Package ‘earth’

January 3, 2019

Version 4.7.0
Title Multivariate Adaptive Regression Splines
Maintainer Stephen Milborrow <milbo@sonic.net>
Depends R (>= 3.5.0), plotmo (>= 3.5.1), TeachingDemos (>= 2.10)
Suggests gam (>= 1.16), mgcv (>= 1.8-26), mda (>= 0.4-10), MASS (>= 7.3-51)
Description Build regression models using the techniques in Friedman's papers "Fast MARS" and "Multivariate Adaptive Regression Splines" <doi:10.1214/aos/1176347963>.
(The term "MARS" is trademarked and thus not used in the name of the package.)
License GPL-3
LazyData yes
URL http://www.milbo.users.sonic.net/earth
Repository CRAN
Date/Publication 2019-01-03 16:20:09 UTC
RoxygenNote 5.0.1
NeedsCompilation yes

R topics documented:

contr.earth.response ... 2
earth ... 3
earth.object .. 11
etitanic ... 16
evimp ... 18
format.earth ... 19
mars.to.earth ... 22
Description

Contrasts function for factors in the earth response. For internal use by earth.

Usage

contr.earth.response(x, base, contrasts)

Arguments

x a factor
base unused
contrasts unused

Value

Returns a diagonal matrix. An example for a 3 level factor with levels A, B, and C:

```
A B C
A 1 0 0
B 0 1 0
C 0 0 1
```

Note

Earth uses this function internally. You shouldn’t need it. It is made publicly available only because it seems that is necessary for model.matrix.

See Also

contrasts
Description

Build a regression model using the techniques in Friedman’s papers "Multivariate Adaptive Regression Splines" and "Fast MARS".

See the package vignette “Notes on the earth package”.

Usage

```r
## S3 method for class 'formula'
earth(formula = stop("no 'formula' argument"), data = NULL,
       weights = NULL, wp = NULL, subset = NULL,
       na.action = na.fail,
       pmethod = c("backward", "none", "exhaustive", "forward", "seqrep", "cv"),
       keepxy = FALSE, trace = 0, glm = NULL, degree = 1, nprune = NULL,
       nfold=0, ncross=1, stratify=TRUE,
       varmod.method = "none", varmod.exponent = 1,
       varmod.conv = 1, varmod.clamp = .1, varmod.minspan = -3,
       Scale.y = (NCOL(y)==1), ...)  

## Default S3 method:
earth(x = stop("no 'x' argument"), y = stop("no 'y' argument"),
       weights = NULL, wp = NULL, subset = NULL,
       na.action = na.fail,
       pmethod = c("backward", "none", "exhaustive", "forward", "seqrep", "cv"),
       keepxy = FALSE, trace = 0, glm = NULL, degree = 1, nprune = NULL,
       nfold=0, ncross=1, stratify=TRUE,
       varmod.method = "none", varmod.exponent = 1,
       varmod.conv = 1, varmod.clamp = .1, varmod.minspan = -3,
       Scale.y = (NCOL(y)==1), ...)  

## S3 method for class 'fit'
earth(x = stop("no 'x' argument"), y = stop("no 'y' argument"),
       weights = NULL, wp = NULL, subset = NULL,
       na.action = na.fail, offset = NULL,
       pmethod = c("backward", "none", "exhaustive", "forward", "seqrep", "cv"),
       keepxy = FALSE, trace = 0, glm = NULL, degree = 1,
       penalty = if(degree > 1) 3 else 2,
       nk = min(200, max(20, 2 * ncol(x))) + 1,
       thresh = 0.001, minspan = 0, endspan = 0,
       newvar.penalty = 0, fast.k = 20, fast.beta = 1,
       linpreds = FALSE, allowed = NULL,
       nprune = NULL, Object = NULL,
       Scale.y = (NCOL(y)==1), Adjust.endspan = 2, Auto.linpreds = TRUE,
```
Arguments

To start off, look at the arguments formula, data, x, y, nk, degree, and trace. If the response is binary or a factor, consider using the glm argument. For cross validation, use the nfold argument. For prediction intervals, use the varmod.method argument.

Most users will find that the above arguments are all they need, plus in some cases keepxy and np.prune. Unless you are a knowledgeable user, it's best not subvert the standard algorithm by toying with tuning parameters such as thresh, penalty, and endspan.

Model formula.

\textbf{formula}
Data frame for formula.

\textbf{x}
Matrix or dataframe containing the independent variables.

\textbf{y}
Vector containing the response variable, or, in the case of multiple responses, a matrix or dataframe whose columns are the values for each response.

\textbf{subset}
Index vector specifying which cases to use, i.e., which rows in x to use. Default is NULL, meaning all.

\textbf{weights}
Case weights. Default is NULL, meaning no case weights. If specified, weights must have length equal to nrow(x) before applying subset. Zero weights are converted to a very small nonzero value.

\textbf{wp}
Response weights. Default is NULL, meaning no response weights. If specified, wp must have an element for each column of y (after \texttt{factors} in y, if any, have been expanded). Zero weights are converted to a very small nonzero value.

\textbf{na.action}
NA action. Default is \texttt{na.fail}, and only \texttt{na.fail} is supported.

\textbf{offset}
Offset term passed from the formula in \texttt{earth.formula}.

\textbf{keepxy}
Default is FALSE. Set to TRUE to retain the following in the returned value: x and y (or data), subset, and weights. The function \texttt{update.earth} and friends will use these if present instead of searching for them in the environment at the time \texttt{update.earth} is invoked.

When the \texttt{nfold} argument is used with \texttt{keepxy}=TRUE, \texttt{earth} keeps more data and calls predict.earth multiple times to generate \texttt{cv.oof.rsq.tab} and \texttt{cv.infold.rsq.tab} (see the \texttt{cv.} arguments in the “Value” section below). It therefore makes cross-validation significantly slower.

\textbf{trace}
Trace \texttt{earth}'s execution. Values:

0 (default) no tracing

.3 variance model (the varmod.method arg)

.5 cross validation (the \texttt{nfold} arg)

1 overview

2 forward pass
3 pruning
4 model mats summary, pruning details
5 full model mats, internal details of operation

glm
NULL (default) or a list of arguments to pass on to `glm`. See the documentation of `glm` for a description of these arguments. See “Generalized linear models” in the vignette. Example:
```
earth(survived~, data=titanic, degree=2, glm=list(family=binomial))
```

The following arguments are for the forward pass.

degree
Maximum degree of interaction (Friedman’s \(mi \)). Default is 1, meaning build an additive model (i.e., no interaction terms).

penalty
Generalized Cross Validation (GCV) penalty per knot. Default is \(2 \) if \(degree>1 \) or 2 otherwise. Simulation studies suggest values in the range of about 2 to 4. The FAQ section in the vignette has some information on GCVs.
Special values (for use by knowledgeable users): The value \(0 \) penalizes only terms, not knots. The value \(-1\) means no penalty, so GCV = RSS/n.

nk
Maximum number of model terms before pruning, i.e., the maximum number of terms created by the forward pass. Includes the intercept.
The actual number of terms created by the forward pass will often be less than nk because of other stopping conditions. See “Termination conditions for the forward pass” in the vignette.
The default is semi-automatically calculated from the number of predictors but may need adjusting.

thresh
Forward stepping threshold. Default is \(0.001 \). This is one of the arguments used to decide when forward stepping should terminate: the forward pass terminates if adding a term changes RSq by less than `thresh`. See “Termination conditions for the forward pass” in the vignette.

minspan
Minimum number of observations between knots. (This increases resistance to runs of correlated noise in the input data.)
The default `minspan`=0 is treated specially and means calculate the `minspan` internally, as per Friedman’s MARS paper section 3.8 with \(alpha = 0.05 \). Set `trace`=2 to see the calculated value.
Use `minspan`=1 and `endspan`=1 to consider all x values.
Negative values of `minspan` specify the maximum number of knots per predictor. These will be equally spaced. For example, `minspan`=-3 allows three evenly spaced knots for each predictor. As always, knots that fall in the endzones specified by `endspan` will be ignored.

endspan
Minimum number of observations before the first and after the final knot.
The default `endspan`=0 is treated specially and means calculate the `endspan` internally, as per the MARS paper equation 45 with \(alpha = 0.05 \). Set `trace`=2 to see the calculated value.
Be wary of reducing `endspan`, especially if you plan to make predictions beyond or near the limits of the training data. Overfitting near the edges of training data is much more likely with a small `endspan`. The model’s RSq and GRsq won’t indicate when this overfitting is occurring. (A `plotmo` plot can help: look for sharp hinges at the edges of the data.) See also the `Adjendspan` argument.
newvar.penalty
Penalty for adding a new variable in the forward pass (Friedman’s γ, equation 74 in the MARS paper). Default is 0, meaning no penalty for adding a new variable. Useful non-zero values typically range from about 0.01 to 0.2 and sometimes higher — you will need to experiment.
A word of explanation. With the default newvar.penalty=0, if two variables have nearly the same effect (e.g. they are collinear), at any step in the forward pass earth will arbitrarily select one or the other (depending on noise in the sample). Both variables can appear in the final model, complicating model interpretation. On the other hand with a non-zero newvar.penalty, the forward pass will be reluctant to add a new variable — it will rather try to use a variable already in the model, if that does not affect RSq too much. The resulting final model may be easier to interpret, if you are lucky. There will often be a small performance hit (a worse GCV).

fast.k
Maximum number of parent terms considered at each step of the forward pass. (This speeds up the forward pass. See the Fast MARS paper section 3.0.) Default is 20. A value of 0 is treated specially (as being equivalent to infinity), meaning no Fast MARS. Typical values, apart from 0, are 20, 10, or 5. In general, with a lower fast.k (say 5), earth is faster; with a higher fast.k, or with fast.k disabled (set to 0), earth builds a better model. However, because of random variation this general rule often doesn’t apply.

fast.beta
Fast MARS ageing coefficient, as described in the Fast MARS paper section 3.1. Default is 1. A value of 0 sometimes gives better results.

linpreds
Index vector specifying which predictors should enter linearly, as in lm. The default is FALSE, meaning predictors enter in the standard MARS fashion, i.e., in hinge functions.

The linpreds argument does not specify that a predictor must enter the model; only that if it enters, it enters linearly. See “The linpreds argument” in the vignette.

See also the Auto.linpreds argument below (which describes how earth will automatically treat a predictor as linear under certain conditions).

Details: A predictor’s index in linpreds is the column number in the input matrix x (after factors have been expanded).
linpreds=TRUE makes all predictors enter linearly (the TRUE gets recycled).
linpreds may be a character vector e.g. linpreds=c("wind", "vis"). Note: grep is used for matching. Thus "wind" will match all variables that have "wind" in their names. Use "wind$" to match only the variable named "wind".

allowed
Function specifying which predictors can interact and how. Default is NULL, meaning all standard MARS terms are allowed.
During the forward pass, earth calls the allowed function before considering a term for inclusion; the term can go into the model only if the allowed function returns TRUE. See “The allowed argument” in the vignette.

