Package ‘ellipse’

January 6, 2018

Version 0.4.1
Title Functions for Drawing Ellipses and Ellipse-Like Confidence Regions
Author Duncan Murdoch <murdoch@stats.uwo.ca> and E. D. Chow
(porting to R by Jesus M. Frias Celayeta <iosu@bureau.ucc.ie>)
Maintainer Duncan Murdoch <murdoch@stats.uwo.ca>
Description Contains various routines for drawing ellipses and ellipse-like confidence regions, implementing the plots described in Murdoch and Chow (1996), A graphical display of large correlation matrices, The American Statistician 50, 178-180. There are also routines implementing the profile plots described in Bates and Watts (1988), Nonlinear Regression Analysis and its Applications.
Depends R (>= 2.0.0), graphics, stats
Suggests MASS
LazyLoad yes
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-01-05 23:52:13 UTC

R topics documented:

- ellipse-package .. 2
- ellipse .. 3
- ellipse.arima0 4
- ellipse.glm 5
- ellipse.lm 6
- ellipse.nls 7
- ellipse.profile 8
- ellipse.profile.glm 9
- ellipse.profile.nls 11
- pairs ... 12
Description

This package contains various routines for drawing ellipses and ellipse-like confidence regions, implementing the plots described in Murdoch and Chow (1996).

There are also routines implementing the profile plots described in Bates and Watts (1988).

Details

There are three groups of routines in the ellipse package. The first consists of those involved with `plotcorr`, which implements the plots described in Murdoch and Chow (1996). These display correlations using ellipses, whose shape is that of the contours of a bivariate normal distribution with matching correlation.

The second group implements a version of the profile plots described in Bates and Watts (1988); see `ellipse.profile` and `pairs.profile`.

The last group provide the basis for the others, drawing ellipses based on various S objects, including scalar correlations, covariance matrices `arima`, `lm`, and `nls` fits: see `ellipse`.

Author(s)

Duncan Murdoch `<murdoch@stats.uwo.ca>` and E. D. Chow (porting to R by Jesus M. Frias Celayeta `<iosu@bureau.ucc.ie>`)

Maintainer: Duncan Murdoch `<murdoch@stats.uwo.ca>`

References

ellipse

Description

A generic function returning an ellipse or other outline of a confidence region for two parameters.

Usage

`ellipse(x, ...)`

Default S3 method:

`ellipse(x, scale = c(1, 1), centre = c(0, 0), level = 0.95, t = sqrt(qchisq(level, 2)), which = c(1, 2), npoints = 100, ...)`

Arguments

- `x`: An object. In the default method the parameter `x` should be a correlation between -1 and 1 or a square positive definite matrix at least 2x2 in size. It will be treated as the correlation or covariance of a multivariate normal distribution.
- `...`: Descendant methods may require additional parameters.
- `scale`: If `x` is a correlation matrix, then the standard deviations of each parameter can be given in the scale parameter. This defaults to `c(1, 1)`, so no rescaling will be done.
- `centre`: The centre of the ellipse will be at this position.
- `level`: The confidence level of a pairwise confidence region. The default is 0.95, for a 95% region. This is used to control the size of the ellipse being plotted. A vector of levels may be used.
- `t`: The size of the ellipse may also be controlled by specifying the value of a t-statistic on its boundary. This defaults to the appropriate value for the confidence region.
- `which`: This parameter selects which pair of variables from the matrix will be plotted. The default is the first 2.
- `npoints`: The number of points used in the ellipse. Default is 100.

Details

The default method uses the $(\cos(\theta + d/2), \cos(\theta - d/2))$ parametrization of an ellipse, where $\cos(d)$ is the correlation of the parameters.

Value

An `npoints` x 2 matrix is returned with columns named according to the row names of the matrix `x` (default 'x' and 'y'), suitable for plotting.
References

See Also
ellipse.lm, ellipse.nls, ellipse.profile, ellipse.profile.nls, ellipse.arima0, plotcorr

Examples
Plot an ellipse corresponding to a 95% probability region for a
bivariate normal distribution with mean 0, unit variances and
correlation 0.8.
plot(ellipse(0.8), type = 'l')

ellipse.arima0 Outline an approximate pairwise confidence region

Description
This function produces the ellipsoidal outline of an approximate pairwise confidence region for an ARIMA model fit.

