Package ‘eive’

May 16, 2018

Type Package

Title An Algorithm for Reducing Errors-in-Variable Bias in Simple Linear Regression

Version 2.3

Date 2018-04-16

Author Mehmet Hakan Satman (PhD), Erkin Diyarbakirlioglu (PhD)

Maintainer Mehmet Hakan Satman <mhsatman@istanbul.edu.tr>

Description Performs a compact genetic algorithm search to reduce errors-in-variables bias in linear regression. The algorithm estimates the regression parameters with lower biases and higher variances but mean-square errors (MSEs) are reduced.

License GPL

Imports Rcpp (>= 0.11.1)

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-05-16 21:38:11 UTC

R topics documented:

eive-package ... 2
cga ... 2
cga_generate_chromosome 3
eive.cga .. 4
generate.eive.data .. 6

Index 7
Description

This package includes functions for compact genetic algorithms and errors-in-variable estimation. The function 'eive' performs a genetic search to reduce the errors-in-variable bias in ordinary least squares estimator.

Change log: * In version 2.1, more speed improvements by using lm.fit instead lm in critical code. * In version 2.0, some routines are rewritten in C++ and wrapped using Rcpp so a substantial speed improvement achieved.

Details

Package:	eive
Type:	Package
Version:	2.1
Date:	2014-07-04
License:	GPL

Author(s)

Mehmet Hakan Satman <mhsatman@istanbul.edu.tr> Erkin Diyarbakirlioglu <ediyarbakirlioglu@gmail.com>
Maintainer: Mehmet Hakan Satman <mhsatman@istanbul.edu.tr>

Description

Function performs a compact genetic algorithm search for a given evaluation function.

Usage

cga(chsize, popsize, evalFunc)

Arguments

chsize	Number of bits
popsize	Number of population. By default it is 20
evalFunc	Function to minimize
Details

CGA (Compact genetic algorithms) sample chromosomes using this probability vector. A probability vector contains \([P_1,P_2,\ldots,P_N]\) and the function generates and returns a chromosome \([B_1,B_2,\ldots,B_N]\). The probability of BK having the value of 1 is \(P_k\). So, it has more chance to have \([1,1,0,0]\) than \([0,0,0,1,1]\) when the probability vector is \([0.9,0.9,0.9,0.1,0.1]\).

Value

Returns the best chromosome with size of chsize.

Author(s)

Mehmet Hakan Satman <mhsatman@istanbul.edu.tr> Erkin Diyarbakirlioğlu <ediyarkirlioglu@gmail.com>

description

Generates vector of zeros and ones for a given probability vector.

Usage

cga_generate_chromosome(prob_vec)

Arguments

prob_vec Vector of probabilities.

Details

This function is not directly called by user. CGA (Compact genetic algorithms) sample chromosomes using this probability vector. A probability vector contains \([P_1,P_2,\ldots,P_N]\) and the function generates and returns a chromosome \([B_1,B_2,\ldots,B_N]\). The probability of BK having the value of 1 is \(P_k\). So, it has more chance to have \([1,1,0,0]\) than \([0,0,0,1,1]\) when the probability vector is \([0.9,0.9,0.9,0.1,0.1]\).

Value

Returns the generated chromosome for a given probability vector. Return type is vector.

Author(s)

Mehmet Hakan Satman <mhsatman@istanbul.edu.tr> Erkin Diyarbakirlioğlu <ediyarkirlioglu@gmail.com>
eive.cga

Errors-in-variable estimation in linear regression with compact genetic algorithms

Description

Method performs a genetic search to find dummy variables that used in a two stage linear regression to reduce errors-in-variables bias in linear regression.

Usage

```r
eive.cga(dirtyx, otherx = NULL, y, numdummies = 10, popsize = 20)
```

Arguments

- `dirtyx`: Vector of values of independent variable measured with error
- `otherx`: Matrix of other independent variables.
- `y`: Vector of values of dependent variable
- `numdummies`: Number of dummy variables used in algorithm. By default, it is 10.
- `popsize`: Population size parameter used in CGA. By default it is 20.

Details

Algorithm performs a genetic search to separate mismeasured independent variable into clean and error parts.

Value

- `ols`: `lm` object calculated using original values
- `eive`: `lm` object calculated using the predicted variable by `eive`
- `proxy`: `lm` object of proxy regression obtained by genetic search.

Author(s)

Mehmet Hakan Satman <mhsatman@istanbul.edu.tr> Erkin Diyarkirlioglu <ediyarkirlioglu@gmail.com>

Examples

```r
# Creating an artificial data

# Loading required package
require("eive")

# Setting random number generator seed to 12345
# so each time the script runs, same numbers will be generated
set.seed(12345)
```
Number of observations is set to 30
n<-30

Unobserved X values are drawn from a Normal distribution
with mean 10 and variance 7
clean.x <- rnorm(n, mean=10, sd=sqrt(7))

Measurement error values are draw from a Normal distribution
with mean 0 and variance 3
delta.x <- rnorm(n, mean=0, sd=sqrt(3))

Error term of regression. Normally distributed with mean 0 and
variance 5
e <- rnorm(n, mean=0, sd=sqrt(5))

Generating Y values using the linear model
In this model, intercept is 20 and slope is 10.
y<- 20 + 10*clean.x + e

Generating observed X values by adding measurement errors
to unobserved X
dirty.x <- clean.x + delta.x

Performs a genetic search to find dummy variables that
used in two stage least squares.
Please un-comment the line below
result <- eive.cga (dirtyx=dirty.x, y=y, numdummies=10)

Print the result
Please un-comment the line below
print(result)

Dols
call:
lm(formula = y ~ dirty)
coefficients:
(Intercept) dirty
63.590 5.533
#
$eive
call:
lm(formula = y ~ ols.proxy$fitted.values)
coefficients:
(Intercept) ols.proxy$fitted.values
23.863 9.229
generate.eive.data

Generates data for errors-in-variables model

Description

This function generates data using a linear regression model with size of n. Then one of the independent variables is contaminated by adding measurement errors. Another independent variable can be included in model.

Usage

generate.eive.data(n, e.sd, delta.sd, seed = 12345, useotherx = FALSE)

Arguments

n
Number of observations.
e.sd
Standard deviation of error term of regression.
delta.sd
Standard deviation of measurement error.
seed
Random number seed. By default, it is 12345.
useotherx
Boolean variable. If it is TRUE, another variable will be created with no errors. By default, it is FALSE.

Value

Returns a matrix of contaminated variable, other variable (if exists) and independent variable in its columns.

Author(s)

Mehmet Hakan Satman <mhsatman@istanbul.edu.tr> Erkin Diyarbakirlioglu <ediyarbakirlioglu@gmail.com>
Index

cga. 2
cga_generate_chromosome, 3

eive (eive-package). 2
eive-package, 2
eive.cga, 4

generate.eive.data, 6