The following arguments are for the pruning pass.

pmethod
Pruning method. One of: backward none exhaustive forward seqrep cv. Default is "backward".
Specify `pmethod="cv"` to use cross-validation to select the number of terms. This selects the number of terms that gives the maximum mean out-of-fold RSq on the fold models. Requires the `nfold` argument.

Use "none" to retain all the terms created by the forward pass.

If `y` has multiple columns, then only "backward" or "none" is allowed.

Pruning can take a while if "exhaustive" is chosen and the model is big (more than about 30 terms). The current version of the `leaps` package used during pruning does not allow user interrupts (i.e., you have to kill your R session to interrupt; in Windows use the Task Manager or from the command line use `taskkill`).

nprune

Maximum number of terms (including intercept) in the pruned model. Default is NULL, meaning all terms created by the forward pass (but typically not all terms will remain after pruning). Use this to enforce an upper bound on the model size (that is less than `nk`), or to reduce exhaustive search time with `pmethod="exhaustive"`.

The following arguments are for cross validation.

nfold

Number of cross-validation folds. Default is 0, no cross validation. If greater than 1, earth first builds a standard model as usual with all the data. It then builds `nfold` cross-validated models, measuring R-Squared on the out-of-fold (left out) data each time. The final cross validation R-Squared (CVRSq) is the mean of these out-of-fold R-Squareds.

The above process of building `nfold` models is repeated `ncross` times (by default, once). Use `trace=.5` to trace cross-validation.

Further statistics are calculated if `keepxy=TRUE` or if a binomial or poisson model (specified with the `glm` argument). See “Cross validation” in the vignette.

ncross

Only applies if `nfold>1`. Number of cross-validations. Each cross-validation has `nfold` folds. Default 1.

stratify

Only applies if `nfold>1`. Default is TRUE. Stratify the cross-validation samples so that an approximately equal number of cases with a non-zero response occur in each cross validation subset. So if the response `y` is logical, the `TRUEs` will be spread evenly across folds. And if the response is a multilevel factor, there will be an approximately equal number of each factor level in each fold (because a multilevel factor response gets expanded to columns of zeros and ones, see "Factors" in the vignette). We say “approximately equal” because the number of occurrences of a factor level may not be exactly divisible by the number of folds.

The following arguments are for variance models.

varmod.method

Construct a variance model. For details, see `varmod` and the vignette “Variance models in earth”. Use `trace=.3` to trace construction of the variance model.

This argument requires `nfold` and `ncross`. (We suggest at least `ncross=30` here to properly calculate the variance of the errors — although you can use a smaller value, say 3, for debugging.)

The `varmod.method` argument should be one of "none" Default. Don’t build a variance model.

"const" Assume homoscedastic errors.
“lm” Use lm to estimate standard deviation as a function of the predicted response.
“r1m” Use rlm.
“earth” Use earth.
“gam” Use gam. This will use either gam or the mgcv package, whichever is loaded.
“power” Estimate standard deviation as intercept + coef * predicted.response^exponent, where intercept, coef, and exponent will be estimated by nls. This is equivalent to varmod.method="lm" except that exponent is automatically estimated instead of being held at the value set by the varmod.exponent argument.
“power0” Same as “power” but no intercept (offset) term.
“x.lm”, “x.rlm”, “x.earth”, “x.gam” Like the similarly named options above, but estimate standard deviation by regressing on the predictors x (instead of the predicted response). A current implementation restriction is that “x.gam” allows only models with one predictor (x must have only one column).

varmod.exponent

Power transform applied to the rhs before regressing the absolute residuals with the specified varmod.method. Default is 1.
For example, with varmod.method="lm", if you expect the standard deviation to increase linearly with the mean response, use varmod.exponent=1. If you expect the standard deviation to increase with the square root of the mean response, use varmod.exponent=.5 (where negative response values will be treated as 0, and you will get an error message if more than 20% of them are negative).

varmod.conv

Convergence criterion for the Iteratively Reweighted Least Squares used when creating the variance model.
Iterations stop when the mean value of the coefficients of the residual model change by less than varmod.conv percent. Default is 1 percent.
Negative values force the specified number of iterations, e.g. varmod.conv=-2 means iterate twice.
Positive values are ignored for varmod="const" and also currently ignored for varmod="earth" (these are iterated just once, the same as using varmod.conv=-1).

varmod.clamp

The estimated standard deviation of the main model errors is forced to be at least a small positive value, which we call min.sd. This prevents negative or absurdly small estimated standard deviations. Clamping takes place in predict.varmod, which is called by predict.earth when estimating prediction intervals. The value of min.sd is determined when building the variance model as min.sd = varmod.clamp * mean(sd)
The default varmod.clamp is 0.1.

varmod.minspan

Only applies when varmod.method="earth" or "x.earth". This is the minsap used in the internal call to earth when creating the variance model (not the main earth model).
Default is -3, i.e., three evenly spaced knots per predictor. Residuals tend to be very noisy, and allowing only this small number of knots helps prevent overfitting.

The following arguments are for internal or advanced use.

Object

Earth object to be updated, for use by update.earth.
Scale.y

Scale y internally in the forward pass for better numeric stability. This is in-
visible to the user, up to numerical differences. Scaling here means subtract the
mean and divide by the standard deviation. Default is $\text{NCOL}(y) = 1$, i.e., scale y
unless y has multiple columns.

Adjust.endspan

In interaction terms, endspan gets multiplied by this value. This reduces the
possibility of an overfitted interaction term supported by just a few cases on the
boundary of the predictor space (as sometimes seen in our simulation studies).
The default is 2. Use `Adjust.endspan=1` for compatibility with old versions of
earth.

Auto.linpreds

Default is TRUE, which works as follows (see example):

At any step in the forward pass, if earth discovers that the best knot for the best
predictor is at the predictor minimum (in the training data), then earth adds the
predictor to the model as a linear “basis function” (with no hinge). Compare the
following basis functions (printed in bold) for an example such predictor x:

- $\text{Auto.linpreds=TRUE (default): } x$
- $\text{Auto.linpreds=FALSE: } \max(x-99, \ 0)$ where 99 is the minimum x in the training data.

Using `Auto.linpreds=FALSE` always forces a knot, even when the knot is at the
minimum value of the variable. This ensures that the basis functions are always
expressed as hinge functions (and will always be non-negative).

Note that `Auto.linpreds` affects only how the model behaves outside the training data. Thus `predict.earth` will make the same predictions from the training data, regardless of whether the earth model was built with `Auto.linpreds` set TRUE or FALSE (up to possible differences in the size of the model caused by different GCVs because of the different forms of the terms).

Force.weights

Default is FALSE. For testing the weights argument. Force use of the code for handling weights in the earth code, even if weights=NULL or all the weights are the same. This will not necessarily generate an identical model, primarily because the non-weighted code requires some tests for numerical stability that can sometimes affect knot selection.

Use.beta.cache

Default is TRUE. Using the “beta cache” takes a little more memory but is faster
(by 20% and often much more for large models). The beta cache uses $nk \times nk \times \text{ncol}(x) \times \text{sizeof(double)}$ bytes. (The beta cache is an innovation in this implementation of MARS and does not appear in Friedman’s papers. It is not related to the `fast.beta` argument. Certain regression coefficients in the forward pass can be saved and re-used, thus saving recalculation time.)

Force.xtx.prune

Default is FALSE. This argument pertains to subset evaluation in the pruning pass. By default, if y has a single column then earth calls the `leaps` routines; if y has multiple columns then earth calls `EvalSubsetsUsingXtx`. The `leaps` routines are numerically more stable but do not support multiple responses (`leaps` is based on the QR decomposition and `EvalSubsetsUsingXtx` is based on the inverse of $X'X$). Setting `Force.xtx.prune=TRUE` forces use of `EvalSubsetsUsingXtx`, even if y has a single column.

Get.leverages

Default is TRUE unless the model has more than 100 thousand cases. The leverages are the diagonal hat values for the linear regression of y on bx. (The leverages are needed only for certain model checks, for example when `plotres` is called with `versus=4`).
Details: This argument was introduced to reduce peak memory usage. When \(n \gg p \), memory use peaks when earth is calculating the leverages.

Exhaustive.tol Default 1e-10. Applies only when `pmethod="exhaustive"`. If the reciprocal of the condition number of \(bx \) is less than `Exhaustive.tol`, earth forces `pmethod="backward"`. See “XHAUST returned error code -999” in the vignette.

... Dots are passed on to `earth.fit`.

Value

An S3 model of class "earth". See `earth.object` for a complete description.

Author(s)

Stephen Milborrow, derived from `mda::mars` by Trevor Hastie and Robert Tibshirani.

The approach used for GLMs was motivated by work done by Jane Elith and John Leathwick (a representative paper is given below).

The `evimp` function uses ideas from Max Kuhn’s `caret` package https://CRAN.R-project.org/package=caret.

Parts of Thomas Lumley’s `leaps` package have been incorporated into earth, so earth can directly access Alan Miller’s Fortran functions without going through hidden functions in the `leaps` package.

References

The Wikipedia article is recommended for an elementary introduction. The primary references are the Friedman papers, but readers may find the MARS section in Hastie, Tibshirani, and Friedman a more accessible introduction. Faraway takes a hands-on approach, using the `ozone` data to compare `mda::mars` with other techniques. (If you use Faraway’s examples with `earth` instead of `mars`, use `$bx` instead of `$x`, and check out the book’s errata.) Friedman and Silverman is recommended background reading for the MARS paper. Earth’s pruning pass uses code from the `leaps` package which is based on techniques in Miller.

Faraway (2005) *Extending the Linear Model with R* http://www.maths.bath.ac.uk/~jjf23

http://projecteuclid.org/euclid.aos/1176347963
doi: 10.1214/aos/1176347963

Wikipedia article on MARS. http://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines

See Also

Start with summary.earth, plot.earth, evimp, and plotmo.

Please see the main package vignette “Notes on the earth package”. The vignette can also be downloaded from http://www.milbo.org/doc/earth-notes.pdf.

The vignette “Variance models in earth” is also included with the package. It describes how to build variance models and generate prediction intervals for earth models.

Examples

```r
earth.mod <- earth(Volume ~ ., data = trees)
plotmo(earth.mod)
summary(earth.mod, digits = 2, style = "pmax")
```

== earth.object ==

An earth object

Description

The object returned by the `earth` function.

This is an S3 model of class “earth”. It is a list with the components listed below.

Term refers to a term created during the forward pass (each line of the output from `format.earth` is a term). Term number 1 is always the intercept.

Value

- **rss** Residual sum-of-squares (RSS) of the model (summed over all responses, if `y` has multiple columns).

- **rsq** 1 - rss/tss. R-Squared of the model (calculated over all responses, and calculated using the weights argument if it was supplied). A measure of how well the model fits the training data. Note that tss is the total sum-of-squares, `sum((y - mean(y))^2)`.

