bounds

Description

Calculates the deterministic bounds on the proportion of row members within a specified column.

Usage

```r
bounds(formula, data, rows, column, excluded = NULL, threshold = 0.9, total = NULL)
```

Arguments

- **formula**: a formula of the form `cbind(col1, col2, ...) ~ cbind(row1, row2, ...)`. Column and row marginals must have the same total for each ecological unit.
- **data**: a data frame containing the variables specified in `formula` and (optionally) `total`.
- **rows**: a character vector specifying the rows of interest.
- **column**: a character string specifying the column marginal of interest.
- **excluded**: an optional character string (or vector of character strings) specifying the columns to be excluded from the bounds calculation. For example, if the quantity of interest is Democratic share of the two-party vote, non-voters would be excluded.
- **threshold**: the minimum proportion of the unit that row members must comprise for the bounds to be calculated for the unit. If `threshold = 0`, bounds will be calculated for all units.
- **total**: if row and/or column marginals are given as proportions, `total` identifies the name of the variable in `data` containing the total number of individuals in each unit.

Value

A list with elements

- **bounds**: a list of deterministic bounds for all units in which row proportions meet the threshold.
- **intersection**: if the intersection of the deterministic bounding intervals is non-empty, the intersection is returned. Otherwise, `NA` is returned.
cover.plot

Author(s)
Ryan T. Moore <<rtm@wustl.edu>>

References

See Also
plot.bounds

cover.plot Unit-level coverage plots for beta parameters from MD EI model

Description
Generates a plot of central credible intervals for the unit-level beta parameters from the Multinomial-Dirichlet ecological inference model (see *ei.MD.bayes*).

Usage
cover.plot(object, row, column, x = NULL, CI = 0.95,
medians = TRUE, col = NULL, ylim = c(0,1),
ylab, lty = par("lty"), lwd = par("lwd"), ...)

Arguments
object output from *ei.MD.bayes*
row a character string specifying the row marginal of interest
column a character string specifying the column marginal of interest
x an optional covariate to index the units along the x-axis
CI a fraction between 0 and 1 (defaults to 0.95), specifying the coverage of the central credible interval to be plotted for each unit
medians a logical value specifying whether to plot the median (defaults to TRUE). If `medians = FALSE`, the medians are not plotted.
col an optional vector of colors to be passed to `plot` and `segments`. If `col` is of length two, then the first color is used for `plot` and the second for `segments`.
ylim an optional range for the y-axis (defaults to c(0,1)).
ylab an optional label for the y-axis (defaults to Proportion of row in column).
lty an optional line type passed to `segments`.
lwd an optional line width argument passed to `segments`.
... additional arguments passed to `plot`.
Value

A plot with vertical intervals indicating the central credible intervals for each ecological unit.

Author(s)

Olivia Lau <<olivia.lau@post.harvard.edu>>

See Also

plot, segments, par

density.plot

Density plots for population level parameters

Description

Generates a density plot for population level quantities of interest output by lambda.MD, lambda.reg, and lambda.reg.bayes. For the Bayesian methods, density.plot plots the kernel density for the draws. For the frequentist lambda.reg method, density.plot plots the canonical Normal density conditional on the mean and standard error output by lambda.reg.

Usage

density.plot(x, by = "column", col, xlim, ylim,
 main = "", sub = NULL, xlab, ylab,
 lty = par("lty"), lwd = par("lwd"), ...)

Arguments

x output from lambda.MD, lambda.reg, or lambda.reg.bayes.
by character string (defaulting to "column") specifying whether to panel the density plot by "row" or "column" marginal.
col an optional vector of colors, with length corresponding to the number of marginals selected in by. Defaults to rainbow.
xlim,ylim optional limits for the x-axis and y-axis, passed to plot.
main,sub optional title and subtitle, passed to plot.
xlab,ylab optional labels for the x- and y-axes, passed to plot.
lty,lwd optional arguments for line type and line width, passed to lines and plot. If either lty or lwd are vectors, it must correspond to the number of row or column marginals selected.
... additional arguments passed to par.

