Package ‘eiPack’

March 13, 2019

Type Package
Version 0.1-9
Date 2019-03-13
Title Ecological Inference and Higher-Dimension Data Management
Author Olivia Lau <olivia.lau@post.harvard.edu>, Ryan T. Moore
<rtm@american.edu>, Michael Kellermann <mrkellermann@gmail.com>
Maintainer Michael Kellermann <mrkellermann@gmail.com>
Depends R (>= 2.0.0)
Imports MASS, coda, msm
Suggests lattice
Description Provides methods for analyzing R by C ecological contingency
tables using the extreme case analysis, ecological regression,
and Multinomial-Dirichlet ecological inference models. Also
provides tools for manipulating higher-dimension data objects.
License GPL (>= 2) | file LICENSE
URL http://www.olivialau.org/software
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-03-13 13:50:10 UTC

R topics documented:

 bounds ... 2
cover.plot ... 3
densityplot ... 4
ei.MD.bayes ... 5
ei.reg ... 10
ei.reg.bayes .. 11
lambda.MD ... 12
lambda.reg ... 13
bounds

Deterministic bounds for units satisfying row thresholds

Description

Calculates the deterministic bounds on the proportion of row members within a specified column.

Usage

bounds(formula, data, rows, column, excluded = NULL, threshold = 0.9, total = NULL)

Arguments

- **formula**: a formula of the form `cbind(col1, col2, ...) ~ cbind(row1, row2, ...)`. Column and row marginals must have the same total for each ecological unit.
- **data**: a data frame containing the variables specified in `formula` and (optionally) `total`
- **rows**: a character vector specifying the rows of interest
- **column**: a character string specifying the column marginal of interest
- **excluded**: an optional character string (or vector of character strings) specifying the columns to be excluded from the bounds calculation. For example, if the quantity of interest is Democratic share of the two-party vote, non-voters would be excluded.
- **threshold**: the minimum proportion of the unit that row members must comprise for the bounds to be calculated for the unit. If `threshold = 0`, bounds will be calculated for all units.
- **total**: if row and/or column marginals are given as proportions, `total` identifies the name of the variable in `data` containing the total number of individuals in each unit
Value

A list with elements

- `bounds`: a list of deterministic bounds for all units in which row proportions meet the threshold
- `intersection`: if the intersection of the deterministic bounding intervals is non-empty, the intersection is returned. Otherwise, `NA` is returned.

Author(s)

Ryan T. Moore <rtm@american.edu>

References

See Also

- `plot.bounds`

cover.plot

Unit-level coverage plots for beta parameters from MD EI model

Description

Generates a plot of central credible intervals for the unit-level beta parameters from the Multinomial-Dirichlet ecological inference model (see `ei.MD.bayes`).

Usage

```r
cover.plot(object, row, column, x = NULL, CI = 0.95, 
medians = TRUE, col = NULL, ylim = c(0,1), 
ylab, lty = par("lty"), lwd = par("lwd"), ...)```

**Arguments**

- `object`: output from `ei.MD.bayes`
- `row`: a character string specifying the row marginal of interest
- `column`: a character string specifying the column marginal of interest
- `x`: an optional covariate to index the units along the x-axis
- `CI`: a fraction between 0 and 1 (defaults to 0.95), specifying the coverage of the central credible interval to be plotted for each unit
- `medians`: a logical value specifying whether to plot the median (defaults to TRUE). If `medians = FALSE`, the medians are not plotted.
col  an optional vector of colors to be passed to plot and segments. If col is of length two, then the first color is used for plot and the second for segments.

ylim an optional range for the y-axis (defaults to c(0,1)).

ylab an optional label for the y-axis (defaults to Proportion of row in column).
lty an optional line type passed to segments.
lwd an optional line width argument passed to segments.
... additional arguments passed to plot.

Value

A plot with vertical intervals indicating the central credible intervals for each ecological unit.

Author(s)

Olivia Lau <olivia.lau@post.harvard.edu>

See Also

plot, segments, par

densityplot  

Density plots for population level parameters

Description

Generates a density plot for population level quantities of interest output by lambda.MD, lambda.reg, and lambda.reg.bayes. For the Bayesian methods, densityplot plots the kernel density for the draws. For the frequentist lambda.reg method, densityplot plots the canonical Normal density conditional on the mean and standard error output by lambda.reg.

Usage