- **gcv** Generalized Cross Validation (GCV) of the model (summed over all responses). The GCV is calculated using the penalty argument. For details of the GCV calculation, see equation 30 in Friedman’s MARS paper and `earth:::get.gcv`.

grsq 1 - gcv/gcv.null. An estimate of the predictive power of the model (calculated over all responses, and calculated using the weights argument if it was supplied). gcv.null is the GCV of an intercept-only model. See “Can GRSq be negative?” in the vignette.

bx Matrix of basis functions applied to x. Each column corresponds to a selected term. Each row corresponds to a row in the input matrix x, after taking subset. See model.matrix.earth for an example of bx handling. Example bx:

\[
\begin{pmatrix}
 (\text{Intercept}) & h(\text{Girth}-12.9) & h(12.9-\text{Girth}) & h(\text{Girth}-12.9)\times h(\ldots \\
 [1,] & 1 & 0.0 & 4.6 & 0 \\
 [2,] & 1 & 0.0 & 4.3 & 0 \\
 [3,] & 1 & 0.0 & 4.1 & 0 \\
 \ldots & & & & \\
\end{pmatrix}
\]

dirs Matrix with one row per MARS term, and with with ij-th element equal to

0 if predictor j is not in term i
-1 if an expression of the form h(const - xj) is in term i
1 if an expression of the form h(xj - const) is in term i
2 if predictor j should enter term i linearly (either because specified by the linpreds argument or because earth discovered that a knot was unnecessary).

This matrix includes all terms generated by the forward pass, including those not in selected.terms. Note that here the terms may not all be in pairs, because although the forward pass add terms as hinged pairs (so both sides of the hinge are available as building blocks for further terms), it also deletes linearly dependent terms before handing control to the pruning pass. Example dirs:

\[
\begin{pmatrix}
 \text{Girth} & \text{Height} \\
 (\text{Intercept}) & 0 & 0 & \# \text{intercept} \\
 h(12.9-\text{Girth}) & -1 & 0 & \#2nd term uses Girth \\
 h(\text{Girth}-12.9) & 1 & 0 & \#3rd term uses Girth \\
 h(\text{Girth}-12.9)\times h(\text{Height}-76) & 1 & 1 & \#4th term uses Girth and Height \\
 \ldots & & & & \\
\end{pmatrix}
\]

cuts Matrix with ij-th element equal to the cut point for predictor j in term i. This matrix includes all terms generated by the forward pass, including those not in selected.terms. Note for programmers: the precedent is to use dirs for term names etc. and to only use cuts where cut information needed. Example cuts:

\[
\begin{pmatrix}
 \text{Girth} & \text{Height} \\
 (\text{Intercept}) & 0 & 0 & \# \text{intercept, no cuts} \\
 h(12.9-\text{Girth}) & 12.9 & 0 & \#2nd term has cut at 12.9 \\
 h(\text{Girth}-12.9) & 12.9 & 0 & \#3rd term has cut at 12.9 \\
 h(\text{Girth}-12.9)\times h(\text{Height}-76) & 12.9 & 76 & \#4th term has two cuts \\
 \ldots & & & & \\
\end{pmatrix}
\]

prune.terms A matrix specifying which terms appear in which pruning pass subsets. The row index of prune.terms is the model size. (The model size is the number of terms in the model. The intercept is counted as a term.) Each row is a vector of
term numbers for the best model of that size. An element is 0 if the term is not in the model, thus prune.terms is a lower triangular matrix, with dimensions nprune x nprune. The model selected by the pruning pass is at row number length(selected.terms). Example prune.terms:

[[1,1] 1 0 0 0 0 0 0 #intercept-only model
[2,1] 1 2 0 0 0 0 0 #best 2 term model uses terms 1,2
[3,1] 1 2 4 0 0 0 0 #best 3 term model uses terms 1,2,4
[4,1] 1 2 6 9 0 0 0 #and so on
...

selected.terms Vector of term numbers in the selected model. Can be used as a row index vector into cuts and dirs. The first element selected.terms[1] is always 1, the intercept.

fitted.values Fitted values. A matrix with dimensions nrow(y) x ncol(y) after factors in y have been expanded.

residuals Residuals. A matrix with dimensions nrow(y) x ncol(y) after factors in y have been expanded.

coefficients Regression coefficients. A matrix with dimensions length(selected.terms) x ncol(y) after factors in y have been expanded. Each column holds the least squares coefficients from regressing that column of y on bx. The first row holds the intercept coefficient(s).

rss.per.response A vector of the RSS for each response. Length is the number of responses, i.e., ncol(y) after factors in y have been expanded. The rss component above is equal to sum(rss.per.response).

rsq.per.response A vector of the R-Squared for each response (where R-Squared is calculated using the weights argument if it was supplied). Length is the number of responses.

gcv.per.response A vector of the GCV for each response. Length is the number of responses. The gcv component above is equal to sum(gcv.per.response).

grsq.per.response A vector of the GRSq for each response (calculated using the weights argument if it was supplied). Length is the number of responses.

rss.per.subset A vector of the RSS for each model subset generated by the pruning pass. Length is nprune. For multiple responses, the RSS is summed over all responses for each subset. The rss above is rss.per.subset[length(selected.terms)]. The RSS of an intercept-only model is rss.per.subset[1].

gcv.per.subset A vector of the GCV for each model in prune.terms. Length is nprune. For multiple responses, the GCV is summed over all responses for each subset. The gcv above is gcv.per.subset[length(selected.terms)]. The GCV of an intercept-only model is gcv.per.subset[1].

leverages Diagonal of the hat matrix (from the linear regression of the response on bx).

penalty,nk,thresh Copies of the corresponding arguments to earth.
Copies of the corresponding arguments to \texttt{earth}.

Copies of the corresponding arguments to \texttt{earth}.

Reason the forward pass terminated (an integer).

The call used to invoke \texttt{earth}.

Model frame terms. This component exists only if the model was built using \texttt{earth.formula}.

Column names of \texttt{x}, generated internally by \texttt{earth} when necessary so each column of \texttt{x} has a name. Used, for example, by \texttt{predict.earth} to name columns if necessary.

Original column names of \texttt{x}.

Levels of \texttt{y} if \texttt{y} is a \texttt{factor}, \texttt{c(FALSE,TRUE)} if \texttt{y} is \texttt{logical}, Else NULL.

The following fields appear only if \texttt{earth}’s argument keepxy is TRUE.

Copies of the corresponding arguments to \texttt{earth}. Only exist if keepxy=TRUE.

List of \texttt{glm} models. Each element is the value returned by \texttt{earth}’s internal call to \texttt{glm} for each response. Thus if there is a single response (or a single binomial pair, see “Binomial pairs” in the vignette) this will be a one element list and you access the GLM model with \texttt{earth.mod$glm.list[1]}.

GLM regression coefficients. Analogous to the \texttt{coefficients} field described above but for the GLM model(s). A matrix with dimensions length(selected.terms) x ncol(y) after factors in \texttt{y} have been expanded. Each column holds the coefficients from the GLM regression of that column of \texttt{y} on \texttt{bx}. This duplicates, for convenience, information buried in \texttt{glm.list}.

NULL unless there are paired binomial columns. A logical vector, derived internally by \texttt{earth}, or a copy the \texttt{bpairs} specified by the user in the \texttt{glm} list. See “Binomial pairs” in the vignette.

The following fields appear only if the \texttt{nfold} argument is greater than 1.

List of \texttt{earth} models, one model for each fold (ncross * nfold models). The fold models have two extra fields, icross (an integer from 1 to ncross) and ifold (an integer from 1 to nfold). To save memory, lengthy fields in the fold models are removed unless you use keepxy=TRUE. The “lengthy fields” are \$bx, \$fitted.values, and \$residuals.

Vector of length ncross * nfold + 1. Number of MARS terms in the model generated at each cross-validation fold, with the final element being the mean of these.
earth.object

<table>
<thead>
<tr>
<th>cv.nvars</th>
<th>Vector of length <code>ncross * nfold + 1</code>. Number of predictors in the model generated at each cross-validation fold, with the final element being the mean of these.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cv.groups</td>
<td>Specifies which cases went into which folds. Matrix with two columns and number of rows equal to the number of cases <code>nrow(x)</code>. Elements of the first column specify the cross-validation number, <code>1:ncross</code>. Elements of the second column specify the fold number, <code>1:nfold</code>.</td>
</tr>
<tr>
<td>cv.rsq.tab</td>
<td>Matrix with <code>ncross * nfold + 1</code> rows and <code>nresponse+1</code> columns, where <code>nresponse</code> is the number of responses, i.e., <code>ncol(y)</code> after factors in <code>y</code> have been expanded. The first <code>nresponse</code> elements of a row are the <code>cv.rsq</code>'s on the out-of-fold data for each response of the model generated at that fold's fold. (A <code>cv.rsq</code> is calculated from predictions on the out-of-fold data using the best model built from the in-fold data; where “best” means the model was selected using the in-fold GCV. The R-Squareds are calculated using the <code>weights</code> argument if it was supplied. The final column holds the row mean (a weighted mean if <code>wp</code> if specified)). The final row holds the column means. The values in this final row is the mean <code>cv.rsq</code> printed by <code>summary.earth</code>.</td>
</tr>
</tbody>
</table>

Example for a single response model (where the mean column is redundant but included for uniformity with multiple response models):

```
  y  mean
fold1 0.909 0.909
fold2 0.869 0.869
fold3 0.952 0.952
fold4 0.157 0.157
fold5 0.961 0.961
mean  0.769 0.769
```

Example for a multiple response model:

```
  y1  y2  y3  mean
fold1 0.915 0.951 0.944 0.937
fold2 0.962 0.970 0.970 0.968
fold3 0.914 0.940 0.942 0.932
fold4 0.907 0.929 0.925 0.920
fold5 0.947 0.987 0.979 0.971
mean  0.929 0.955 0.952 0.946
```

cv.class.rate.tab

Like `cv.rsq.tab` but is the classification rate at each fold i.e. the fraction of classes correctly predicted. Models with discrete response only. Calculated with `thresh=0.5` for binary responses. For responses with more than two levels, the final row is the overall classification rate. The other rows are the classification rates for each level (the level versus not-the-level), which are usually higher than the overall classification rate (predicting the level versus not-the-level is easier than correctly predicting one of many levels). The `weights` argument is ignored for all cross-validation stats except R-Squareds.

cv.maxerr.tab

Like `cv.rsq.tab` but is the MaxErr at each fold. This is the signed max absolute value at each fold. Results are aggregated for the final column and final row.
using the signed max absolute value. The *signed max absolute value* is defined as the maximum of the absolute difference between the predicted and observed response values, multiplied by \(-1\) if the sign of that difference is negative.