Usage
S3 method for class 'arima0'
elipse(x, which = c(1, 2), level = 0.95, t = sqrt(qchisq(level, 2)), ...)

Arguments
x The first argument should be an arima0 object, usually resulting from a call to arima0().
which Which selects the pair of parameters to be plotted. The default is the first two.
level The confidence level of the region. Default 95%.
t The t statistic on the boundary of the ellipse.
... Other ellipse.default parameters may also be used.

Details
The summary function is used to obtain the approximate covariance matrix of the fitted parameters.

Value
A matrix with columns x and y to outline the confidence region.
ellipse.glm

See Also

ellipse

Examples

data(USAccDeaths)
fit <- arima0(USAccDeaths, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1)))
Plot the approximate 95% confidence region for the first two parameters
of the model
plot(ellipse(fit), type = 'l')
points(fit$coef[1], fit$coef[2])

Description

This function produces the ellipsoidal outline of an approximate pairwise confidence region for a
generalized linear model fit.

Usage

S3 method for class 'glm'
ellipse(x, which = c(1, 2), level = 0.95, t, npoints = 100,
dispersion, ...)

Arguments

x
which
level
t
npoints
dispersion

Details

The summary function is used to obtain the approximate covariance matrix of the fitted parameters,
the dispersion estimate, and the degrees of freedom.
Value

A matrix with columns named according to which to outline the confidence region.

See Also

ellipse.default

Examples

Dobson (1990) Page 93: Randomized Controlled Trial:

```r
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())
```

Plot an approximate 95 % confidence region for the two outcome parameters

```r
plot(ellipse(glm.D93, which = c(2,3)), type = 'l')
points(glm.D93$coefficients[2], glm.D93$coefficients[3])
```

ellipse.lm

Outline a pairwise confidence region for a linear model fit.

Description

This function produces the ellipsoidal outline of a pairwise confidence region for a linear model fit.

Usage

```r
## S3 method for class 'lm'
ellipse(x, which = c(1, 2), level = 0.95, 
t = sqrt(2 * qf(level, 2, x$df.residual)), ...)
```

Arguments

- `x` The first argument should be an `lm` object, usually resulting from a call to `lm()`.
- `which` Which selects the pair of parameters to be plotted. The default is the first two.
- `level` The confidence level of the region. Default 95%.
- `t` The t statistic on the boundary of the ellipse.
- `...` Other `ellipse.default` parameters may also be used.

Details

The summary function is used to obtain the covariance matrix of the fitted parameters.
Value

A matrix with columns x and y to outline the confidence region.

See Also

ellipse.default

Examples

Plot the estimate and joint 90% confidence region for the displacement and cylinder
count linear coefficients in the mtcars dataset
data(mtcars)
fit <- lm(mpg ~ disp + cyl, mtcars)
plot(ellipse(fit, which = c('disp', 'cyl'), level = 0.90), type = 'l')
points(fit$coefficients['disp'], fit$coefficients['cyl'])

Description

This function produces the ellipsoidal outline of an approximate pairwise confidence region for a nonlinear model fit.

Usage

S3 method for class 'nls'
ellipse(x, which = c(1, 2), level = 0.95,
 t = sqrt(2 * qf(level, 2, s$df[2])), ...)

Arguments

x The first argument should be an nl object, usually resulting from a call to
 nls().
which Which selects the pair of parameters to be plotted. The default is the first two.
level The confidence level of the region. Default 95%.
t The t statistic on the boundary of the ellipse.
... Other ellipse.default parameters may also be used.

Details

The summary function is used to obtain the approximate covariance matrix of the fitted parameters.

Value

A matrix with columns x and y to outline the confidence region.
See Also

ellipse.default, ellipse.profile

Examples

Plot an approximate 95% confidence region for the weight and displacement
parameters in the Michaelis Menten model
data(Puromycin)
fit <- nls(rate - Vm*conc/(K + conc), data = Puromycin, subset = state=="treated",
 start = list(K = 0.05, Vm = 200))
plot(ellipse(fit, which = c('Vm', 'K')), type = 'l')
params <- fitmgetPars()
points(params[['Vm']], params[['K']])

ellipses.profile

Pairwise profile sketch

Description

This routine approximates a contour of a function based on the profile of that function.