Value

A plot with density lines for the selected margin (row or column).
ei.MD.bayes

Author(s)

Olivia Lau <<olivia.lau@post.harvard.edu>>

See Also

plot, segments, par

ei.MD.bayes Multinomial Dirichlet model for Ecological Inference in RxC tables

Description

Implements a version of the hierarchical model suggested in Rosen et al. (2001)

Usage

ei.MD.bayes(formula, covariate = NULL, total = NULL, data, lambda1 = 4, lambda2 = 2, covariate.prior.list = NULL, tune.list = NULL, start.list = NULL, sample = 1000, thin = 1, burnin = 1000, verbose = 0, ret.beta = 'r', ret.mcmc = TRUE, usrfun = NULL)

Arguments

formula A formula of the form cbind(col1, col2, ...) ~ cbind(row1, row2, ...). Column and row marginals must have the same totals.
covariate An optional formula of the form ~ covariate. The default is covariate = NULL, which fits the model without a covariate.
total if row and/or column marginals are given as proportions, total identifies the name of the variable in data containing the total number of individuals in each unit
data A data frame containing the variables specified in formula and total
lambda1 The shape parameter for the gamma prior (defaults to 4)
lambda2 The rate parameter for the gamma prior (defaults to 2)
covariate.prior.list a list containing the parameters for normal prior distributions on delta and gamma for model with covariate. See ‘details’ for more information.
tune.list A list containing tuning parameters for each block of parameters. See ‘details’ for more information. Typically, this will be a list generated by tuneMD. The default is NULL, in which case fixed tuning parameters are used.
start.list A list containing starting values for each block of parameters. See ‘details’ for more information. The default is start.list = NULL, which generates appropriate random starting values.
sample: Number of draws to be saved from chain and returned as output from the function (defaults to 1000). The total length of the chain is sample*thin + burnin.

thin: an integer specifying the thinning interval for posterior draws (defaults to 1, but most problems will require a much larger thinning interval).

burnin: integer specifying the number of initial iterations to be discarded (defaults to 1000, but most problems will require a longer burnin).

verbose: an integer specifying whether the progress of the sampler is printed to the screen (defaults to 0). If verbose is greater than 0, the iteration number is printed to the screen every verbose-th iteration.

ret.beta: A character indicating how the posterior draws of beta should be handled: ‘r’eturn as an R object, ‘s’ave as .txt.gz files, ‘d’iscard (defaults to r).

ret.mcmc: A logical value indicating how the samples from the posterior should be returned. If TRUE (default), samples are returned as coda mcmc objects. If FALSE, samples are returned as arrays.

usrfun: the name of an optional a user-defined function to obtain quantities of interest while drawing from the MCMC chain (defaults to NULL).

Details

ei_MD_bayes implements a version of the hierarchical Multinomial-Dirichlet model for ecological inference in $R \times C$ tables suggested by Rosen et al. (2001).

Let $r = 1, \ldots, R$ index rows, $C = 1, \ldots, C$ index columns, and $i = 1, \ldots, n$ index units. Let N_{ci} be the marginal count for column c in unit i and X_{ri} be the marginal proportion for row r in unit i.

Finally, let β_{rci} be the proportion of row r in column c for unit i.

The first stage of the model assumes that the vector of column marginal counts in unit i follows a Multinomial distribution of the form:

$$(N_{1i}, \ldots, N_{Ci}) \sim \text{Multinomial}(N_i, \sum_{r=1}^{R} \beta_{r1i}X_{ri}, \ldots, \sum_{r=1}^{R} \beta_{rCi}X_{ri})$$

The second stage of the model assumes that the vector of β for row r in unit i follows a Dirichlet distribution with C parameters. The model may be fit with or without a covariate.

If the model is fit without a covariate, the distribution of the vector β_{ri} is:

$$(\beta_{r1i}, \ldots, \beta_{rCi}) \sim \text{Dirichlet}(\alpha_{r1}, \ldots, \alpha_{rC})$$

In this case, the prior on each α_{rc} is assumed to be:

$$\alpha_{rc} \sim \text{Gamma}(\lambda_1, \lambda_2)$$

If the model is fit with a covariate, the distribution of the vector β_{ri} is:

$$(\beta_{r1i}, \ldots, \beta_{rCi}) \sim \text{Dirichlet}(d_r \exp(\gamma_{r1} + \delta_{r1}Z_i), \ldots, d_r \exp(\gamma_{r(C-1)} + \delta_{r(C-1)}Z_i), d_r)$$
The parameters γ_{rc} and δ_{rc} are constrained to be zero for identification. (In this function, the last column entered in the formula is so constrained.)

