \(\dim \) dimensional sphere, this is the distribution of LU.

Objects from the Class

Objects could in principle be created by calls to new, but more frequently you would create them via the generating function SphericalDistribution.

Slots

- **img** Object of class "Reals".
- **param** Object of class "SphericalParameter".
- **r** function with argument \(n \); random number generator
- **d** optional function; in case it exists: the density of the distribution
- **p** optional function; in case it is non-null: the cdf of the distribution evaluated on rectangles, i.e. if a random variable \(X \) is distributed according to an object of class "SphericalDistribution", for \(q \) a matrix of dimension \(d \times n \) \(p(\text{object})(q) \) returns, for each of the \(n \) columns \(P(X_i \leq q_i, i = 1, \ldots, d) \).
- **q** optional function; in case it is non-null: the quantile of the distribution evaluated on rectangles, i.e. if a random variable \(X \) is distributed according to an object of class "SphericalDistribution", for \(p \) a vector of length \(n \), returns, for each of the \(n \) components the infimal number \(q_j \) such that \(P(X_i \leq q_j, i = 1, \ldots, d) \geq p_j \).
- **radDistr** an object of class UnivariateDistribution with positive support, i.e. \(p(\text{radDistr})(\emptyset) = \emptyset \); the radial distribution.
- **.withArith** logical: used internally to issue warnings as to interpretation of arithmetics
- **.withSim** logical: used internally to issue warnings as to accuracy
- **.logExact** logical: used internally to flag the case where there are explicit formulae for the log version of density, cdf, and quantile function
- **.lowerExact** logical: used internally to flag the case where there are explicit formulae for the lower tail version of cdf and quantile function
- **Symmetry** object of class "SphericalSymmetry" about center \(\text{loc} \); used internally to avoid unnecessary calculations.

Extends

Class "MultivariateDistribution", directly.
Class "Distribution", by class "MultivariateDistribution".
Methods

dimension signature(object = "SphericalDistribution"): returns the dimension of the distribution.

dim signature(object = "SphericalDistribution"): synonym to dimension.

location signature(object = "SphericalDistribution"): helper function to have the same interface as class "EllipticalDistribution"; always returns 0 (in the respective dimension).

scale signature(object = "SphericalDistribution"): helper function to have the same interface as class "EllipticalDistribution"; always returns the unit matrix (in the respective dimension).

radDistr signature(object = "SphericalDistribution"): access method for slot radDistr.

rRd signature(object = "SphericalDistribution"): wrapped access method for slot r of slot radDistr. From version 2.7 on, replaces defunct r.Rd to avoid clashes with S3-method inheritance.

dRd signature(object = "SphericalDistribution"): wrapped access method for slot d of slot radDistr. From version 2.7 on, replaces defunct d.Rd to avoid clashes with S3-method inheritance.

pRd signature(object = "SphericalDistribution"): wrapped access method for slot p of slot radDistr. From version 2.7 on, replaces defunct p.Rd to avoid clashes with S3-method inheritance.

qRd signature(object = "SphericalDistribution"): wrapped access method for slot q of slot radDistr. From version 2.7 on, replaces defunct q.Rd to avoid clashes with S3-method inheritance.

plotRd signature(x = "SphericalDistribution"): utility; calls plot for slot radDistr. From version 2.6 on, replaces deprecated plot.Rd to avoid clashes with S3-method inheritance.

plot signature(x = "SphericalDistribution", y = "missing"): plot for an spherically symmetric distribution; see `plot-methods`.

show signature(object = "SphericalDistribution"): show method for spherically symmetric distributions.

showobj signature(object = "SphericalDistribution"): showobj method for spherically symmetric distributions.

E signature(object = "SphericalDistribution", fun = "missing", cond = "missing"): expectation of an elliptically symmetric distribution; exact.

var signature(x = "SphericalDistribution"): expectation of an elliptically symmetric distribution; exact.

coerce signature(from = "SphericalDistribution", to = "EllipticalDistribution"): create a EllipticalDistribution object from a spherically symmetric distribution.

+ signature(e1 = "SphericalDistribution", e2 = "numeric"): affine linear transformation; exact.

- signature(e1 = "SphericalDistribution", e2 = "numeric"): affine linear transformation; exact.
- signature(e1 = "SphericalDistribution", e2 = "missing"): affine linear transformation; exact.
* signature(e1 = "SphericalDistribution", e2 = "numeric"): affine linear transformation; exact.
+ signature(e1 = "numeric", e2 = "SphericalDistribution"): affine linear transformation; exact.
- signature(e1 = "numeric", e2 = "SphericalDistribution"): affine linear transformation; exact.
* signature(e1 = "numeric", e2 = "SphericalDistribution"): affine linear transformation; exact.
%*% signature(e1 = "numeric", e2 = "SphericalDistribution"): affine linear transformation; exact.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

new("SphericalDistribution") ## better use SphericalDistribution()
Index

*Topic distribution
 distrEllipseMASK, 5
 distrEllipseoptions, 6
 EllipticalDistribution, 7
 EllipticalDistribution-class, 8
 EllipticalParameter-class, 10
 MultivarDistrList, 11
 MultivarDistrList-class, 12
 MultivarMixingDistribution, 13
 MultivarMixingDistribution-class, 14
 MVNormDistribution, 16
 MVNormDistribution-class, 17
 MVNormParameter-class, 18
 MvtDistribution, 19
 MvtDistribution-class, 20
 MvtParameter-class, 21
 plot-methods, 22
 SphericalDistribution, 24
 SphericalDistribution-class, 25