- **cv.auc.tab** Like `cv.rsq.tab` but is the AUC at each fold. Binomial models only.
- **cv.cor.tab** Like `cv.rsq.tab` but is the cor at each fold. Poisson models only.
- **cv.deviance.tab** Like `cv.rsq.tab` but is the MeanDev at each fold. Binomial models only.
- **cv.calib.int.tab** Like `cv.rsq.tab` but is the CalibInt at each fold. Binomial models only.
- **cv.calib.slope.tab** Like `cv.rsq.tab` but is the CalibSlope at each fold. Binomial models only.
- **cv.oof.rsq.tab** Generated only if `keepxy` is TRUE or `pmethod = "cv"`. A matrix with \(n_{cross} \times n_{fold} + 1\) rows and \(\max_\text{nterms}\) columns. Each element holds an out-of-fold RSq (`oof.rsq`), calculated from predictions from the out-of-fold observations using the model built with the in-fold data. The final row is the mean over all folds. The R-Squareds are calculated using the weights argument if it was supplied.
- **cv.infold.rsq.tab** Generated only if `keepxy` is TRUE. Like `cv.oof.rsq.tab` but from predictions made on the in-fold observations.
- **cv.oof.fit.tab** Generated only if the `varmod.method` argument is used. Predicted values on the out-of-fold data. Dataframe with \(\text{nrrow(data)}\) rows and \(n_{cross}\) columns.

The following field appears only if the `varmod.method` is specified.

- **varmod** An object of class "varmod". See the `varmod` help page for a description. Only appears if the `varmod.method` argument is used.

See Also

- **earth**

etitanic

Titanic data with incomplete cases removed

Description

Titanic data with incomplete cases, passenger names, and other details removed.

Format

A data frame with 1046 observations on 6 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pclass</td>
<td>passenger class, unordered factor: 1st 2nd 3rd</td>
</tr>
<tr>
<td>survived</td>
<td>integer: 0 or 1</td>
</tr>
<tr>
<td>sex</td>
<td>unordered factor: male female</td>
</tr>
</tbody>
</table>
This dataset is included in the earth package because it is a convenient vehicle for illustrating earth’s GLM and factor handling.

The dataset was compiled by Frank Harrell and Robert Dawson: http://biostat.mc.vanderbilt.edu/twiki/pub/Main/DataSets/titanic.html
See also: http://biostat.mc.vanderbilt.edu/twiki/pub/Main/DataSets/titanic3info.txt.

For this version of the Titanic data, passenger details and incomplete cases were deleted and the name changed to etitanic to minimize confusion with other versions ("e" because it is part of the earth package).

Note that survived is an integer (it should arguably be a logical).

In this data the crew are conspicuous by their absence.

Contents of etitanic:

<table>
<thead>
<tr>
<th>pclass</th>
<th>survived</th>
<th>sex</th>
<th>age</th>
<th>sibsp</th>
<th>parch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1st</td>
<td>female</td>
<td>29.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1st</td>
<td>male</td>
<td>0.917</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1st</td>
<td>female</td>
<td>2.000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1st</td>
<td>male</td>
<td>30.000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1st</td>
<td>female</td>
<td>25.000</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1309</td>
<td>3rd</td>
<td>male</td>
<td>29.000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

How etitanic was built:

```r
load("titanic3") # from Harrell's web site
# discard name, ticket, fare, cabin, embarked, body, home.dest
etitanic <- titanic[,c(1,2,4,5,6,7)]
etitanic <- etitanic[!is.na(etitanic$age),]
save(etitanic, file="etitanic.rda")
```

References

Further details and analyses of the Titanic data may be found in:

evimp

Estimate variable importances in an earth object

Description

Estimate variable importances in an \code{earth} object

Usage

\code{evimp(object, trim=TRUE, sqrt.=TRUE)}

Arguments

- \code{object}: An \code{earth} object.
- \code{trim}: If \code{TRUE} (default), delete rows in the returned matrix for variables that don’t appear in any subsets.
- \code{sqrt.}: Default is \code{TRUE}, meaning take the \code{sqrt} of the GCV and RSS importances before normalizing to 0 to 100. Taking the square root gives a better indication of relative importances because the raw importances are calculated using a sum of squares. Use \code{FALSE} to not take the square root.

Value

This function returns a matrix showing the relative importances of the variables in the model. There is a row for each variable. The row name is the variable name, but with \code{-unused} appended if the variable does not appear in the final model.

The columns of the matrix are (not all of these are printed by \code{print.evimp}):

- \code{col}: Column index of the variable in the \code{x} argument to \code{earth}.
- \code{used}: 1 if the variable is used in the final model, else 0. Equivalently, 0 if the row name has an \code{-unused} suffix.
- \code{nsubsets}: Variable importance using the "number of subsets" criterion. Is the number of subsets that include the variable (see "Three Criteria" in the chapter on evimp in the \code{earth} vignette “Notes on the \code{earth} package”).
- \code{gcv}: Variable importance using the GCV criterion (see "Three Criteria").
- \code{gcv.match}: 1, except is 0 where the rank using the \code{gcv} criterion differs from that using the \code{nsubsets} criterion. In other words, there is a 0 for values that increase as you go down the \code{gcv} column.
- \code{rss}: Variable importance using the RSS criterion (see "Three Criteria").
- \code{rss.match}: Like \code{gcv.match} but for the \code{rss}.
The rows are sorted on the ns subsets criterion. This means that values in the ns subsets column decrease as you go down the column (more accurately, they are non-increasing). The values in the gcv and rss columns are also non-increasing, except where the gcv or rss rank differs from the ns subsets ranking.

Note

There is a chapter on evimp in the earth package vignette “Notes on the earth package”.

Acknowledgment

Thanks to Max Kuhn for the original evimp code and for helpful discussions.

See Also

`earth, plot.evimp`

Examples

```r
data(ozone1)
earth.mod <- earth(O3 ~ ., data=ozone1, degree=2)
ev <- evimp(earth.mod, trim=FALSE)
plot(ev)
print(ev)
```

format.earth

Format earth objects

Description

Return a string representing an earth expression (`summary.earth calls this function internally to display the terms of the earth model`).

Usage

```r
## S3 method for class 'earth'
format(x = stop("no 'x' argument"),
    style = "h", decomp = "anova", digits = getOption("digits"),
    use.names = TRUE, colon.char = ":", ...)
```

Arguments

- **x** An earth object. This is the only required argument.
- **style** Formatting style. One of
 - "h" (default) more compact
 - "pmax" for those who prefer it
 - "max" is the same as "pmax" but prints max rather than pmax
 - "C" C style expression with zero based indexing
 - "bf" basis function format
One of
"anova" (default) order the terms using the "anova decomposition", i.e., in increasing order of interaction
"none" order the terms as created during the earth forward pass.

digits Number of significant digits. The default is getOption(digits).

use.names One of
TRUE (default), use variable names if available.
FALSE use names of the form x[,1].

colon.char Change colons in the returned string to colon.char. Default is ",:" (no change).
Specifying colon.char="*" can be useful in some contexts to change names of the form x1:x2 to x1*x2.

... Unused, but provided for generic/method consistency.

Value

A character representation of the earth model.

If there are multiple responses, format.earth will return multiple strings.

If there are embedded GLM model(s), the strings for the GLM model(s) come after the strings for the standard earth model(s).

Note

The FAQ section in the package vignette gives precise details of the "anova" ordering.

Using format.earth, perhaps after hand editing the returned string, you can create an alternative to predict.earth. For example:

```r
as.func <- function(object, digits = 8, use.names = FALSE, ...)  
eval(parse(text=paste(  
"function(x){\n",  
"if(is.vector(x)){\n",  
"  x <- matrix(x, nrow = 1, ncol = length(x)\n",  
"  with(as.data.frame(x),\n",  
"    format(object, digits = digits, use.names = use.names, style = "pmax", ...),\n"    }\n",  
"  }\n",  
"sep = ","}))
```

```r
earth.mod <- earth(Volume ~ ., data = trees)  
my.func <- as.func(earth.mod, use.names = FALSE)  
my.func(c(10,80)) # returns 16.84  
predict(earth.mod, c(10,80)) # returns 16.84
```

Note that with `pmax` the R expression generated by format.earth can handle multiple cases. Thus the expression is consistent with the way predict functions usually work in R — we can give predict multiple cases (i.e., multiple rows in the input matrix) and it will return a vector of predicted values.
The earth package also provides a function `format.lm`. It has arguments as follows:

```r
format.lm(x, digits=getOption("digits"), use.names=TRUE, colon.char=":")
```

(Strictly speaking, `format.lm` doesn't belong in the earth package.) Example:

```r
lm.mod <- lm(Volume ~ Height*Girth, data = trees)
cat(format(lm.mod, colon.char=""))
```

```
# yields:
#   69.4
# - 1.30 * Height
# - 5.86 * Girth
# + 0.135 * Height*Girth
```

See Also

`summary.earth`, `pmax`,

Examples

```r
earth.mod <- earth(Volume ~ ., data = trees)
cat(format(earth.mod))
```

```
# yields:
#   37.9
# - 3.92 * h(16-Girth)
# + 7.4 * h(Girth-16)
# + 0.484 * h(Height-75)
```

```r
cat(format(earth.mod, style="pmax"))
```

```
# yields:
#   37.9
# - 3.92 * pmax(0, 16 - Girth)
# + 7.4 * pmax(0, Girth - 16)
# + 0.484 * pmax(0, Height - 75)
```

```r
cat(format(earth.mod, style="C"))
```

```
# yields (note zero based indexing):
#   37.927
# - 3.9187 * max(0, 16 - x[0])
# + 7.4011 * max(0, x[0] - 16)
# + 0.48411 * max(0, x[1] - 75)
```

```r
cat(format(earth.mod, style="bf"))
```

```
# yields:
#   37.9
# - 3.92 * bf1
# + 7.4 * bf2
```
+ 0.484 * bf3
bf1 h(16-Girth)
bf2 h(Girth-16)
bf3 h(Height-75)

mars.to.earth Convert a mars object from the mda package to an earth object

Description

Convert a mars object from the mda package to an earth object

Usage

mars.to.earth(object, trace=TRUE)

Arguments

object A mars object, created using mars in the mda package.
trace If TRUE (default) print a summary of the conversion.

Value

The value is the same format as that returned by earth but with skeletal versions of rss.per.subset, gcv.per.subset, and prune.terms.

You can fully initialize these components by calling update.earth after mars.to.earth, but if you do this selected.terms may change. However with pmethod="backward" a change is unlikely — selected.terms would change only if GCVs are so close that numerical errors have an effect.

Note

Differences between mars and earth objects

Perhaps the most notable difference between mars and earth objects is that mars returns the MARS basis matrix in a field called "x" whereas earth returns "bx" with only the selected terms. Also, earth returns "dirs" rather than "factors", and in earth this matrix can have entries of value 2 for linear predictors.

For details of other differences between mars and earth objects, see the comments in the source code of mars.to.earth.

Weights

The w argument is silently ignored by mars.

mars normalizes wp to (euclidean) length 1; earth normalizes wp to length equal to the number of responses, i.e., the number of columns in y. This change was made so an all ones wp (or in fact any all constant wp) is equivalent to using no wp.