Finally, the prior for d_r is:

$$d_r \sim \text{Gamma}(\lambda_1, \lambda_2)$$

while γ_{rc} and δ_{rc} are given improper uniform priors if `covariate.prior.list = NULL` or have independent normal priors of the form:

$$\delta_{rc} \sim \text{N}(\mu_{\delta_{rc}}, \sigma_{\delta_{rc}}^2)$$

$$\gamma_{rc} \sim \text{N}(\mu_{\gamma_{rc}}, \sigma_{\gamma_{rc}}^2)$$

If the user wishes to estimate the model with proper normal priors on γ_{rc} and δ_{rc}, a list with four elements must be provided for `covariate.prior.list`:

- `mu.delta`: an $R \times (C - 1)$ matrix of prior means for Delta
- `sigma.delta`: an $R \times (C - 1)$ matrix of prior standard deviations for Delta
- `mu.gamma`: an $R \times (C - 1)$ matrix of prior means for Gamma
- `sigma.gamma`: an $R \times (C - 1)$ matrix of prior standard deviations for Gamma

Applying the model without a covariate is most reasonable in situations where one can think of individuals being randomly assigned to units, so that there are no aggregation or contextual effects. When this assumption is not reasonable, including an appropriate covariate may improve inferences; note, however, that there is typically little information in the data about the relationship of any given covariate to the unit parameters, which can lead to extremely slow mixing of the MCMC chains and difficulty in assessing convergence.

Because the conditional distributions are non-standard, draws from the posterior are obtained by using a Metropolis-within-Gibbs algorithm. The proposal density for each parameter is a univariate normal distribution centered at the current parameter value with standard deviation equal to the tuning constant; the only exception is for draws of γ_{rc} and δ_{rc}, which use a bivariate normal proposal with covariance zero.

The function will accept user-specified starting values as an argument. If the model includes a covariate, the starting values must be a list with the following elements, in this order:

- `start.dr`: vector of length R of starting values for Dr. Starting values for Dr must be greater than zero.
- `start.betas`: an $R \times C$ by precincts array of starting values for Beta. Each row of every precinct must sum to 1.
- `start.gamma`: an $R \times C$ matrix of starting values for Gamma. Values in the right-most column must be zero.
- `start.delta`: an $R \times C$ matrix of starting values for Delta. Values in the right-most column must be zero.

If there is no covariate, the starting values must be a list with the following elements:
• **start.alphas** an $R \times C$ matrix of starting values for Alpha. Starting values for Alpha must be greater than zero.

• **start.betas** an $R \times C \times$ units array of starting values for Beta. Each row in every unit must sum to 1.

The function will accept user-specified tuning parameters as an argument. The tuning parameters define the standard deviation of the normal distribution used to generate candidate values for each parameter. For the model with a covariate, a bivariate normal distribution is used to generate proposals; the covariance of these normal distributions is fixed at zero. If the model includes a covariate, the tuning parameters must be a list with the following elements, in this order:

• **tune.dra** vector of length R of tuning parameters for Dr

• **tune.betaa** an $R \times (C - 1)$ by precincts array of tuning parameters for Beta

• **tune.gammaa** an $R \times (C - 1)$ matrix of tuning parameters for Gamma

• **tune.deltaa** an $R \times (C - 1)$ matrix of tuning parameters for Delta

If there is no covariate, the tuning parameters are a list with the following elements:

• **tune.alphas** an $R \times C$ matrix of tuning parameters for Alpha

• **tune.betaa** an $R \times (C - 1)$ by precincts array of tuning parameters for Beta

Value

A list containing

- **draws** A list containing samples from the posterior distribution of the parameters. If a covariate is included in the model, the list contains:

 • **Dr** Posterior draws for Dr parameters as an $R \times \text{sample matrix}$. If ret.mcmc = TRUE, Dr is an mcmc object.