```r
S3 method for class 'lambdaMD'
densityplot(x, by = "column", col, xlim, ylim,
 main = "", sub = NULL, xlab, ylab,
 lty = par("lty"), lwd = par("lwd"), ...)
S3 method for class 'lambdaRegBayes'
densityplot(x, by = "column", col, xlim, ylim,
 main = "", sub = NULL, xlab, ylab,
 lty = par("lty"), lwd = par("lwd"), ...)
S3 method for class 'lambdaReg'
densityplot(x, by = "column", col, xlim, ylim,
 main = "", sub = NULL, xlab, ylab,
 lty = par("lty"), lwd = par("lwd"), ...)
```
ei.MD.bayes

Arguments

- **x**: output from `lambda.MD`, `lambda.reg`, or `lambda.reg.bayes`.
- **by**: character string (defaulting to "column") specifying whether to panel the density plot by "row" or "column" marginal.
- **col**: an optional vector of colors, with length corresponding to the number of marginals selected in `by`. Defaults to `rainbow`.
- **xlim, ylim**: optional limits for the x-axis and y-axis, passed to `plot`.
- **main, sub**: optional title and subtitle, passed to `plot`.
- **xlab, ylab**: optional labels for the x- and y-axes, passed to `plot`.
- **lty, lwd**: optional arguments for line type and line width, passed to `lines` and `plot`. If either `lty` or `lwd` are vectors, it must correspond to the number of row or column marginals selected.
- **...**: additional arguments passed to `par`.

Value

A plot with density lines for the selected margin (row or column).

Author(s)

Olivia Lau <olivia.lau@post.harvard.edu>

See Also

`plot`, `segments`, `par`

---

**ei.MD.bayes**  
Multinomial Dirichlet model for Ecological Inference in RxC tables

Description

Implements a version of the hierarchical model suggested in Rosen et al. (2001)

Usage

ei.MD.bayes(formula, covariate = NULL, total = NULL, data,  
lambda1 = 4, lambda2 = 2, covariate.prior.list = NULL,  
tune.list = NULL, start.list = NULL, sample = 1000, thin = 1,  
burnin = 1000, verbose = 0, ret.beta = 'r',  
ret.mcmc = TRUE, usrfun = NULL)
Arguments

formula A formula of the form cbind(col1, col2, ...) ~ cbind(row1, row2, ...). Column and row marginals must have the same totals.
covariate An optional formula of the form ~ covariate. The default is covariate = NULL, which fits the model without a covariate.
total if row and/or column marginals are given as proportions, total identifies the name of the variable in data containing the total number of individuals in each unit
data A data frame containing the variables specified in formula and total
lambda1 The shape parameter for the gamma prior (defaults to 4)
lambda2 The rate parameter for the gamma prior (defaults to 2)
covariate.prior.list a list containing the parameters for normal prior distributions on delta and gamma for model with covariate. See ‘details’ for more information.
tune.list A list containing tuning parameters for each block of parameters. See ‘details’ for more information. Typically, this will be a list generated by tuneMD. The default is NULL, in which case fixed tuning parameters are used.
start.list A list containing starting values for each block of parameters. See ‘details’ for more information. The default is start.list = NULL, which generates appropriate random starting values.
sample Number of draws to be saved from chain and returned as output from the function (defaults to 1000). The total length of the chain is sample*thin + burnin.
thin an integer specifying the thinning interval for posterior draws (defaults to 1, but most problems will require a much larger thinning interval).
burnin integer specifying the number of initial iterations to be discarded (defaults to 1000, but most problems will require a longer burnin).
verbose an integer specifying whether the progress of the sampler is printed to the screen (defaults to 0). If verbose is greater than 0, the iteration number is printed to the screen every verbose iteration.
ret.beta A character indicating how the posterior draws of beta should be handled: ‘r’eturn as an R object, ‘s’ave as .txt.gz files, ‘d’iscard (defaults to ‘r’).
ret.mcmc A logical value indicating how the samples from the posterior should be returned. If TRUE (default), samples are returned as coda mcmc objects. If FALSE, samples are returned as arrays.
usrfun the name of an optional a user-defined function to obtain quantities of interest while drawing from the MCMC chain (defaults to NULL).

Details
ei.MD.bayes implements a version of the hierarchical Multinomial-Dirichlet model for ecological inference in $R \times C$ tables suggested by Rosen et al. (2001).

Let $r = 1, \ldots, R$ index rows, $C = 1, \ldots, C$ index columns, and $i = 1, \ldots, n$ index units. Let $N_{ci}$ be the marginal count for column $c$ in unit $i$ and $X_{ri}$ be the marginal proportion for row $r$ in unit $i$. Finally, let $\beta_{rci}$ be the proportion of row $r$ in column $c$ for unit $i$. 
The first stage of the model assumes that the vector of column marginal counts in unit \( i \) follows a Multinomial distribution of the form:

\[
(N_{1i}, \ldots, N_{Ci}) \sim \text{Multinomial}(N_i, \frac{\sum_{r=1}^{R} \beta_{r1i}X_{ri}}{R}, \ldots, \frac{\sum_{r=1}^{R} \beta_{rCi}X_{ri}}{R})
\]