If the original call to mars used the wp argument, mars.to.earth will run update.earth to force consistency. This could modify the model, so a warning is issued.
See Also

`earth`, `mars`

Examples

```r
if(require(mda)) {
  mars.mod <- mars(trees[,3], trees[,3])
  earth.mod <- mars.to.earth(mars.mod)
  # the standard earth functions can now be used
  # note the reconstructed call in the summary
  summary(earth.mod, digits = 2)
}
```

`model.matrix.earth`
Get the earth basis matrix

Description

Get the basis matrix of an `earth` model.

Usage

```r
# S3 method for class 'earth'
model.matrix(object = stop("no 'object' argument"),
             x = NULL, subset = NULL, which.terms = NULL,
             trace = 0,
             ...,
             Env = parent.frame(),
             Callers.name = "model.matrix.earth")
```

Arguments

- `object`
 An `earth` model. This is the only required argument.
- `x`
 Default is `NULL`, meaning use the original data used to build the earth model (after taking the original subset, if any).
 Else `x` can be a data frame, a matrix, or a vector with length equal to a multiple of the number of columns of the original input matrix `x`. (There is some leniency here. For example, column names aren’t necessary if `x` has the same number of predictors originally used to build the earth model.)
- `subset`
 Which rows to use in `x`. Default is `NULL`, meaning use all of `x`.
- `which.terms`
 Which terms to use. Default is `NULL`, meaning all terms in the earth model (i.e. the terms in `object$$selected.terms`).
- `trace`
 Default 0. Set to non-zero to see which data `model.matrix.earth` is using.
- `...`
 Unused, but provided for generic/method consistency.
- `Env`
 For internal use.
- `Callers.name`
 For internal use (used by `earth` in trace messages).
Value

A basis matrix bx of the same form returned by earth. The format of bx is described in earth.object. If x, subset, and which.terms are all NULL (the default), this function returns the model’s bx. In this case, it is perhaps easier to simply use object$bx.

The matrix bx can be used as the input matrix to lm or glm, as shown below in the example. In fact, that is what earth does internally after the pruning pass — it calls lm.fit, and additionally glm if earth’s glm argument is used.

See Also

earth

Examples

data(trees)
earth.mod <- earth(Volume ~ ., data = trees)
summary(earth.mod, decomp = "none") # "none" to print terms in same order as lm.mod below

bx <- model.matrix(earth.mod) # equivalent to bx <- earth.mod$bx
lm.mod <- lm(trees$Volume ~ bx[,-1]) # -1 to drop intercept
summary(lm.mod) # yields same coeffs as above summary
displayed t values are not meaningful

ozone1

Ozone readings in Los Angeles with incomplete cases removed

Description

Ozone readings in Los Angeles, with incomplete cases removed.

Format

A data frame with 330 observations on 10 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>daily maximum of the hourly average ozone concentrations in Upland, CA</td>
</tr>
<tr>
<td>vh</td>
<td>500 millibar pressure height, measured at the Vandenberg air force base</td>
</tr>
<tr>
<td>wind</td>
<td>wind speed in mph at LAX airport</td>
</tr>
<tr>
<td>humidity</td>
<td>humidity in percent at LAX</td>
</tr>
<tr>
<td>temp</td>
<td>Sandburg Air Force Base temperature in degrees Fahrenheit</td>
</tr>
<tr>
<td>ibh</td>
<td>temperature inversion base height in feet</td>
</tr>
<tr>
<td>dpg</td>
<td>pressure gradient from LAX to Daggert in mm Hg</td>
</tr>
<tr>
<td>ibt</td>
<td>inversion base temperature at LAX in degrees Fahrenheit</td>
</tr>
<tr>
<td>vis</td>
<td>visibility at LAX in miles</td>
</tr>
<tr>
<td>doy</td>
<td>day of the year</td>
</tr>
</tbody>
</table>
Source

This dataset was copied from library(faraway) and the name changed to ozone1 to prevent a name clash. The data were originally made available by Leo Breiman who was a consultant on a project where the data were generated. Example analyses using these data may be found in Faraway and in Hastie and Tibshirani.

> ozone1
 O3 vh wind humidity temp ibh dpg ibt vis doy
 1 3 5710 4 28 40 2693 -25 87 250 33
 2 5 5700 3 37 45 590 -24 128 100 34
 3 5 5760 3 51 54 1450 25 139 60 35
 ...
330 1 5550 4 85 39 5000 8 44 100 390

References

Faraway (2005) *Extending the Linear Model with R* http://www.maths.bath.ac.uk/~jjf23

See Also

earth

airquality a different set of ozone data

plot.earth

Plot an earth object

Description

Plot an earth object. By default the plot shows model selection, cumulative distribution of the residuals, residuals versus fitted values, and the residual QQ plot.

This function calls plotres internally. The first arguments are identical to plotres arguments.

Usage

```
# S3 method for class 'earth'
plot(x = stop("no 'x' argument"),

# the following are identical to plotres arguments

    which = 1:4, info = FALSE, versus = 1, standardize = FALSE, delever = FALSE,
    level = 0, id.n = 3, labels.id = NULL, smooth.col = 2, grid.col = 0,
    jitter = 0, do.par = NULL, caption = NULL,
    trace = 0, npoints = 3000, center = TRUE, type = NULL, nresponse = NA,
```
the following are earth specific

col.cv = "lightblue", col.grsq = 1, col.rsq = 2, col.infold.rsq = 0,
col.mean.infold.rsq = 0, col.mean.oof.rsq = "palevioletred",
col.npreds = if(is.null(object$cv.oof.rsq.tab)) 1 else 0, col.oof.labs = 0,
col.oof.rsq = "mistyrose2", col.oof.vline = col.mean.oof.rsq,
col.pch.cv.rsq = 0, col.pch.max.oof.rsq = 0, col.vline = col.grsq,
col.vseg = 0, lty.grsq = 1, lty.npreds = 2, lty.rsq = 5, lty.vline = "12",
legend.pos = NULL, ...)

earth_plotmodsel(# for internal use by plotres
 x, col.rsq = 2, col.grsq = 1, col.infold.rsq = 0,
col.mean.infold.rsq = 0, col.mean.oof.rsq = "palevioletred",
col.npreds = NULL, col.oof.labs = 0, col.oof.rsq = "mistyrose2",
col.oof.vline = col.mean.oof.rsq, col.pch.cv.rsq = 0,
col.pch.max.oof.rsq = 0, col.vline = col.grsq, col.vseg = 0,
lty.grsq = 1, lty.npreds = 2, lty.rsq = 5, lty.vline = "12",
legend.pos=NULL, add = FALSE, jitter = 0,
max.nterms = length(object$rss.per.subset),
max.npreds=max(1, get.nused.preds.per.subset(object$dirs, object$prune.terms)), ...)

Arguments

x
 An earth object. This is the only required argument. (It is called "x" for consistency with the generic plot.)

which, info, versus
 These arguments are identical to plotres. Please see the help page for plotres.
standardize, delever, level
 id.n, labels.id, smooth.col
grid.col, jitter
 do.par, caption, trace
 npoints, center
 type, nresponse

col.cv
 Default "lightblue". Color of cross validation line in the residuals plot. This is the residual of the mean out-fold-predicted value.

The following arguments are for the model selection plot.
The `plot.earth` function provides options for customizing the appearance of the Model Selection plot. Here are the key options and their descriptions:

- **col.grsq**: Default 1. Color of GRSq line in the Model Selection plot. Use 0 for no GRSq line.
- **col.rsq**: Default 2. Color of the RSq line in the Model Selection plot. Use 0 for no RSq line.
- **col.infold.rsq**: Color of in-fold RSq lines for each fold in the Model Selection plot. Applies only if `nfold` and `keepxy` were used in the original call to `earth`. Default is 0, lines not plotted.
- **col.mean.infold.rsq**: Color of mean in-fold RSq for each number of terms in the Model Selection plot. Default is 0, line not plotted. Applies only if `nfold` and `keepxy` were used in the original call to `earth`.
- **col.mean.oof.rsq**: Default "palevioletred". Color of mean out-of-fold RSq for each number of terms in the Model Selection plot. Applies only if `nfold` and `keepxy` were used in the original call to `earth`. Use 0 to not plot this line.
- **col.npreds**: Color of the "number of predictors" plot in the Model Selection plot. The default displays the number of predictors unless the oof.rsq's are displayed. Use 0 for no "number of predictors" plot.
- **col.oof.labs**: Color of fold number labels on the oof.rsq lines. Default is 0, no labels.
- **col.oof.rsq**: Color of out-of-fold RSq lines for each fold in the Model Selection plot. Applies only if `nfold` and `keepxy` were used in the original call to `earth`. Default is "mistyrose2", a pale pink. Use 0 to not plot these lines. May be a vector of colors, which will be recycled if necessary.
- **col.oof.vline**: Color of vertical line at the maximum oof.rsq in the Model Selection plot. Default is col.mean.oof.rsq.
- **col.pch.cv.rsq**: Color of point plotted on the oof.rsq line to indicate the cv.rsq for that fold (i.e., it is plotted at the number of terms selected by the in-fold GCV). Default is 0, point not plotted.
- **col.pch.max.oof.rsq**: Color of point plotted on the oof.rsq line to indicate the maximum oof.rsq for that fold. Default is 0, point not plotted.
- **col.vline**: Color of the vertical line at selected model in the Model Selection plot. Default is col.grsq. This will be at the maximum GRSq unless `pmethod="none"`. Use 0 for no vertical line.
- **col.vseg**: Default is 0. Color of triangular marker at top of vertical line for best GRSq.
- **lty.grsq**: Line type of GRSq line in the Model Selection plot. Default is 1
- **lty.npreds**: Line type of the "number of predictors" plot in the Model Selection plot. Default is 2.
- **lty.rsq**: Line type of RSq line in the Model Selection plot. Default is 5.
- **lty.vline**: Line type of vertical line at selected model in the Model Selection plot. Default is "12".
- **legend.pos**: Position of the legend in the Model Selection plot. Default is NULL meaning automatic. Use `legend.pos=NA` or 0 for no legend.
add, max.nterms, max.npreds
 earth_plotmodsel arguments for internal use by plotres.

... Please see plotres for the details on the dots arguments.
 The ylim argument is treated specially in the model selection plot: ymin equal
to -1 means use the smallest GRSq or RSq value, excluding the intercept, and
ymax equal -1 means use the largest GRSq or RSq value.

Note
 For details on interpreting the graphs, please see the earth package vignettes “Notes on the earth
package” and “Variance models in earth”.
 Note that cross-validation data will not be displayed unless both nfold and keepxy were used in
the original call to earth.
 earth_plotmodsel is provided for use by plotres.

See Also
 earth, plot.earth.models, plotd, plotmo

Examples
 data(ozone1)
 earth.mod <- earth(O3 ~ ., data = ozone1, degree = 2)
 plot(earth.mod)

plot.earth.models Compare earth models by plotting them.

Description
 Compare earth models by plotting them.