 • **Beta** Posterior draws for beta parameters. Only returned if ret.beta = TRUE. If ret.mcmc = TRUE, a $(R \times C \times \text{units}) \times \text{sample matrix}$ saved as an mcmc object. Otherwise, a $R \times C \times \text{units} \times \text{sample array}$

 • **Gamma** Posterior draws for gamma parameters. If ret.mcmc = TRUE, a $(R \times (C - 1)) \times \text{sample matrix}$ saved as an mcmc object. Otherwise, a $R \times (C - 1) \times \text{sample array}$

 • **Delta** Posterior draws for delta parameters. If ret.mcmc = TRUE, a $(R \times (C - 1)) \times \text{sample matrix}$ saved as an mcmc object. Otherwise, a $R \times (C - 1) \times \text{sample array}$

 • **Cell.count** Posterior draws for the cell counts, summed across units. If ret.mcmc = TRUE, a $(R \times C) \times \text{sample matrix}$ saved as an mcmc object. Otherwise, a $R \times C \times \text{sample array}$

If the model is fit without a covariate, the list includes:

• **Alpha** Posterior draws for alpha parameters. If ret.mcmc = TRUE, a $(R \times C) \times \text{sample matrix}$ saved as an mcmc object. Otherwise, a $R \times C \times \text{sample array}$

• **Beta** Posterior draws for beta parameters. If ret.mcmc = TRUE, a $(R \times C \times \text{units}) \times \text{sample matrix}$ saved as an mcmc object. Otherwise, a $R \times C \times \text{units} \times \text{sample array}$
• Cell.counters

Posterior draws for the cell counts, summed across units. If ret.mcmc = TRUE, a (R * C) × sample matrix saved as an mcmc object. Otherwise, a R × C × sample array.

acc.ratios
A list containing acceptance ratios for the parameters. If the model includes a covariate, the list includes:
• dr.accA vector of acceptance ratios for Dr draws
• beta.accA vector of acceptance ratios for Beta draws
• gamma.accA vector of acceptance ratios for Gamma and Delta draws

If the model is fit without a covariate, the list includes:
• alpha.accA vector of acceptance ratios for Alpha draws
• beta.accA vector of acceptance ratios for Beta draws

usrfun
Output from the optional usrfn

call
Call to ei.md.bayes

Author(s)
Michael Kellermann <<kellerm@post.harvard.edu>> and Olivia Lau <<olivia.lau@post.harvard.edu>>

References

See Also
lambda.md, cover.plot, density.plot, tune.md, merge.md

ei.reg

Ecological regression

Description
Estimate an ecological regression using least squares.

Usage
ei.reg(formula, data, ...)

Arguments
formula An R formula object of the form cbind(c1, c2, ...) ~ cbind(r1, r2, ...)
data data frame containing the variables specified in formula
... Additional arguments passed to lm.
Details

For \(i \in 1, \ldots, C \), \(C \) regressions of the form \(y_i \sim \text{cbind}(r_1, r_2, \ldots) \) are performed.

These regressions make use of the accounting identities and the constancy assumption, that \(\beta_{rci} = \beta_{rc} \) for all \(i \).

The accounting identities include

- defining the population cell fractions \(\beta_{rc} \) such that \(\sum_{c=1}^{C} \beta_{rc} = 1 \) for every \(r \)
- \(\sum_{c=1}^{C} \beta_{rci} = 1 \) for \(r = 1, \ldots, R \) and \(i = 1, \ldots, n \)
- \(T_{ci} = \sum_{r=1}^{R} \beta_{rci}X_{ri} \) for \(c = 1, \ldots, C \) and \(i = 1 \ldots n \)

Then regressing

\[
T_{ci} = \beta_{rc}X_{ri} + \epsilon_{ci}
\]

for \(c = 1, \ldots, C \) recovers the population parameters \(\beta_{rc} \) when the standard linear regression assumptions apply, including \(E[\epsilon_{ci}] = 0 \) and \(\text{Var}[\epsilon_{ci}] = \sigma^2 \) for all \(i \).

Value

A list containing

- call the call to \texttt{ei.reg}
- coefficients an \(R \times C \) matrix of estimated population cell fractions
- se an \(R \times C \) matrix of standard errors for coefficients.
- cov.matrices A list of the \(C \) scaled variance-covariance matrices for each of the ecological regressions

Author(s)

Olivia Lau <olivia.lau@post.harvard.edu> and Ryan T. Moore <rtm@wustl.edu>

References

description

Estimate an ecological regression using Bayesian normal regression.