The second stage of the model assumes that the vector of \( \beta \) for row \( r \) in unit \( i \) follows a Dirichlet distribution with \( C \) parameters. The model may be fit with or without a covariate.

If the model is fit without a covariate, the distribution of the vector \( \beta_{ri} \) is:

\[
(\beta_{r1i}, \ldots, \beta_{rCi}) \sim \text{Dirichlet}(\alpha_{r1}, \ldots, \alpha_{rC})
\]

In this case, the prior on each \( \alpha_{rc} \) is assumed to be:

\[
\alpha_{rc} \sim \text{Gamma}(\lambda_1, \lambda_2)
\]

If the model is fit with a covariate, the distribution of the vector \( \beta_{ri} \) is:

\[
(\beta_{r1i}, \ldots, \beta_{rCi}) \sim \text{Dirichlet}(d_r \exp(\gamma_{r1} + \delta_{r1}Z_i), d_r \exp(\gamma_{r(C-1)} + \delta_{r(C-1)}Z_i), d_r)
\]

The parameters \( \gamma_{rC} \) and \( \delta_{rC} \) are constrained to be zero for identification. (In this function, the last column entered in the formula is so constrained.)

Finally, the prior for \( d_r \) is:

\[
d_r \sim \text{Gamma}(\lambda_1, \lambda_2)
\]

while \( \gamma_{rC} \) and \( \delta_{rC} \) are given improper uniform priors if \text{covariate.prior.list} = \text{NULL} or have independent normal priors of the form:

\[
\delta_{rC} \sim \mathcal{N}(\mu_{\delta_{rC}}, \sigma^2_{\delta_{rC}})
\]

\[
\gamma_{rC} \sim \mathcal{N}(\mu_{\gamma_{rC}}, \sigma^2_{\gamma_{rC}})
\]

If the user wishes to estimate the model with proper normal priors on \( \gamma_{rC} \) and \( \delta_{rC} \), a list with four elements must be provided for \text{covariate.prior.list}:

- \text{mu.deltaan} \( R \times (C - 1) \) matrix of prior means for Delta
- \text{sigma.deltaan} \( R \times (C - 1) \) matrix of prior standard deviations for Delta
- \text{mu.gammaan} \( R \times (C - 1) \) matrix of prior means for Gamma
- \text{sigma.gammaan} \( R \times (C - 1) \) matrix of prior standard deviations for Gamma
Applying the model without a covariate is most reasonable in situations where one can think of individuals being randomly assigned to units, so that there are no aggregation or contextual effects. When this assumption is not reasonable, including an appropriate covariate may improve inferences; note, however, that there is typically little information in the data about the relationship of any given covariate to the unit parameters, which can lead to extremely slow mixing of the MCMC chains and difficulty in assessing convergence.

Because the conditional distributions are non-standard, draws from the posterior are obtained by using a Metropolis-within-Gibbs algorithm. The proposal density for each parameter is a univariate normal distribution centered at the current parameter value with standard deviation equal to the tuning constant; the only exception is for draws of $\gamma_{rc}$ and $\delta_{rc}$, which use a bivariate normal proposal with covariance zero.

The function will accept user-specified starting values as an argument. If the model includes a covariate, the starting values must be a list with the following elements, in this order:

- **start.dra** vector of length $R$ of starting values for Dr. Starting values for Dr must be greater than zero.
- **start.betas** an $R \times C$ by precincts array of starting values for Beta. Each row of every precinct must sum to 1.
- **start.gamma** an $R \times C$ matrix of starting values for Gamma. Values in the right-most column must be zero.
- **start.delta** an $R \times C$ matrix of starting values for Delta. Values in the right-most column must be zero.

If there is no covariate, the starting values must be a list with the following elements:

- **start.alphas** an $R \times C$ matrix of starting values for Alpha. Starting values for Alpha must be greater than zero.
- **start.betas** an $R \times (C - 1)$ by precincts array of starting values for Beta. Each row in every unit must sum to 1.

The function will accept user-specified tuning parameters as an argument. The tuning parameters define the standard deviation of the normal distribution used to generate candidate values for each parameter. For the model with a covariate, a bivariate normal distribution is used to generate proposals; the covariance of these normal distributions is fixed at zero. If the model includes a covariate, the tuning parameters must be a list with the following elements, in this order:

- **tune.dra** vector of length $R$ of tuning parameters for Dr
- **tune.betas** an $R \times (C - 1)$ by precincts array of tuning parameters for Beta
- **tune.gamma** an $R \times (C - 1)$ matrix of tuning parameters for Gamma
- **tune.delta** an $R \times (C - 1)$ matrix of tuning parameters for Delta

If there is no covariate, the tuning parameters are a list with the following elements:

- **tune.alphas** an $R \times C$ matrix of tuning parameters for Alpha
- **tune.betas** an $R \times (C - 1)$ by precincts array of tuning parameters for Beta
Value

A list containing

draws A list containing samples from the posterior distribution of the parameters. If a
covariate is included in the model, the list contains:

- DrPosterior draws for Dr parameters as an $R \times \text{sample matrix}$. If \text{ret.mcmc} = \text{TRUE},
  Dr is an \text{mcmc} object.