*Topic documentation
 distrEllipseMASK, 5

*Topic hplot
 plot-methods, 22

*Topic list
 MultivarDistrList, 11
 MultivarDistrList-class, 12
 MultivarMixingDistribution, 13

*Topic methods
 plot-methods, 22

*Topic misc
 distrEllipse-defunct, 4

*Topic models
 EllipticalParameter-class, 10
 MVNormParameter-class, 18
 MvtParameter-class, 21

*Topic package
 distrEllipse-package, 2

*Topic programming
 distrEllipseMASK, 5
 EllipticalDistribution, numeric-method (EllipticalDistribution-class), 8
 SphericalDistribution, numeric-method (SphericalDistribution-class), 25
 numeric, SphericalDistribution-method (SphericalDistribution-class), 25
 EllipticalDistribution, numeric-method (EllipticalDistribution-class), 8
 SphericalDistribution, numeric-method (SphericalDistribution-class), 25
 numeric, SphericalDistribution-method (SphericalDistribution-class), 25
 SphericalDistribution, missing-method (SphericalDistribution-class), 25
 SphericalDistribution, numeric-method (SphericalDistribution-class), 25
 numeric, SphericalDistribution-method (SphericalDistribution-class), 25
 logExact, MultivarMixingDistribution-method (MultivarMixingDistribution-class), 14
 lowerExact, MultivarMixingDistribution-method (MultivarMixingDistribution-class), 14
 EllipticalDistribution-method (EllipticalDistribution-class), 8
 SphericalDistribution-method (SphericalDistribution-class), 25
INDEX

25
cex.mean (distrEllipseoptions), 6
c coerce, EllipticalDistribution, UnivariateDistribution
 (EllipticalDistribution-class), 8
coerce, MultivariateDistribution, MultivarDistList
 (MultivarDistList-class), 12
coerce, SphericalDistribution, EllipticalDistribution
 (EllipticalDistribution-class), 25
c coerce, UnivariateDistribution, EllipticalDistribution
 (EllipticalDistribution-class), 8
col.Ed (distrEllipseoptions), 6
col.mean (distrEllipseoptions), 6
cconvNewVersion, 15
d.r.d (distrEllipse-defunct), 4
Defunct, 5
df, MVtDistribution-method
 (MVtDistribution-class), 20
df, MVtParameter-method
 (MVtParameter-class), 21
dim, MultivarDistList-method
 (MultivarDistList-class), 12
dim, MultivarMixingDistribution-method
 (MultivarMixingDistribution-class), 14
dim, SphericalDistribution-method
 (SphericalDistribution-class), 25
dimension, MultivarDistList-method
 (MultivarDistList-class), 12
dimension, MultivarMixingDistribution-method
 (MultivarMixingDistribution-class), 14
dimension, SphericalDistribution-method
 (SphericalDistribution-class), 25
distrEllipse (distrEllipse-package), 2
distrEllipse-defunct, 4
distrEllipse-package, 2
distrEllipseMASK, 5
distrEllipseoptions, 4, 6
dmvt, 20
dRd (SphericalDistribution-class), 25
dRd, SphericalDistribution-method
 (SphericalDistribution-class),
ed (distrEllipseoptions), 6
convRnewversion, 15
dNrd (distrEllipse-defunct), 4
defunct, 5
dmvt, 20
E, 15
distrEllipse, function, missing-method
 (EllipticalDistribution-class), 8
distrEllipse, EllipticalDistribution, missing, missing-method
 (EllipticalDistribution-class), 8
distrEllipse, EllipticalDistribution, multivar, missing-method
 (EllipticalDistribution-class), 8
E, EllipticalDistribution, multivar, missing-method
 (EllipticalDistribution-class), 8
E, EllipticalDistribution, missing, missing-method
 (EllipticalDistribution-class), 8
distrEllipseMask, 5
distrEllipseOptions, 4, 6
dRd (SphericalDistribution-class), 25
dRd, SphericalDistribution-method
 (SphericalDistribution-class), 25
dRd, SphericalDistribution-method
 (SphericalDistribution-class), 25
dRd, SphericalDistribution-method
 (SphericalDistribution-class), 25
dRd, SphericalDistribution-method
 (SphericalDistribution-class), 25
lwd.Ed (distrEllipseoptions), 6
INDEX