Usage
 ## S3 method for class 'earth.models'
 plot(x = stop("no 'x' argument"), which = c(1:2),
 caption = "", jitter = 0,
 col.grsq = discrete.plot.cols(length(objects)), lty.grsq = 1,
 col.rsq = 0, lty.rsq = 5,
 col.vline = col.grsq, lty.vline = "12",
 col.npreds = 0, lty.npreds = 2,
 legend.text = NULL, do.par = NULL, trace = 0,
 ...)
plot.earth.models

Arguments

x A list of one or more earth objects, or a single earth object. This is the only required argument. (This argument is called 'x' for consistency with the generic plot.)

which Which plots to plot: 1 model, 2 cumulative distribution of residuals. Default is 1:2, meaning both.

caption Overall caption. Values:
string string
"" (default) no caption
NULL generate a caption from the $call component of the earth objects.

jitter Jitter applied to GRSq and RSq values to minimize over-plotting. Default is 0, meaning no jitter. A typical useful value is 0.01.

For the col arguments below, 0 means do not plot the corresponding graph element. You can use vectors of colors.

col.grsq Vector of colors for the GRSq plot. The default is discrete.plot.cols(length(x)) which is vector of distinguishable colors, the first three of which are also distinguishable on a monochrome printer. You can examine the colors using earth:::discrete.plot.cols().

lty.grsq Line type for the GRSq plot. Default is 1.

col.rsq Vector of colors for the RSq plot. Default is 0, meaning no RSq plot.

lty.rsq Line type for the RSq plot. Default is 5.

col.vline A vertical line is drawn for each object to show which model size was chosen for that object. The color of the line is col.vline. Default is col.grsq.

lty.vline Line type of vertical lines (a vertical line is drawn to show the selected model for each object). Can be a vector. Default is 3.

col.npreds Vector of colors for the "number of predictors" plot within the model selection plot. Default is 0, meaning no "number of predictors" plot. The special value NULL means borrow col.grsq (or col.rsq if col.grsq is NULL).

lty.npreds Line type of the "number of predictors" plot (in the Model Selection plot). Default is 2.

legend.text,do.par,trace
Please see plotres

... Please see plotres

Note

This function ignores GLM and cross-validation components of the earth model, if any.

See Also

earth, plot.earth, plot.earth.models, plotd, plotmo
Examples

data(ozone1)
a1 <- earth(03 ~ ., data = ozone1, degree = 2)
a2 <- earth(03 ~ .-wind, data = ozone1, degree = 2)
a3 <- earth(03 ~ .-humidity, data = ozone1, degree = 2)
plot.earth.models(list(a1,a2,a3), ylim=c(.65,.85))

plot.evimp

Plot an evimp object (created by the evimp function)

Description

Plot an evimp object.

Usage

S3 method for class 'evimp'
plot(x = stop("no 'x' argument"),
 cex.var = 1,
 type.nsubsets = "l", col.nsubsets = "black", lty.nsubsets = 1,
 type.gcv = "l", col.gcv = 2, lty.gcv = 1,
 type.rss = "l", col.rss = "gray0", lty.rss = 1,
 cex.legend = 1, x.legend = nrow(x), y.legend = x[1,"nsubsets"],
 rh.col = 1, do.par = TRUE, ...)

Arguments

x An evimp object.
cex.var cex for variable names. Default is 1. Make smaller (say 0.8) if you have lots of variables.
type.nsubsets Plot type for nsubsets graph. Default is "l". Use "n" for none, "b" looks good too.
col.nsubsets Color of nsubsets line. Default is "black".
lty.nsubsets Line type of nsubsets line. Default is 1.
type.gcv, col.gcv, lty.gcv As above but for the gcv plot
type.rss, col.rss, lty.rss As above but for the rss plot
cex.legend cex for legend strings. Default is 1. Make smaller (say 0.8) if you want a smaller legend.
x.legend x position of legend. Use 0 for no legend.
y.legend y position of legend.
rh.col Color of right hand axis label. Use rh.col=0 for no label, a workaround for when the label is mispositioned.
Do not hallucinate.

Do.par
Call par() for global settings as appropriate. Default is TRUE, which sets oma=c(bottom.margin,0,0,3), cex=cex.var. Set to FALSE if you want to append figures to an existing plot.

Extra arguments passed to plotting functions.

See Also
earth, evimp, plot.earth.models, plotmo

Examples

```r
data(ozone1)
earth.mod <- earth(O3 ~ ., data=ozone1, degree=2)
ev <- evimp(earth.mod)
plot(ev)
print(ev)
```

plot.varmod

Plot a varmod object (created by calling earth with the varmod argument)

Description
Plot a variance model (a varmod object).
Typically you call this function for a variance model embedded in an earth model.

Usage

```r
## S3 method for class 'varmod'
plot(x = stop("no 'x' argument"), which = 1:4,
do.par = NULL, info=FALSE,
cex = NULL, caption = NULL,
line.col = 2, min.sd.col = line.col,
trace = 0,...)
```

Arguments

- **x**
 A varmod object. Typically this is embedded in a parent earth object, and so you invoke this function with plot(earth.mod$varmod). The varmod.method argument must have been specified when building the earth model.

- **which**
 Which plots to plot. Default is 1:4 meaning all. The term *parent* below refers to the earth model in which the varmod is embedded.
 1) fitted vs parent fitted
 2) fitted vs parent first predictor
 3) residuals vs fitted
 4) model selection graph (only when varmod.method="earth" or "x.earth").
plotd

Do.plot

info
Plot some additional information, including lowess fits in the first two plots.
cex
Character expansion.
caption
Default is NULL, meaning automatically generate an overall caption.
line.col
Color of lines in the plots. Default is red.
min.sd.col
Color of the min.sd dotted horizontal line. Default is line.col. Use 0 to not plot this line.
trace,
Similar to plotres

Note
The horizontal red dotted line in the first two plots shows the value of min.sd. See earth’s varmod.clamp argument.

See Also
varmod

Examples
data(ozone1)

set.seed(1) # optional, for cross validation reproducibility

note: should really use ncross=30 below but for a quick demo we don't

earth.mod <- earth(O3~temp, data=ozone1, nfold=10, ncross=3, varmod.method="lm")

plot(earth.mod$varmod) # plot the embedded variance model (this calls plot.varmod)

plotd

Plot the distribution of predictions for each class

Description
Plot the distribution of the predicted values for each class. Can be used for earth models, but also for models built by lm, glm, lda, etc.

Usage
plotd(object, hist = FALSE, type = NULL, nresponse = NULL, dichot = FALSE, trace = FALSE, xlim = NULL, ylim = NULL, jitter = FALSE, main=NULL, xlab = "Predicted Value", ylab = if(hist) "Count" else "Density", lty = 1, col = c("gray70", 1, "lightblue", "brown", "pink", 2, 3, 4), fill = if(hist) col[1] else 0, breaks = "Sturges", labels = FALSE,
Arguments

To start off, look at the arguments object, hist, type.
For predict methods with multiple column responses, see the nresponse argument.
For factor responses with more than two levels, see the dichot argument.

Model object. Typically a model which predicts a class or a class discriminant.

object

FALSE (default) to call density internally.
TRUE to call hist internally.

type

Type parameter passed to predict. For allowed values see the predict method for your object (such as predict.earth). By default, plotd tries to automatically select a suitable value for the model in question. (This is "response" for all objects except rpart models, where "vector" is used. The choices will often be inappropriate.) Typically you would set hist=TRUE when type="class".

nresponse

Which column to use when predict returns multiple columns. This can be a column index or column name (which may be abbreviated, partial matching is used). The default is NULL, meaning use all columns of the predicted response.

dichot

Dichotomise the predicted response. This argument is ignored except for models where the observed response is a factor with more than two levels and the predicted response is a numeric vector. The default FALSE separates the response into a group for each factor. With dichot=TRUE the response is separated into just two groups: the first level of the factor versus the remaining levels.

trace

Default FALSE. Use TRUE or 1 to trace plotd — useful to see how plotd partitions the predicted response into classes. Use 2 for more details.

xlim

Limits of the x axis. The default NULL means determine these limits automatically, else specify c(xmin, xmax).

ylim

Limits of the y axis. The default NULL means determine these limits automatically, else specify c(ymin, ymax).

jitter

Jitter the histograms or densities horizontally to minimize overplotting. Default FALSE. Specify TRUE to automatically calculate the jitter, else specify a numeric jitter value.

main

Main title. Values:
"string" string
"" no title
NULL (default) generate a title from the call.

xlab

x axis label. Default is "Predicted Value".

ylab

y axis label. Default is if(hist) "Count" else "Density".
lty
Per class line types for the plotted lines. Default is 1 (which gets recycled for all lines).

col
Per class line colors. The first few colors of the default are intended to be easily distinguishable on both color displays and monochrome printers.

fill
Fill color for the plot for the first class. For hist=FALSE, the default is 0, i.e., no fill. For hist=TRUE, the default is the first element in the col argument.

breaks
Passed to hist. Only used if hist=TRUE. Default is "Sturges". When type="class", setting breaks to a low number can be used to widen the histogram bars.

labels
TRUE to draw counts on the hist plot. Only used if hist=TRUE. Default is FALSE.

kernel
Passed to density. Only used if hist=FALSE. Default is "gaussian".

adjust
Passed to density. Only used if hist=FALSE. Default is 1.

zero.line
Passed to plot.density. Only used if hist=FALSE. Default is FALSE.

legend
TRUE (default) to draw a legend, else FALSE.

legend.names
Class names in legend. The default NULL means determine these automatically.

legend.pos
Position of the legend. The default NULL means position the legend automatically, else specify c(x,y).

cex.legend
cex for legend. Default is .8.

legend.bg
bg color for legend. Default is "white".

legend.extra
Show (in the legend) the number of occurrences of each class. Default is FALSE.

vline.thresh
Horizontal position of optional vertical line. Default is 0.5. The vertical line is intended to indicate class separation. If you use this, don’t forget to set vline.col.

vline.col
Color of vertical line. Default is 0, meaning no vertical line.

vline.lty
Line type of vertical line. Default is 1.

vline.lwd
Line width of vertical line. Default is 1.

err.thresh
x axis value specifying the error shading threshold. See err.col. Default is vline.thresh.

err.col
Specify up to three colors to shade the "error areas" of the density plot. The default is 0, meaning no error shading. This argument is ignored unless hist=FALSE. If there are more than two classes, err.col uses only the first two. This argument is best explained by running an example:

data(titanic)
earth.mod <- earth(survived ~ ., data=titanic)
plotd(earth.mod, vline.col=1, err.col=c(2,3,4))

The three areas are (i) the error area to the left of the threshold, (ii) the error area to the right of the threshold, and, (iii) the reducible error area. If less than three values are specified, plotd re-uses values in a sensible manner. Use values of 0 to skip areas. Disjoint regions are not handled well by the current implementation.

err.border
Borders around the error shading. Default is 0, meaning no borders, else specify up to three colors.
plotd

err.lwd Line widths of borders of the error shading. Default is 1, else specify up to three line widths.
xaxt Default is "s". Use xaxt="n" for no x axis.
yaxt Default is "s". Use yaxt="n" for no y axis.
xaxis.cex Only used if hist=TRUE and type="class". Specify size of class labels drawn on the x axis. Default is 1.
sd.thresh Minimum acceptable standard deviation for a density. Default is 0.01. Densities with a standard deviation less than sd.thresh will not be plotted (a warning will be issued and the legend will say "not plotted").