- BetaPosterior draws for beta parameters. Only returned if \text{ret.beta} = \text{TRUE}.
  If \text{ret.mcmc} = \text{TRUE}, a $(R \times C \times \text{units}) \times \text{sample matrix saved as an mcmc}$
  object. Otherwise, a $R \times C \times \text{units} \times \text{sample array}$

- GammaPosterior draws for gamma parameters. If \text{ret.mcmc} = \text{TRUE}, a $(R \times (C - 1)) \times \text{sample matrix saved as an mcmc}$
  object. Otherwise, a $R \times (C - 1) \times \text{sample array}$

- DeltaPosterior draws for delta parameters. If \text{ret.mcmc} = \text{TRUE}, a $(R \times (C - 1)) \times \text{sample matrix saved as an mcmc}$
  object. Otherwise, a $R \times (C - 1) \times \text{sample array}$

- Cell.countPosterior draws for the cell counts, summed across units. If \text{ret.mcmc} = \text{TRUE}, a $(R \times C) \times \text{sample matrix saved as an mcmc}$
  object. Otherwise, a $R \times C \times \text{sample array}$

If the model is fit without a covariate, the list includes:

- AlphaPosterior draws for alpha parameters. If \text{ret.mcmc} = \text{TRUE}, a
  $(R \times C) \times \text{sample matrix saved as an mcmc}$ object. Otherwise, a $R \times C \times \text{sample array}$

- BetaPosterior draws for beta parameters. If \text{ret.mcmc} = \text{TRUE}, a $(R \times C \times \text{units}) \times \text{sample matrix saved as an mcmc}$
  object. Otherwise, a $R \times C \times \text{units} \times \text{sample array}$

- Cell.countPosterior draws for the cell counts, summed across units. If \text{ret.mcmc} = \text{TRUE}, a $(R \times C) \times \text{sample matrix saved as an mcmc}$
  object. Otherwise, a $R \times C \times \text{sample array}$

draws A list containing acceptance ratios for the parameters. If the model includes a

covariate, the list includes:

- dr.acc A vector of acceptance ratios for Dr draws
- beta.acc A vector of acceptance ratios for Beta draws
- gamma.acc A vector of acceptance ratios for Gamma and Delta draws

If the model is fit without a covariate, the list includes:

- alpha.acc A vector of acceptance ratios for Alpha draws
- beta.acc A vector of acceptance ratios for Beta draws

usrfun Output from the optional \text{usrfn}

call Call to \text{ei.MD.bayes}

Author(s)

Michael Kellermann <<mrkellermann@gmail.com>> and Olivia Lau <<olivia.lau@post.harvard.edu>>
References


See Also

lambda.MD, cover.plot, density.plot, tuneMD, mergeMD

---

**ei.reg**

*Ecological regression*

**Description**

Estimate an ecological regression using least squares.

**Usage**

`ei.reg(formula, data, ...)`

**Arguments**

- `formula` An R formula object of the form `cbind(c1, c2, ...) ~ cbind(r1, r2, ...)`
- `data` data frame containing the variables specified in `formula`
- `...` Additional arguments passed to `lm`.

**Details**

For $i \in 1, \ldots, C, C$ regressions of the form $c_i \sim cbind(r1, r2, \ldots)$ are performed.

These regressions make use of the accounting identities and the constancy assumption, that $\beta_{rci} = \beta_{rc}$ for all $i$.

The accounting identities include

- Defining the population cell fractions $\beta_{rc}$ such that $\sum_{c=1}^{C} \beta_{rc} = 1$ for every $r$
- $\sum_{c=1}^{C} \beta_{rci} = 1$ for $r = 1, \ldots, R$ and $i = 1, \ldots, n$
- $T_{ci} = \sum_{r=1}^{R} \beta_{rci}X_{ri}$ for $c = 1, \ldots, C$ and $i = 1 \ldots, n$

Then regressing

$$T_{ci} = \beta_{rc}X_{ri} + \epsilon_{ci}$$

for $c = 1, \ldots, C$ recovers the population parameters $\beta_{rc}$ when the standard linear regression assumptions apply, including $E[\epsilon_{ci}] = 0$ and $Var[\epsilon_{ci}] = \sigma^2_c$ for all $i$. 

Value

A list containing

call the call to ei.reg
coefficients an $R \times C$ matrix of estimated population cell fractions
se an $R \times C$ matrix of standard errors for coefficients.
cov.matrices A list of the $C$ scaled variance-covariance matrices for each of the ecological regressions

Author(s)

Olivia Lau <<olivia.lau@post.harvard.edu>> and Ryan T. Moore <<rtm@american.edu>>

References


ei.reg.bayes *Ecological regression using Bayesian Normal regression*

Description

Estimate an ecological regression using Bayesian normal regression.

Usage

ei.reg.bayes(formula, data, sample = 1000, weights = NULL, truncate=FALSE)

Arguments

formula An R formula object of the form $\text{cbind}(c1, c2, \ldots) \sim \text{cbind}(r1, r2, \ldots)$
data data frame containing the variables specified in formula
sample number of draws from the posterior
weights a vector of weights
truncate if TRUE, imposes a proper uniform prior on the unit hypercube for the coefficients; if FALSE, an improper uniform prior is assumed
Details
For \( i \in 1, \ldots, C, C \) Bayesian regressions of the form \( c_i \sim \text{cbind}(r_{1}, r_{2}, \ldots) \) are performed. See the documentation for \texttt{ei.reg} for the accounting identities and constancy assumption underlying this Bayesian linear model.

The sampling density is given by

\[
y|\beta, \sigma^2, X \sim N(X\beta, \sigma^2 I)
\]

The improper prior is \( p(\beta, \sigma^2 | X) \propto \sigma^{-2} \).

The proper prior is \( p(\beta, \sigma^2 | x) \propto I(\beta \in [0, 1]) \times \sigma^{-2} \).