Usage

S3 method for class 'profile'
ellipse(x, which = c(1, 2), level = 0.95, t = sqrt(qchisq(level, 2)),
npoints = 100, ...)

Arguments

x An object of class profile, e.g. from profile.glm in the MASS package.
which Which pair of parameters to use.
level The ellipse.profile function defaults assume that the profiled function is -2
times the log likelihood of a regular model. With this assumption the level
argument specifies the confidence level for an asymptotic confidence region.
t The square root of the value to be contoured.
npoints How many points to use in the ellipse.
... Extra arguments are not used.

Details

This function uses the 4 point approximation to the contour as described in Appendix 6 of Bates
and Watts (1988). It produces the exact contour for quadratic surfaces, and good approximations
for mild deviations from quadratic. If the surface is multimodal, the algorithm is likely to produce
nonsense.
Value

An npoints x 2 matrix with columns having the chosen parameter names, which approximates a contour of the function that was profiled.

References

Bates and Watts (1988) Nonlinear Regression Analysis & its Applications

See Also

profile, ellipse.nls

Examples

Plot an approximate 95% confidence region for the Puromycin
parameters Vm and K, and overlay the ellipsoidal region

data(Puromycin)
Purboth <- nls(formula = rate ~ ((Vm + delV * (state == "treated"))
* conc)/(K + conc), data = Puromycin,
 start = list(Vm = 160, delV = 40, K = 0.05))
Pur.prof <- profile(Purboth)
plot(ellipse(Pur.prof, which = c("Vm", "K")), type = 'l')
lines(ellipse(Purboth, which = c("Vm", "K")), lty = 2)
params <- Purbothmget Pars()
points(params["Vm"],params["K"])

ellipse.profile.glm Pairwise profile sketch for GLM profiles

Description

This routine approximates a pairwise confidence region for a glm model.

Usage

S3 method for class 'profile.glm'
ellipse(x, which = c(1, 2), level = 0.95, t,
 npoints = 100, dispersion, ...)

Arguments

x An object of class profile.glm.

which Which pair of parameters to use.

level The level argument specifies the confidence level for an asymptotic confidence region.
ellipse.profile.glm

\[t \]

The square root of the value to be contoured. By default, this is \(\text{qchisq}(\text{level}, 2) \)
for models with fixed dispersion (i.e. binomial and Poisson), and \(2 \times \text{qf}(\text{level}, 2, \text{df}) \)
for other models, where \(\text{df} \) is the residual degrees of freedom.

npoints

How many points to use in the ellipse.

dispersion

If specified, fixed dispersion is assumed, otherwise the dispersion is taken from
the model.

Extra parameters which are not used (for compatibility with the generic).

Details

This function uses the 4 point approximation to the contour as described in Appendix 6 of Bates
and Watts (1988). It produces the exact contour for quadratic surfaces, and good approximations
for mild deviations from quadratic. If the surface is multimodal, the algorithm is likely to produce
nonsense.

Value

An \(\text{npoints x 2} \) matrix with columns having the chosen parameter names, which approximates a
contour of the function that was profiled.

References

Bates and Watts (1988) Nonlinear Regression Analysis \& its Applications

See Also

profile.glm, ellipse.glm

Examples

\[
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
\#
if (noMASS) detach('package:MASS')

ellipse.profile.nls

Pairwise profile sketch

Description

This routine approximates a pairwise confidence region for a nonlinear regression model.

Usage

```r
## S3 method for class 'profile.nls'
ellipse(x, which = c(1, 2), level = 0.95,
        t = sqrt(2 * qf(level, 2, attr(x, "summary")$df[2])),
        npoints = 100, ...)
```

Arguments

- `x` An object of class `profile.nls`.
- `which` Which pair of parameters to use.
- `level` The `level` argument specifies the confidence level for an asymptotic confidence region.
- `t` The square root of the value to be contoured.
- `npoints` How many points to use in the ellipse.
- `...` Extra parameters which are not used (for compatibility with the generic).

Details

This function uses the 4 point approximation to the contour as described in Appendix 6 of Bates and Watts (1988). It produces the exact contour for quadratic surfaces, and good approximations for mild deviations from quadratic. If the surface is multimodal, the algorithm is likely to produce nonsense.