Usage

\texttt{ei.reg.bayes(formula, data, sample = 1000, weights = NULL, truncate=FALSE)}
Arguments

- **formula**: An R formula object of the form `cbind(c1, c2, ...) ~ cbind(r1, r2, ...)
- **data**: data frame containing the variables specified in formula
- **sample**: number of draws from the posterior
- **weights**: a vector of weights
- **truncate**: if TRUE, imposes a proper uniform prior on the unit hypercube for the coefficients; if FALSE, an improper uniform prior is assumed

Details

For $i \in 1, \ldots, C$, C Bayesian regressions of the form $c_i \sim cbind(r1, r2, \ldots)$ are performed. See the documentation for `ei.reg` for the accounting identities and constancy assumption underlying this Bayesian linear model.

The sampling density is given by

$$y|\beta, \sigma^2, X \sim N(X\beta, \sigma^2 I)$$

The improper prior is $p(\beta, \sigma^2 | X) \propto \sigma^{-2}$.

The proper prior is $p(\beta, \sigma^2 | x) \propto I(\beta \in [0, 1]) \times \sigma^{-2}$.

Value

A list containing

- **call**: the call to `ei.reg.bayes`
- **draws**: $A, R \times C \times \text{sample array containing posterior draws for each population cell fraction}$

Author(s)

Olivia Lau <<olivia.lau@post.harvard.edu>> and Ryan T. Moore <<rtm@wustl.edu>>

References

lambda.MD

Calculate shares using data from MD model

Description

Calculates the population share of row members in a particular column as a proportion of the total number of row members in the selected subset of columns.

Usage

lambda.MD(object, columns, ret.mcmc = TRUE)

Arguments

object
an R object of class eiMD, output from ei.MD.bayes

columns
a character vector of column names to be included in calculating the shares

ret.mcmc
a logical value indicating how the samples from the posterior should be returned. If TRUE (default), samples are returned as mcmc objects. If FALSE, samples are returned as arrays.

Details

This function allows users to define subpopulations within the data and calculate the proportion of individuals within each of the columns that defines that subpopulation. For example, if the model includes the groups Democrat, Republican, and Unaffiliated, the argument columns = c("Democrat", "Republican") will calculate the two-party shares of Democrats and Republicans for each row.

Value

Returns either a ((R * included columns) × samples) matrix as an mcmc object or a (R× included columns × samples) array.

Author(s)

Michael Kellermann <<kellerm@post.harvard.edu>> and Olivia Lau <<olivia.lau@post.harvard.edu>>

See Also

ei.MD.bayes
lambda.reg

Calculate shares using data from regression model

Description

Calculates the population share of row members in a particular column

Usage

lambda.reg(object, columns)

Arguments

object An R object of class eiReg, the output from ei.reg
columns a character vector of column names to be included in calculating the shares

Details

Standard errors are calculated using the delta method as implemented in the library msm. The arguments passed to deltamethod in msm include

• a list of transformations of the form \(\frac{x_1}{x_1 + x_2 + \ldots + x_k}\), \(\frac{x_2}{x_1 + x_2 + \ldots + x_k}\), etc.. Each \(x_c\) is the estimated proportion of all row members in column \(c\), \(\hat{\beta}_{rc}\).

• mean the estimated proportions of the row members in the specified columns, as a proportion of the total number of row members, \((\hat{\beta}_{r1}, \hat{\beta}_{r2}, \ldots, \hat{\beta}_{rk})\).