Value
A list containing

- \texttt{call} the call to \texttt{ei.reg.bayes}
- \texttt{draws} a, \( R \times C \times \) sample array containing posterior draws for each population cell fraction

Author(s)
Olivia Lau <<olivia.lau@post.harvard.edu>> and Ryan T. Moore <<rtm@american.edu>>

References

---

\texttt{lambda.MD} 

\textit{Calculate shares using data from MD model}

Description
Calculates the population share of row members in a particular column as a proportion of the total number of row members in the selected subset of columns.

Usage
\[
\texttt{lambda.MD(object, columns, ret.mcmc = TRUE)}
\]

Arguments

- \texttt{object} an R object of class \texttt{eimd}, output from \texttt{ei.MD.bayes}
- \texttt{columns} a character vector of column names to be included in calculating the shares
- \texttt{ret.mcmc} a logical value indicating how the samples from the posterior should be returned. If TRUE (default), samples are returned as \texttt{mcmc} objects. If FALSE, samples are returned as arrays.
**Details**

This function allows users to define subpopulations within the data and calculate the proportion of individuals within each of the columns that defines that subpopulation. For example, if the model includes the groups Democrat, Republican, and Unaffiliated, the argument `columns = c("Democrat", "Republican")` will calculate the two-party shares of Democrats and Republicans for each row.

**Value**

Returns either a \((R \times \text{included columns}) \times \text{samples}\) matrix as an `mcmc` object or a \((R \times \text{included columns} \times \text{samples})\) array.

**Author(s)**

Michael Kellermann <<mrkellermann@gmail.com>> and Olivia Lau <<olivia.lau@post.harvard.edu>>

**See Also**

`ei.MD.bayes`

---

**Description**

Calculates the population share of row members in a particular column.

**Usage**

`lambda.reg(object, columns)`

**Arguments**

- **object**: An R object of class `eiReg`, the output from `ei.reg`
- **columns**: a character vector of column names to be included in calculating the shares

**Details**

Standard errors are calculated using the delta method as implemented in the library `msm`. The arguments passed to `deltamethod` in `msm` include:

- a list of transformations of the form \(\sim x1 / (x1 + x2 + ... + xk)\), \(\sim x2 / (x1 + x2 + ... + xk)\), etc.. Each \(x_c\) is the estimated proportion of all row members in column \(c\), \(\hat{\beta}_{rc}\).
- the estimated proportions of the row members in the specified columns, as a proportion of the total number of row members, \((\hat{\beta}_{r1}, \hat{\beta}_{r2}, ..., \hat{\beta}_{rk})\).
• cova diagonal matrix with the estimated variance of each $\hat{\beta}_{re}$ on the diagonal. Each column marginal is assumed to be independent, such that the off-diagonal elements of this matrix are zero. Estimates come from object$cov.matrices$, the estimated covariance matrix from the regression of the relevant column. Thus,
\[
\text{cov} = \begin{bmatrix}
\text{Var}(\hat{\beta}_r) & 0 & 0 & \ldots \\
0 & \text{Var}(\hat{\beta}_r) & 0 & \ldots \\
0 & 0 & \text{Var}(\hat{\beta}_r) & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

Value

Returns a list with the following elements:

- call: the call to \texttt{lambda.reg}
- lambda: an \( R \times k \) matrix where \( k \) is the number of columns included in the share calculation
- se: standard errors calculated using the delta method as implemented in the library \texttt{msm}

Author(s)

Ryan T. Moore \(<\texttt{rtm@american.edu}>>\)

See Also

\texttt{ei.reg}

\begin{itemize}
\item \texttt{lambda.reg.bayes} \hspace{1cm} \textit{Calculate shares using data from Bayesian regression model}
\end{itemize}

Description

Calculates the population share of row members in selected columns

Usage

\texttt{lambda.reg.bayes(object, columns, ret.mcmc = TRUE)}

Arguments

- \texttt{object}: An R object of class \texttt{eiRegBayes}, the output from \texttt{ei.reg.bayes}
- \texttt{columns}: a character vector indicating which column marginals to be included in calculating the shares
- \texttt{ret.mcmc}: If TRUE, posterior shares are returned as an \texttt{mcmc} object.

Value

If \texttt{ret.mcmc} = \texttt{TRUE}, draws are returned as an \texttt{mcmc} object with dimensions sample \( \times C \). If \texttt{ret.mcmc} = \texttt{FALSE}, draws are returned as an array with dimensions \( R \times C \times \text{samples} \) array.
mergeMD

Description

Allows users to combine output from several chains output by ei.MD.bayes

Usage

mergeMD(list, discard = 0)

Arguments

- **list**: A list containing the names of multiple eiMD objects generated from the same model.
- **discard**: The number of draws to discard from the beginning of each chain. Default is to retain all draws.

Value

Returns an eiMD object of the same format as the input.

Author(s)

Michael Kellermann <<mrkellermann@gmail.com>>

References


See Also

ei.MD.bayes
plot.bounds

Plot of deterministic bounds for units satisfying row thresholds

Description

Plots the deterministic bounds on the proportion of row members within a specified column.

Usage