Value

An `npoints x 2` matrix with columns having the chosen parameter names, which approximates a contour of the function that was profiled.

References

See Also

`profile.ellipse.nls`
Examples

Plot an approximate 95% confidence region for the Puromycin
parameters Vm and K, and overlay the ellipsoidal region
data(Puromycin)
Purboth <- nls(formula = rate ~ ((Vm + delV * (state == "treated"))
 * conc)/(K + conc)), data = Puromycin,
 start = list(Vm = 160, delV = 40, K = 0.05))
Pur.prof <- profile(Purboth)
plot(ellipse(Pur.prof, which = c("Vm", "K")), type = 'l')
lines(ellipse(Purboth, which = c("Vm", "K")), lty = 2)
params <- PurbothmgetPars()
points(params['Vm'], params['K'])

pairs

Scatterplot Matrix

Description

A matrix of scatterplots is produced.

Usage

pairs(x, ...)

Default S3 method:
pairs(x, ...)

S3 method for class 'formula'
pairs(formula, data = NULL, ..., subset,
 na.action = stats::na.pass)

Arguments

x An object containing the data to plot.

formula, data, subset, na.action

See pairs.

... Other arguments to pass to the methods.

Details

The ellipse package defines a pairs.profile method for profile objects. Unfortunately, so does the MASS package. The ellipse::pairs generic is supplied to allow users to choose to use the version in this package. See the pairs.profile help page for more details.

Value

Typically no useful value is produced; this generic function is called for the side effect of producing the display.
pairs.profile

See Also

pairs.profile for the method from this package.

Examples

example(pairs, "graphics")

Description

This function produces pairwise plots of profile traces, profile sketches, and ellipse approximations to confidence intervals.

Usage

S3 method for class 'profile'
pairs(x, labels = c(names(x), "Profile tau"), panel = lines, invert = TRUE,
 plot.tau = TRUE, plot.trace = TRUE, plot.sketch = TRUE,
 plot.ellipse = FALSE, level = 0.95, ...)

Arguments

x
 An object of class profile, generally the result of the profile() function.
labels
 The labels to use for each variable. These default to the variable names.
panel
 The function to use to draw the sketch in each panel.
invert
 Whether to swap the axes so things look better.
plot.tau
 Whether to do the profile tau (profile t) plots.
plot.trace
 Whether to do the profile trace plots.
plot.sketch
 Whether to do the profile sketch plots.
plot.ellipse
 Whether to do the ellipse approximations.
level
 The nominal confidence level for the profile sketches and ellipses.
...
 Other plotting parameters.

Details

This function implements the plots used in Bates and Watts (1988) for nonlinear regression diagnostics.

Unfortunately, the MASS package also defines a pairs.profile method. The ellipse::pairs generic is supplied to allow users to choose to use the version in this package.

If x is a profile object, then ellipse::pairs(x) is guaranteed to call the method from this package. If you’d rather use the MASS method, then two steps are needed: you need to be sure that MASS
is loaded, then call `graphics::pairs(x)`. (If `MASS` is not loaded, you’ll get the default method from the `graphics` package, which will trigger an error since it doesn’t know about profile objects.)

If both `ellipse` and `MASS` are loaded, then `pairs(x)` is slightly ambiguous: the method that is called depends on the ordering of `ellipse` and `graphics` (not `MASS`!) in the search list. In almost all cases `ellipse` will precede `graphics`, so the `ellipse` method will usually be the default.

If `x` is any object other than a profile object, `ellipse::pairs(x)` will pass the call on to `graphics::pairs(x)`, and the standard method will be called.

Side Effects

Produces a plot on the current device for each pair of variables in the profile object.

References

See Also

`profile`, `ellipse.profile`, `ellipse.nls`

Examples

```r
# Plot everything for the Puromycin data
data(Puromycin)
Purboth <- nls(formula = rate ~ ((Vm + delV * (state == "treated") * conc)/(K + conc)),
              data = Puromycin,
              start = list(Vm = 100, delV = 40, K = 0.05))
Pur.prof <- profile(Purboth)
ellipse::pairs(Pur.prof, plot.ellipse = TRUE)

# Show the corresponding plot from MASS:
if (requireNamespace("MASS"))
  graphics::pairs(Pur.prof)
```

plotcorr

Plot correlation matrix ellipses

Description

This function plots a correlation matrix using ellipse-shaped glyphs for each entry. The ellipse represents a level curve of the density of a bivariate normal with the matching correlation.