• cov a diagonal matrix with the estimated variance of each \(\hat{\beta}_{rc}\) on the diagonal. Each column marginal is assumed to be independent, such that the off-diagonal elements of this matrix are zero. Estimates come from object$socv.matrices, the estimated covariance matrix from the regression of the relevant column. Thus,

\[
\text{cov} = \begin{bmatrix}
\text{Var}(\hat{\beta}_{r1}) & 0 & 0 & \ldots \\
0 & \text{Var}(\hat{\beta}_{r2}) & 0 & \ldots \\
0 & 0 & \text{Var}(\hat{\beta}_{r3}) & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

Value

Returns a list with the following elements

call the call to lambda.reg
lambda an \(R \times k\) matrix where \(k\) is the number of columns included in the share calculation
se standard errors calculated using the delta method as implemented in the library msm
lambda.reg.bayes

Author(s)
Ryan T. Moore <<rtm@wustl.edu>>

See Also
ei.reg

lambda.reg.bayes

Calculate shares using data from Bayesian regression model

Description
Calculates the population share of row members in selected columns

Usage
lambda.reg.bayes(object, columns, ret.mcmc = TRUE)

Arguments
object An R object of class eiregbayes, the output from ei.reg.bayes
columns a character vector indicating which column marginals to be included in calculating the shares
ret.mcmc If TRUE, posterior shares are returned as an mcmc object.

Value
If ret.mcmc = TRUE, draws are returned as an mcmc object with dimensions sample \times C. If ret.mcmc = FALSE, draws are returned as an array with dimensions R \times C \times samples array.

Author(s)
Ryan T. Moore <<rtm@wustl.edu>>

See Also
ei.reg.bayes
mergeMD

Combine output from multiple eiMD objects

Description

Allows users to combine output from several chains output by ei.MD.bayes

Usage

mergeMD(list, discard = 0)

Arguments

list A list containing the names of multiple eiMD objects generated from the same model.
discard The number of draws to discard from the beginning of each chain. Default is to retain all draws.

Value

Returns an eiMD object of the same format as the input.

Author(s)

Michael Kellermann <kellerm@post.harvard.edu>

References

See Also

ei.MD.bayes
plot.bounds

Plot of deterministic bounds for units satisfying row thresholds

Description

Plots the deterministic bounds on the proportion of row members within a specified column.

Usage

plot.bounds(x, row, column, labels = TRUE, order = NULL,
intersection = TRUE, xlab, ylab, col = par("fg"),
lty = par("lty"), lwd = par("lwd"), ...)

Arguments

x output from bounds
row a character string specifying the row of interest
column a character string specifying the column of interest
labels a logical toggle specifying whether precinct labels should be printed above interval bounds
order an optional vector of values between 0 and 1 specifying the order (left-to-right) in which interval bounds are plotted
intersection a logical toggle specifying whether the intersection of all plotted bounds (if it exists) should be plotted
xlab, ylab, ... additional arguments passed to plot
col, lty, lwd additional arguments passed to segments

Value

A plot with vertical intervals indicating the deterministic bounds on the quantity of interest, and (optionally) a single horizontal interval indicating the intersection of these unit bounds.

Author(s)

Ryan T. Moore <rtm@wustl.edu>

See Also

bounds
Function to read in eiMD parameter chains saved to disk

Description
In `ei.MD.bayes`, users have the option to save parameter chains for the unit-level betas to disk rather than returning them to the workspace. This function reconstructs the parameter chains by reading them back into R and producing either an array or an `mcmc` object.

Usage
`read.betas(rows, columns, units, dir = NULL, ret.mcmc = TRUE)`

Arguments
- `rows`: a character vector of the row marginals to be read back in
- `columns`: a character vector of the column marginals to be read back in
- `units`: a character of numeric vector with the units to be read back in
- `dir`: an optional character string identifying the directory in which parameter chains are stored (defaults to `getwd`)
- `ret.mcmc`: a logical value specifying whether to return the parameters as an `mcmc` object (defaults to `TRUE`)

Value
If `ret.mcmc = TRUE`, an `mcmc` object with row names corresponding to the parameter chains. If `ret.mcmc = FALSE`, an array with dimensions named according to the selected `rows`, `columns`, and `units`.

Author(s)
Olivia Lau <olivia.lau@post.harvard.edu>

See Also
`ei.MD.bayes`, `mcmc`
redistrict

Redistricting Monte-Carlo data

Description

Precinct-level observations for a hypothetical jurisdiction with four proposed districts.