... Extra arguments passed to the predict method for the object.

Note

This function calls predict with the data originally used to build the model, and with the type specified above. It then separates the predicted values into classes, where the class for each predicted value is determined by the class of the observed response. Finally, it calls density (or hist if hist=TRUE) for each class-specific set of values, and plots the results.

This function estimates distributions with the density and hist functions, and also calls plot.density and plot.histogram. For an overview see Venables and Ripley MASS section 5.6.

Partitioning the response into classes

Considerable effort is made to partition the predicted response into classes in a sensible way. This is not always possible for multiple column responses and the nresponse argument should be used where necessary. The partitioning details depend on the types and numbers of columns in the observed and predicted responses. These in turn depend on the model object and the type argument. Use the trace argument to see how plotd partitions the response for your model.

Degenerate densities

A message such as Warning: standard deviation of "male" density is 0, density is degenerate? means that the density for that class will not be plotted (the legend will say "not plotted"). Set sd.thresh=0 to get rid of this check, but be aware that histograms (and sometimes x axis labels) for degenerate densities will be misleading.

Using plotd for various models

This function is included in the earth package but can also be used with other models.

Example with glm:

```
library(earth); data(titanic)
glm.model <- glm(sex ~ ., data=titanic, family=binomial)
plotd(glm.model)
```

Example with lm:

```
library(earth); data(titanic)
lm.model <- lm(as.numeric(sex) ~ ., data=titanic)
plotd(lm.model)
```
Using `plotd` with `lda` or `qda`

The `plotd` function has special handling for `lda` (and `qda`) objects. For such objects, the `type` argument can take one of the following values:

- "response" (default) linear discriminant
- "ld" same as "response"
- "class" predicted classes
- "posterior" posterior probabilities

Example:
```
library(MASS); library(earth); data(titanic)
lda.model <- lda(sex ~ ., data=titanic)
plot(lda.model) # linear discriminant by default
plotd(lda.model, type="class", hist=TRUE, labels=TRUE)
```

This handling of `type` is handled internally by `plotd` and `type` is not passed to `predict.lda` (type is used merely to select fields in the list returned by `predict.lda`). The type names can be abbreviated down to a single character.

For objects created with `lda.matrix` (as opposed to `lda.formula`), `plotd` blindly assumes that the grouping argument was the second argument.

`plotd` does not yet support objects created with `lda.data.frame`.

For `lda` responses with more than two factor levels, use the `nresponse` argument to select a column in the predicted response. Thus with the default `type=NULL`, (which gets automatically converted by `plotd` to type="response"), use `nresponse=1` to select just the first linear discriminant. The default `nresponse=NULL` selects all columns, which is typically not what you want for `lda` models.

Example:
```
library(MASS); library(earth);
set.seed(1)    # optional, for reproducibility
example(lda)  # creates a model called "z"
plot(z, dimen=1) # invokes plot.lda from the MASS package
plotd(z, nresponse=1, hist=1) # equivalent using plotd
    # nresponse=1 selects first linear discr.
```

The `dichot=TRUE` argument is also useful for `lda` responses with more than two factor levels.

TODO

Handle degenerate densities in a more useful way.

Add `freq` argument for `hist`.

See Also

- `density`, `plot.density`
- `hist`, `plot.histogram`
- `earth`, `plot.earth`
Examples

```r
if (require(earth)) {
  old.par <- par(no.readonly=TRUE);
  par(mfrow=c(2,2), mar=c(4, 3, 1.7, 0.5), mgp=c(1.6, 0.6, 0), par(cex = 0.8))
  data(titanic)
  mod <- earth(survived ~ ., data=titanic, degree=2, glm=list(family=binomial))
  plotd(mod)
  plotd(mod, hist=TRUE, legend.pos=c(.25,220))
  plotd(mod, hist=TRUE, type="class", labels=TRUE, xlab="", xaxis.cex=.8)
  par(old.par)
}
```

predict.earth
Predict with an earth model

Description

Predict with an `earth` model.

Usage

```r
## S3 method for class 'earth'
predict(object = stop("no 'object' argument"), newdata = NULL,
        type = c("link", "response", "earth", "class", "terms"),
        interval = "none", level = .95,
        thresh = .5, trace = FALSE, ...)
```

Arguments

- **object**: An `earth` object. This is the only required argument.
- **newdata**: Make predictions using `newdata`, which can be a data frame, a matrix, or a vector with length equal to a multiple of the number of columns of the original input matrix `x`. Default is NULL, meaning return values predicted from the training set. NA values are allowed in `newdata` (and the predicted value will be NA unless the NA values are in variables that are unused in the earth model).
- **type**: Type of prediction. One of "link" (default), "response", "earth", "class", or "terms". See the **Note** below.
- **interval**: Return prediction or confidence levels. Default is "none". Use `interval="pint"` to get prediction intervals on new data. Requires that the earth model was built with `varmod.method`. This argument gets passed on as the `type` argument to `predict.varmod`. See its help page for details.
level

Confidence level for the `interval` argument. Default is 0.95, meaning construct 95% confidence bands (estimate the 2.5% and 97.5% levels).

thresh

Threshold, a value between 0 and 1 when predicting a probability. Only applies when `type`="class". Default is 0.5. See the Note below.

trace

Default FALSE. Set to TRUE to see which data, subset, etc. `predict.earth` is using.

... Unused, but provided for generic/method consistency.

Value

The predicted values (a matrix for multiple response models).

If `type`="terms", a matrix with each column showing the contribution of a predictor.

If `interval`="pint" or "cint", a matrix with three columns:
fit: the predicted values
lwr: the lower confidence or prediction limit
upr: the upper confidence or prediction limit

If `interval`="se", the standard errors.

Note

Predicting with standard earth models

Use the default `type`="link", or possibly `type`="class".

Actually, the "link", "response", and "earth" choices all return the same value unless the `glm` argument was used in the original call to `earth`.

Predicting with earth-GLM models

This section applies to earth models with a GLM component, i.e., when the `glm` argument was used in the original call to `earth`.

The "link" and "response" options: see `predict.glm` for a description of these. In brief: for logistic models use `type`="response" to get probabilities, and `type`="link" to get log-odds.

Use option "earth" to get the linear fit (this gives the prediction you would get if your original call to earth had no `glm` argument).

Predicting with "class"

Use option "class" to get the predicted class. With option "class", this function first makes predictions with `type`="response" and then assigns the predicted values to classes as follows:

(i) When the response is a logical, predict TRUE if the predicted probability is greater than `thresh` (default 0.5).

(ii) When the response is a numeric, predict TRUE if the predicted value is greater than `thresh`. Actually, this is identical to the above case, although `thresh` here may legitimately be a value outside the 0...1 range.

(iii) When the response is a two level factor, predict the second level if its probability is more than `thresh`. In other words, with the default `thresh`=0.5 predict the most probable level.

(iv) When the response is a three or more level factor, predict the most probable level (and `thresh` is ignored).
Predicting with "terms"

The "terms" option returns a "link" response suitable for `termplot`. Only the additive terms and the first response (for multi-response models) are returned. Also, "terms" always returns the earth terms, and ignores the GLM component of the model, if any.

See Also

`earth`, `predict`

Examples

data(trees)
ext.earth <- earth(Volume ~ ., data = trees)
predict(earth.mod) # same as earth.mod$fitted.values
predict(earth.mod, c(10,80)) # yields 16.8

Description

You probably won't need to call this function directly. It is called by `predict.earth` when that function's `interval` argument is used.

Usage

```r
## S3 method for class 'varmod'
predict(
  object = stop("no 'object' argument"),
  newdata = NULL,
  type = c("pint", "cint", "se", "abs.residual"),
  level = .95,
  trace = FALSE,
  ...)
```

Arguments

- `object`: A `varmod` object.
- `newdata`: Make predictions using `newdata`. Default is NULL, meaning return values predicted from the training set.
- `type`: Type of prediction. This is the interval argument of `predict.earth`. One of "pint" Prediction intervals.
- "cint" Confidence intervals. Cannot be used with `newdata`.
- "se" Standard error of the parent model residuals.
The absolute residuals of the parent model on which the residual model regresses.

level
Confidence level for the interval argument. Default is .95, meaning construct 95% confidence bands (estimate the 2.5% and 97.5% levels).

trace
Currently unused.

...
Unused, but provided for generic/method consistency.

Note

predict.varmod is called by predict.earth when its interval argument is used.

See Also

predict.earth varmod

Examples

data(ozone1)

set.seed(1) # optional, for cross validation reproducibility

note: should really use ncross=30 below but for a quick demo we don't
earth.mod <- earth(O3~temp, data=ozone1, nfold=10, ncross=3, varmod.method="lm")

call predict.earth, which calls predict.varmod
predict(earth.mod, newdata=ozone1[200:203,], interval="pint", level=.95)

residuals.earth
Residuals for an earth model

Description

Residuals of an earth model.

Usage

```r
## S3 method for class 'earth'
residuals(object = stop("no 'object' argument"),
          type = NULL, warn = TRUE, ...)
```
Arguments

- **object**: An `earth` object. This is the only required argument.
- **type**: One of:
 - "earth" (default) Residuals from the `lm` fit on bx.
 - "response" Residuals as above, but for earth-glm models return the `glm` response residuals.
 - "standardize" Residuals divided by $se \sqrt{1 - h_{ii}}$. See the standardize argument of `plot.earth`.
 - "delever" Residuals divided by $\sqrt{1 - h_{ii}}$. See the delever argument of `plot.earth`.

The following options are for earth-glm models. They return the GLM residuals (from the `glm` fit on bx). See `residuals.glm` for details:

- "deviance"
- "pearson"
- "working"
- "partial"

The following options for earth-glm models are redundant. They are provided for compatibility with older versions of earth or other functions:

- "glm.response" same as "response"
- "glm.deviance" same as "deviance"
- "glm.pearson" same as "pearson"
- "glm.working" same as "working"
- "glm.partial" same as "partial"

warn: This function gives warnings when the results are not what you may expect. Use `warn=FALSE` to turn off just these warnings.

...: Unused, but provided for generic/method consistency.

Value

The residual values (will be a matrix for multiple response models).

See Also

- `earth`
- `residuals`
- `resid` identical to `residuals`

Examples

```r
data(titanic)
earth.mod <- earth(pclass ~ ., data=titanic, glm=list(family=binomial))
head(resid(earth.mod, warn=FALSE))  # earth residuals, a column for each response
head(resid(earth.mod, type="response")) # GLM response resids, a column for each response
```
Summary method for earth objects

Description
Summary method for earth objects.