```
S3 method for class 'bounds'
plot(x, row, column, labels = TRUE, order = NULL,
 intersection = TRUE, xlab, ylab, col = par("fg"),
 lty = par("lty"), lwd = par("lwd"), ...)
```

Arguments

- `x`: output from `bounds`.
- `row`: a character string specifying the row of interest.
- `column`: a character string specifying the column of interest.
- `labels`: a logical toggle specifying whether precinct labels should be printed above interval bounds.
- `order`: an optional vector of values between 0 and 1 specifying the order (left-to-right) in which interval bounds are plotted.
- `intersection`: a logical toggle specifying whether the intersection of all plotted bounds (if it exists) should be plotted.
- `xlab, ylab, ...`: additional arguments passed to `plot`.
- `col, lty, lwd`: additional arguments passed to `segments`.

Value

A plot with vertical intervals indicating the deterministic bounds on the quantity of interest, and (optionally) a single horizontal interval indicating the intersection of these unit bounds.

Author(s)

Ryan T. Moore <<rtm@american.edu>>

See Also

- `bounds`
**read.betas**

*Function to read in eiMD parameter chains saved to disk*

**Description**

In *ei.MD.bayes*, users have the option to save parameter chains for the unit-level betas to disk rather than returning them to the workspace. This function reconstructs the parameter chains by reading them back into R and producing either an array or an `mcmc` object.

**Usage**