Usage

`data(redistrict)`

Format

A table containing 150 observations and 9 variables:

- **precinct**: precinct identifier
- **district**: proposed district number
- **avg.age**: average age
- **per.own**: percent homeowners
- **black**: number of black voting age persons
- **white**: number of white voting age persons
- **hispanic**: number of hispanic voting age persons
- **total**: total number of voting age persons
- **dem**: Number of votes for the Democratic candidate
- **rep**: Number of votes for the Republican candidate
- **no.vote**: Number of non voters

Source

Daniel James Greiner

senc

Party registration in south-east North Carolina

Description

Registration data for White, Black, and Native American voters in eight counties of south-eastern North Carolina in 2001.

Usage

`data(senc)`
Format

A table containing 212 observations and 18 variables:

- **county** county name
- **precinct** precinct name
- **total** number of registered voters in precinct
- **white** number of White registered voters
- **black** number of Black registered voters
- **natam** number of Native American registered voters
- **dem** number of registered Democrats
- **rep** number of registered Republicans
- **other** number of registered voters without major party affiliation
- **whdem** number of White registered Democrats
- **whrep** number of White registered Republicans
- **whoth** number of White registered voters without major party affiliation
- **bldem** number of Black registered Democrats
- **blrep** number of Black registered Republicans
- **bloth** number of Black registered voters without major party affiliation
- **natamdem** number of Native American registered Democrats
- **natamrep** number of Native American registered Republicans
- **natamoth** number of Native American registered voters without major party affiliation

Source

Excerpted from North Carolina General Assembly 2001 redistricting data, http://www.ncga.state.nc.us/redistricting/Archives/Data/2001/available_data.html

<table>
<thead>
<tr>
<th>tuneA</th>
<th>Tuning parameters for alpha hyperpriors in RxC EI model</th>
</tr>
</thead>
</table>

Description

Tuning parameters for hyperpriors in RxC EI model

Usage

data(tuneA)

Format

A table containing 3 rows and 3 columns.
tuneb

Tuning parameters for the precinct level parameters in the RxC EI model

Description

A vector containing tuning parameters for the precinct level parameters in the RxC EI model.

Usage

\[
\text{data(tuneb)}
\]

Format

A vector of length 3 x 2 x 150 containing the precinct level tuning parameters for the redistricting sample data.

Examples

\[
\text{data(tuneb)}\\
\text{tuneb <- array(tuneb[[1]]), dim = c(3, 2, 150)}
\]

tunemd

Generate tuning parameters for MD model

Description

An adaptive algorithm to generate tuning parameters for the MCMC algorithm implemented in `ei.MD.bayes`. Since we are drawing each parameter one at a time, target acceptance rates are between 0.4 to 0.6.

Usage

\[
\text{tunemd(formula, covariate = NULL, data, ntunes = 10, totaldraws = 10000, ...)}
\]

Arguments

- **formula**: A formula of the form `cbind(col1, col2, ... ~ cbind(row1, row2, ...) with rows as the predictor and columns as the response
- **covariate**: An R formula for the optional covariate in the form `~ x`
- **data**: data frame containing the variables specified in `formula` and `covariate`
- **ntunes**: number of times to iterate the tuning algorithm
- **totaldraws**: number of iterations for each tuning run
- **...**: additional arguments passed to `ei.MD.bayes`
Value

A list containing matrices of tuning parameters.

Author(s)

Olivia Lau <olivia.lau@post.harvard.edu>

See Also

ei.MD.bayes
Index

*Topic IO
 read.betas, 17

*Topic datasets
 redistrict, 18
 senc, 18
 tuneA, 19
 tuneB, 20

*Topic hplot
 cover.plot, 3
 density.plot, 4
 plot.bounds, 16

*Topic iteration
 tuneMD, 20

*Topic models
 bounds, 2
 ei.MD.bayes, 5
 ei.reg, 9
 ei.reg.bayes, 10
 lambda.MD, 12
 lambda.reg, 13
 lambda.reg.bayes, 14

*Topic utilities
 mergeMD, 15
 read.betas, 17
 tuneMD, 20

bounds, 2, 16

cover.plot, 3, 9
coverage (cover.plot), 3

density.plot, 4, 9

ei.MD.bayes, 3, 5, 12, 15, 17, 20, 21
ei.reg, 9, 13, 14
ei.reg.bayes, 10, 14

lambda.MD, 4, 9, 12
lambda.reg, 4, 13
lambda.reg.bayes, 4, 14
lm, 9