Usage
S3 method for class 'earth'
summary(object = stop("no 'object' argument"),
details = FALSE, style = c("h", "pmax", "max", "C", "bf"),
decomp = "anova", digits = getOption("digits"), fixed.point=TRUE,
newdata = NULL, ...)

S3 method for class 'summary.earth'
print(x = stop("no 'x' argument"),
details = x$details,
decomp = x$decomp, digits = x$digits, fixed.point = x$fixed.point,
newdata = x$newdata, ...)

Arguments

object
An earth object. This is the only required argument for summary.earth.

x
A summary.earth object. This is the only required argument for print.summary.earth.

details
Default is FALSE. Use TRUE to print more information about earth–glm models. But note that the displayed P-values of the GLM coefficients are meaningless because of the amount of preprocessing by earth to select the regression terms.

style
Formatting style. One of "h" (default) more compact "pmax" for those who prefer it and for compatibility with old versions of earth "max" is the same as "pmax" but prints max rather than \(p_{max} \) "C" C style expression with zero based indexing "bf" basis function format.

decomp
Specify how terms are ordered. Default is "anova". Use "none" to order the terms as created by the forward.pass. See format.earth for a full description.

digits
The number of significant digits. For summary.earth, the default is getOption("digits"). For print.summary.earth, the default is the $digits component of object.

fixed.point
Method of printing numbers in matrices. Default is TRUE which prints like this (making it easier to compare coefficients):

\[
\begin{align*}
\text{(Intercept)} & \quad 15.029 \\
\text{h(temp-58)} & \quad 0.313 \\
\text{h(234-ibt)} & \quad -0.046 \\
\end{align*}
\]

...
whereas fixed.point=FALSE prints like this (which is more usual in R):

(Intercept) 1.5e+01
h(temp-58) 3.1e-01
h(234-ibt) -4.6e-02
...

Matrices with two or fewer rows are never printed with a fixed point.

newdata
Default NULL.
Else print R-Squared for the new data (and the returned object will have newrsq and newdata fields). Additionally, if a variance model is present print the interval coverage table for the new data.

... Extra arguments are passed to format.earth.

Value

The value is the same as that returned by earth but with the following extra components.

strings String(s) created by format.earth. For multiple response models, a vector of strings.
newrsq Only if newdata was passed to summary.earth.
newdata Only if newdata was passed to summary.earth.
digits
details
decomp
fixed.point The corresponding arguments, passed on to print.summary.earth.

Note

The printed Estimated importance uses evimp with the nsubsets criterion. The most important predictor is printed first, and so on.

See Also

earth, evimp, format.earth

Examples

earth.mod <- earth(Volume~ ., data = trees)
summary(earth.mod, digits = 2)
update.earth Update an earth model

Description

Update an earth model.

Usage

```r
## S3 method for class 'earth'
update(object = stop("no 'object' argument"),
       formula. = NULL, ponly = FALSE, ..., evaluate = TRUE)
```

Arguments

- `object` The earth object
- `formula.` The `formula.` argument is treated like earth’s `formula` argument.
- `ponly` Force pruning only, no forward pass. Default is `FALSE`, meaning `update.earth` decides automatically if a forward pass is needed. See note below.
- `...` Arguments passed on to `earth`.
- `evaluate` If `TRUE` (default) evaluate the new call, else return the call. Mostly for compatibility with the generic `update`.

Details

If only the following arguments are used, a forward pass is unnecessary, and `update.earth` will perform only the pruning pass. This is usually much faster for large models.

```r
object
glm
trace
nprune
pmethod
Eval.model.subsets
Print.pruning.pass
Force.xtx.prune
Use.beta.cache
Endspan.penalty
Get.leverages
```

This automatic determination to do a forward pass can be overridden with the `ponly` argument. If `ponly=TRUE` the forward pass will be skipped and only the pruning pass will be executed. This is useful for doing a pruning pass with new data. (Use earth’s `data` argument to specify the new data.) Typically in this scenario you would also specify `penalty=-1`. This is because with sufficient new data, independent of the original training data, the RSS not the GCV should be used for evaluating
model subsets (The GCV approximates what the RSS would be on new data — but here we actually have new data, so why bother approximating. This "use new data for pruning" approach is useful in situations where you don’t trust the GCV approximation for your data.) By making penalty=-1, earth will calculate the RSS, not the GCV. See also the description of penalty on the earth help page.

Another (somewhat esoteric) use of ponly=TRUE is to do subset selection with a different penalty from that used to build the original model.

With trace=1, update.earth will tell you if earth’s forward pass was skipped.

If you used keepxy=TRUE in your original call to earth, then update.earth will use the saved values of x, y, etc., unless you specify otherwise by arguments to update.earth. It can be helpful to set trace=1 to see which x and y is used by update.earth.

Value

The value is the same as that returned by earth. If object is the only parameter then no changes are made — the returned value will be the same as the original object.

See Also

earth

Examples

data(ozone1)

(earth.mod <- earth(O3 ~ ., data = ozone1, degree = 2))

update(earth.mod, formula = O3 ~ . - temp) # requires forward pass and pruning

update(earth.mod, nprune = 8) # requires only pruning

update(earth.mod, penalty=1, ponly=TRUE) # pruning pass only with a new penalty

Description

A *variance model* estimates the variance of predicted values. It can be used to estimate prediction intervals. See the interval argument of predict.earth.

A variance model is built by earth if earth’s varmod.method argument is specified. Results are stored in the $varmod field of the earth model. See the vignette “Variance models in earth” for details.

You probably won’t need to directly call print.varmod or summary.varmod. They get called internally by summary.earth.
Usage

```r
## S3 method for class 'varmod'
summary(
  object = stop("no 'object' argument"),
  level = .95,
  style = "standard",
  digits = 2,
  newdata = NULL,
  ...)
```

Arguments

- **object**: A `varmod` object. This is the only required argument.
- **level**: Same as `predict.earth`'s level argument.
- **style**: Determines how the coefficients of the `varmod` are printed by `summary.varmod`:
 - "standard" (default)
 - "unit" for easy comparison normalize the coefficients by dividing by the first coefficient.
- **digits**: Number of digits to print. Default is 2.
- **newdata**: Default NULL. Else print the interval coverage table for the new data.
- **...**: Dots are passed on.

Note

A "`varmod" object has the following fields:

- **call**: The call used internally in the parent model to build the `varmod` object.
- **parent**: The parent `earth` model.
- **method**: Copy of the `varmod.method` argument to the parent model.
- **package**: NULL, unless `method`="gam", in which case either "gam" or "mgcv".
- **exponent**: Copy of the `varmod.exponent` argument to the parent model.
- **lambda**: Currently always 1, meaning use absolute residuals.
- **rmethod**: Currently always "hc2", meaning correct the residuals with 1/(1-h_ii).
- **converged**: Did the residual submodel IRLS converge?
- **iters**: Number of residual model IRLS iterations (1 to 50).
- **residmod**: The residual submodel. So for example, if `varmod.method="lm"`, this will be an `lm` object.
- **min.sd**: The predicted residual standard deviation is clamped so it will always be at least this value. This prevents prediction of negative or absurdly small variances. See `earth`'s `varmod.clamp` argument. Clamping takes place in `predict.varmod`, which is called by `predict.earth` when estimating prediction intervals.
varmod

- **model.var** An n x 1 matrix. The model.var for an observation is the estimated model variance for that observation over all datasets, and is estimated with repeated cross validation. It is the variance of the mean out-of-fold prediction for that observation over \(n_{\text{cross}} \) repetitions.
- **abs.resids** An n x 1 matrix. The absolute residuals used to build the residual model.
- **parent.x** An n x p matrix. Parent earth model \(x \).
- **parent.y** An n x 1 matrix. Parent earth model \(y \).
- **iter.rsq** Weighted R-Squared of residual submodel residmod, after IRLS iteration.
- **iter.stderr** Standard errors of the coefficients of the residual submodel residmod, after IRLS iteration.

See Also

`plot.varmod`, `predict.varmod`

Examples

data(ozone1)

set.seed(1) # optional, for cross validation reproducibility

note: should really use \(n_{\text{cross}} = 30 \) below but for a quick demo we don't

earth.mod <- earth(O3~temp, data=ozone1, nfold=10, ncross=3, varmod.method="lm")

print(summary(earth.mod)) # note additional info on the variance model

old.mfrow <- par(mfrow=c(2,2), mar=c(3, 3, 3, 1), mgp=c(1.5, 0.5, 0))

plotmo(earth.mod, do.par=FALSE, response.col=1, level=.90, main="earth model: O3~temp")

plot(earth.mod, which=3, level=.90) # residual plot: note 90% pred and darker conf intervals

par(par=old.mfrow)
Index

+Topic datasets
 etitanic, 16
 ozone1, 24

+Topic models
 contr.earth.response, 2
 earth, 3
 evimp, 18
 format.earth, 19
 mars.to.earth, 22
 model.matrix.earth, 23
 plot.earth, 25
 plot.earth.models, 28
 plot.evimp, 30
 plotd, 32
 predict.earth, 37
 residuals.earth, 40
 summary.earth, 42
 update.earth, 44

+Topic regression
 earth, 3

+Topic smooth
 earth, 3

airquality, 25

class, 11
contr.earth.response, 2
contrasts, 2

density, 33–36

earth, 2, 3, 8, 11, 16, 18, 19, 22–26, 28, 29, 31, 32, 35–45
earth.object, 10, 11, 24
earth_plotmodels (plot.earth), 25
etitanic, 16
evimp, 10, 11, 18, 30, 31, 43

factor, 14
factors, 4
format.earth, 11, 19, 42, 43

gam, 8
glm, 5, 14, 24, 32, 35, 41, 42
grep, 6

hist, 33–36

lda, 32, 36
leaps, 7, 9, 10
legend, 34
lm, 6, 8, 24, 32, 35, 41
lm.fit, 24
logical, 14

mars, 10, 22, 23
mars.to.earth, 22
model.matrix.earth, 12, 23

nls, 8

ozone, 10
ozone1, 24

plot, 26, 29
plot.density, 34–36
plot.earth, 11, 25, 29, 36, 41
plot.earth.models, 28, 29, 31
plot.evimp, 19, 30
plot.histogram, 35, 36
plot.varmod, 31, 47
plotd, 28, 29, 32
plotmo, 5, 11, 28, 29, 31
plotres, 25, 26, 28, 29, 32
pmax, 21
predict, 33, 35, 39
predict.earth, 14, 33, 37, 39, 40, 45
predict.glm, 38
predict.varmod, 37, 39, 47
print.summary.earth (summary.earth), 42

qda, 36
resid, 41
residuals, 41
residuals.earth, 40
residuals.glm, 41
rlm, 8

Scale, 8
sqrt, 18
summary.earth, 11, 15, 19, 21, 42, 42, 45
summary.varmod(varmod), 45

termplot, 39

update, 44
update.earth, 4, 8, 22, 44

varmod, 7, 16, 32, 40, 45