```r
read.betas(rows, columns, units, dir = NULL, ret.mcmc = TRUE)
```

**Arguments**

- `rows`  
  a character vector of the row marginals to be read back in
- `columns`  
  a character vector of the column marginals to be read back in
- `units`  
  a character of numeric vector with the units to be read back in
- `dir`  
  an optional character string identifying the directory in which parameter chains are stored (defaults to `getwd`)
- `ret.mcmc`  
  a logical value specifying whether to return the parameters as an `mcmc` object (defaults to TRUE)

**Value**

If `ret.mcmc = TRUE`, an `mcmc` object with row names corresponding to the parameter chains. If `ret.mcmc = FALSE`, an array with dimensions named according to the selected `rows`, `columns`, and `units`.

**Author(s)**

Olivia Lau <olivia.lau@post.harvard.edu>

**See Also**

*eii.MD.bayes*, `mcmc`
redistrict

Redistricting Monte-Carlo data

Description

Precinct-level observations for a hypothetical jurisdiction with four proposed districts.

Usage

data(redistrict)

Format

A table containing 150 observations and 9 variables:

- **precinct**: precinct identifier
- **district**: proposed district number
- **avg.age**: average age
- **per.own**: percent homeowners
- **black**: number of black voting age persons
- **white**: number of white voting age persons
- **hispanic**: number of hispanic voting age persons
- **total**: total number of voting age persons
- **dem**: Number of votes for the Democratic candidate
- **rep**: Number of votes for the Republican candidate
- **no.vote**: Number of non voters

Source

Daniel James Greiner

senc

Party registration in south-east North Carolina

Description

Registration data for White, Black, and Native American voters in eight counties of south-eastern North Carolina in 2001.

Usage

data(senc)
Format

A table containing 212 observations and 18 variables:

county  county name
precinct  precinct name
total  number of registered voters in precinct
white  number of White registered voters
black  number of Black registered voters
natam  number of Native American registered voters
dem  number of registered Democrats
rep  number of registered Republicans
other  number of registered voters without major party affiliation
whdem  number of White registered Democrats
whrep  number of White registered Republicans
whoth  number of White registered voters without major party affiliation
bldem  number of Black registered Democrats
blrep  number of Black registered Republicans
bloth  number of Black registered voters without major party affiliation
natamdem  number of Native American registered Democrats
natamrep  number of Native American registered Republicans
natamoth  number of Native American registered voters without major party affiliation

Source

Excerpted from North Carolina General Assembly 2001 redistricting data, https://www2.ncleg.net/RnR/Redistricting/BaseData2001
**tuneB**

*Tuning parameters for the precinct level parameters in the RxC EI model*

---

**Description**

A vector containing tuning parameters for the precinct level parameters in the RxC EI model.

**Usage**