Usage

```r
plotcorr(corr, outline = TRUE, col = 'grey', numbers = FALSE,
         type = c("full","lower","upper"),
         diag = (type == "full"), bty = "n", axes = FALSE,
         xlab = "", ylab = "", asp = 1,
         cex.lab = par("cex.lab"), cex = 0.75*par("cex"),
         mar = 0.1 + c(2,2,4,2), ...)
```
Arguments

- **corr**: A matrix containing entries between -1 and 1 to be plotted as correlations.
- **outline**: Whether the ellipses should be outlined in the default colour.
- **col**: Which colour(s) to use to fill the ellipses.
- **numbers**: Whether to plot numerical correlations in place of ellipses. If `numbers` is `TRUE`, then the correlations will be rounded to a single decimal place and placed on the plot.
- **type**: Character. Plot "full" matrix or just "upper" or "lower" triangular part of it.
- **diag**: Logical. Plot diagonal elements or not.
- **bty, axes, xlab, ylab, asp, mar, cex.lab, ...**: Graphical parameters which will be passed to `plot` when plotting.
- **cex**: Graphical parameter which will be passed to `text` when plotting.

Details

The ellipses being plotted will be tangent to a unit character square, with the shape chosen to match the required correlation. If `numbers` = `FALSE`, the `col` vector will be recycled to colour each of the ellipses; if `TRUE`, it will be ignored.

Author(s)

Duncan Murdoch; Gregor Gorjanc suggested the `type` and `diag` options.

References

See Also

- `ellipse`

Examples

```r
save.par <- par(ask = interactive())

# Plot the correlation matrix for the mtcars data full model fit
data(mtcars)
fit <- lm(mpg ~ ., mtcars)
plotcorr(summary(fit, correlation = TRUE)$correlation)

# Plot a second figure with numbers in place of the ellipses
plotcorr(summary(fit, correlation = TRUE)$correlation, numbers = TRUE)

# Colour the ellipses to emphasize the differences. The color range
# is based on RColorBrewer's Reds and Blues (suggested by Gregor Gorjanc)
```
corr.mtcars <- cor(mtcars)
ord <- order(corr.mtcars[1,])
xc <- corr.mtcars[ord, ord]

colors <- c("#A50F15","#DE2D26","#FB6A4A","#FCAE91","#FEE5D9","white",
 "#EFF3FF","#BDD7E7","#6BAED6","#3182BD","#08519C")

plotcorr(xc, col=colors[5*xc + 6])
plotcorr(xc, col=colors[5*xc + 6], type = "upper")
plotcorr(xc, col=colors[5*xc + 6], type = "lower", diag = TRUE)
par(save.par)
Index

*Topic dplot
 ellipse, 3
 ellipse-package, 2
 ellipse.arima0, 4
 ellipse glm, 5
 ellipse lm, 6
 ellipse nls, 7
 ellipse profile, 8
 ellipse profile glm, 9
 ellipse profile nls, 11
 pairs profile, 13
*Topic hplot
 plotcorr, 14
*Topic models
 ellipse profile, 8
 ellipse profile glm, 9
 ellipse profile nls, 11
*Topic nonlinear
 ellipse nls, 7
 pairs profile, 13
*Topic package
 ellipse-package, 2
*Topic regression
 ellipse glm, 5
 ellipse lm, 6
 pairs profile, 13
*Topic ts
 ellipse arima0, 4

arima, 2
ellipse, 2, 3, 5, 15
ellipse-package, 2
everase arima0, 4, 4
everase default, 6–8
everase glm, 5, 10
everase lm, 4, 6
everase nls, 4, 7, 9, 11, 14
everase profile, 2, 4, 8, 14
everase profile glm, 9
glm, 10
lm, 2
nls, 2
pairs, 12, 12, 13
pairs profile, 2, 12, 13, 13
plot, 15
plotcorr, 2, 4, 14
profile, 8–11, 14
profile glm, 8, 9
profile nls, 11
text, 15

17