MASKING (distrEllipseMASK), 5
mean (MVNormParameter-class), 18
mean, MVNormDistribution-method
 (MVNormDistribution-class), 17
mean, MVNormParameter-method
 (MVNormParameter-class), 18
mixCoeff
 (MultivarMixingDistribution-class), 14
mixCoeff, MultivarMixingDistribution-method
 (MultivarMixingDistribution-class), 14
mixCoeff-methods
 (MultivarMixingDistribution-class), 14
mixCoeff<-
 (MultivarMixingDistribution-class), 14
mixCoeff<-, MultivarMixingDistribution-method
 (MultivarMixingDistribution-class), 14
mixCoeff<--methods
 (MultivarMixingDistribution-class), 14
mixDistr
 (MultivarMixingDistribution-class), 14
mixDistr, MultivarMixingDistribution-method
 (MultivarMixingDistribution-class), 14
mixDistr-methods
 (MultivarMixingDistribution-class), 14
mixDistr<-
 (MultivarMixingDistribution-class), 14
mixDistr<-, MultivarMixingDistribution-method
 (MultivarMixingDistribution-class), 14
mixDistr<--methods
 (MultivarMixingDistribution-class), 14
MultivarDistrList, 11, 11, 12
MultivarDistrList-class, 12
MultivarMixingDistribution, 13, 14
MultivarMixingDistribution-class, 14
MVDistrList-class
 (MultivarDistrList-class), 12
MVNorm (MVNormDistribution), 16
MVNormDistribution, 16, 17
MVNormDistribution-class, 17
MVNormParameter-class, 18
Mvt (MvtDistribution), 19
MvtDistribution, 19, 20
MvtDistribution-class, 20
MvtParameter-class, 21
ncp, MvtDistribution-method
 (MvtDistribution-class), 20
ncp, MvtParameter-method
 (MvtParameter-class), 21
Nsim (distrEllipseoptions), 6
onlytypeStartupMessages, 3
options, 7
p.rd (distrEllipse-defunct), 4
pairs, 23
par, 23
pch.mean (distrEllipseoptions), 6
plot, 23
plot (plot-methods), 22
plot, MultivarMixingDistribution, missing-method
 (plot-methods), 22
plot, SphericalDistribution, missing-method
 (plot-methods), 22
plot-methods, 22
plot.default, 23
plot.rd (distrEllipse-defunct), 4
plot.stepfun, 23
plotRd (SphericalDistribution-class), 25
plotRd, SphericalDistribution-method
 (SphericalDistribution-class), 25
pmvnorm, 17
pmvt, 20
q.rd (distrEllipse-defunct), 4
qmvnorm, 17
qmvt, 20
qRd (SphericalDistribution-class), 25
qRd, SphericalDistribution-method
 (SphericalDistribution-class), 25
INDEX

r.rd(distrEllipse-defunct), 4
radDistr(SphericalDistribution-class), 25
radDistr,SphericalDistribution-method
(SphericalDistribution-class), 25
radDistr<-(SphericalDistribution-class), 25
radDistr<-, SphericalDistribution-method
(SphericalDistribution-class), 25
rRd(SphericalDistribution-class), 25
rRd,SphericalDistribution-method
(SphericalDistribution-class), 25
scale(EllipticalParameter-class), 10
scale, EllipticalDistribution-method
(EllipticalDistribution-class), 8
scale, EllipticalParameter-method
(EllipticalParameter-class), 10
scale, SphericalDistribution-method
(SphericalDistribution-class), 25
scale<-(EllipticalParameter-class), 10
scale<-, EllipticalDistribution-method
(EllipticalDistribution-class), 8
scale<-, EllipticalParameter-method
(EllipticalParameter-class), 10
setIs, 12
show, MultivarMixingDistribution-method
(MultivarMixingDistribution-class), 14
show, SphericalDistribution-method
(SphericalDistribution-class), 25
showObj, MultivarMixingDistribution-method
(MultivarMixingDistribution-class), 14
showObj, SphericalDistribution-method
(SphericalDistribution-class), 25
sigma, MVNormParameter-method
(MVNormParameter-class), 18
sigma, MVtDistribution-method
(MVtDistribution-class), 20
sigma, MVtParameter-method
(MVtParameter-class), 21
SphericalDistribution, 8, 24, 25
SphericalDistribution-class, 25
support, MultivarMixingDistribution-method
(MultivarMixingDistribution-class), 14
suppressStartupMessages, 3
Symmetry, MultivarMixingDistribution-method
(MultivarMixingDistribution-class), 14
var, EllipticalDistribution-method
(EllipticalDistribution-class), 8
var, MultivarMixingDistribution-method
(MultivarMixingDistribution-class), 14
var, SphericalDistribution-method
(SphericalDistribution-class), 25
withED(distrEllipseoptions), 6
withMean(distrEllipseoptions), 6
sigma, MVNormParameter-method
(MVNormParameter-class), 18
sigma, MVNormDistribution-method
(MVNormDistribution-class), 17