```r
data(tuneB)
```

**Format**

A vector of length 3 x 2 x 150 containing the precinct level tuning parameters for the redistricting sample data.

**Examples**

```r
data(tuneB)
tuneB <- array(tuneB[[1]], dim = c(3, 2, 150))
```

---

**tuneMD**

*Generate tuning parameters for MD model*

---

**Description**

An adaptive algorithm to generate tuning parameters for the MCMC algorithm implemented in `ei.MD.bayes`. Since we are drawing each parameter one at a time, target acceptance rates are between 0.4 to 0.6.

**Usage**

```r
tuneMD(formula, covariate = NULL, data, ntunes = 10,
 totaldraws = 10000, ...)
```

**Arguments**

- `formula` : A formula of the form `cbind(col1, col2, ...) ~ cbind(row1, row2, ...)` with rows as the predictor and columns as the response
- `covariate` : An R formula for the optional covariate in the form `~ x`
- `data` : data frame containing the variables specified in `formula` and `covariate`
- `ntunes` : number of times to iterate the tuning algorithm
- `totaldraws` : number of iterations for each tuning run
- `...` : additional arguments passed to `ei.MD.bayes`
Value

A list containing matrices of tuning parameters.

Author(s)

Olivia Lau <olivia.lau@post.harvard.edu>

See Also

ei.MD.bayes
Index

*Topic **IO**
  read.betas, 18

*Topic **datasets**
  redistrict, 19
  senc, 19
  tuneA, 20
  tuneB, 21

*Topic **hplot**
  cover.plot, 3
  densityplot, 4
  plot.bounds, 17

*Topic **iteration**
  tuneMD, 21

*Topic **models**
  bounds, 2
  ei.MD.bayes, 5
  ei.reg, 10
  ei.reg.bayes, 11
  lambda.MD, 12
  lambda.reg, 13
  lambda.reg.bayes, 15

*Topic **utilities**
  mergeMD, 16
  read.betas, 18
  tuneMD, 21

bounds, 2, 17

cover.plot, 3, 10

coverage (cover.plot), 3

density.plot, 10

densityplot, 4

ei.MD.bayes, 3, 5, 12, 13, 16, 18, 21, 22
ei.reg, 10, 13, 15
ei.reg.bayes, 11, 15, 16

lambda.MD, 4, 5, 10, 12
lambda.reg, 4, 5, 13
lambda.reg.bayes, 4, 5, 15

lm, 10

mergeMD, 10, 16

plot (plot.bounds), 17
plot.bounds, 17

read.betas, 18

redistrict, 19

senc, 19

tuneA, 20
tuneB, 21
tuneMD, 6, 10, 21

23