Package ‘emma’

February 19, 2015

Type Package

Title Evolutionary model-based multiresponse approach

Version 0.1-0

Date 2011-10-22

Author Laura Villanova <laura.villanova@monash.edu>, Kate Smith-Miles <kate.smith-miles@monash.edu> and Rob J Hyndman <rob.hyndman@monash.edu>.

Maintainer Laura Villanova <laura.villanova@monash.edu>

Depends R (>= 2.9.2), earth, clusterSim

Imports methods

Description The evolutionary model-based multiresponse approach (EMMA) is a novel methodology to process optimisation and product improvement. The approach is suitable to contexts in which the experimental cost and/or time limit the number of implementable trials.

License GPL (>= 2)

LazyLoad yes

Repository CRAN

Date/Publication 2011-10-26 17:59:36

NeedsCompilation no

R topics documented:

- emma-package .. 2
- ackley ... 3
- distance .. 4
- emma ... 5
- emmacheck .. 9
- emmat0 .. 12
- emmatn .. 14
- peaks ... 19
- plot.emma .. 20
Description

The evolutionary model-based multiresponse approach (EMMA) is a procedure for process optimization and product improvement. It is particularly suited to processes featuring irregular experimental region due to constraints on the input variables (factors), multiple responses not accommodated by polynomial models, and expensive or time-consuming experiments. EMMA iteratively selects new experimental points that increasingly concentrate on the most promising regions of the experimental space. The selection of the new experimental points is performed on the basis of the results achieved during previous trials. A multivariate adaptive regression splines (MARS) model and a particle swarm optimization (PSO) algorithm are used to drive the search of the optimum.

Details

Package: emma
Type: Package
Version: 1.0
Date: 2011-02-22
License: GPL (>=2)
LazyLoad: yes

Author(s)

Laura Villanova, Kate Smith-Miles and Rob J Hyndman
Maintainer: Laura Villanova <laura.villanova@monash.edu>

References

Examples

in.name <- c("x1","x2")
nlev <- c(20, 20)
Description

Generates the Ackley benchmark function. The Ackley function is a commonly used test problem for global optimization procedures.

Usage

```r
ackley(x)
```

Arguments

- **x**: A matrix containing the values of the input variables.

Value

Vector of the same length as `x` giving the values of the Ackley function.

Author(s)

Laura Villanova, Kate Smith-Miles and Rob J Hyndman

References

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page295.htm
Examples

```r
x1 <- seq(-2, 2, length = 50)
x2 <- x1

x <- expand.grid(x1, x2)

z <- matrix(ackley(x), nrow = length(x1))

nrz <- nrow(z)
cnaz <- ncol(z)

ejt.colors <- colorRampPalette(c("red", "yellow"))
nbcol <- 100

color <- jet.colors(nbcol)
zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]

facetcol <- cut(zfacet, nbcol)

persp(x, x, z, col = color[facetcol], theta = 0, phi = 10,
expand = 1, xlab = "x1", ylab = "x2", zlab = "f(x1, x2)",
ticktype = "detailed")
```

distance

Distance measure from the target

Description

Computes a scalar distance between the target (a set of desirable values for the responses) and the responses values that have been either observed or estimated for each point in the experimental space. Such a distance is used to identify additional experimental points to be investigated.

Usage

```r
distance(xpop, xspace, yspace, weight, opt)
```

Arguments

- **xpop**
 A data frame containing the factor values for the experimental points investigated; the row names uniquely identify each experimental point (ID).

- **xspace**
 A data frame containing the factor values for the experimental points defining the entire experimental region; the row names uniquely identify each experimental point (ID).

- **yspace**
 A data frame containing the response values (either observed or estimated) for the points in the experimental region.

- **weight**
 A numerical vector, of the same length as the number of responses, containing the weights assigned to the each response; the sum of the weights must be equal to 1.

- **opt**
 A character vector, of the same length as the number of responses, defining if each response needs to be minimized or maximized. The allowed values are ‘mn’ (minimize) and ‘mx’ (maximize).
Details

The function normalizes the response values with respect to the estimated limits of the response space, so that the response values lie between 0 and 1. Subsequently, the function identifies the target and computes a scalar distance between the target and the response values.

Value

- **fit**: The scalar distances between the target and the response(s) values for the experimental points in xpop.
- **obj.nn**: Scalar distance from the target for the best experimental point identified by EMMA.

Author(s)

Laura Villanova, Kate Smith-Miles and Rob J Hyndman

References

Description

EMMA designs the experiments using a procedure based on the Particle Swarm Optimization (PSO) algorithm. Firstly, EMMA selects a set of initial experimental points (see `emmat0`) that define the initial position of the particles; subsequently, for a given number of iterations, the particles are moved and new experimental points are selected (see `emmatn`).

Usage

```
emma(in.name, nlev, lower, upper, out.name, opt="mn", nd=10, na=5, weight, C = 20, w1 = 0.7, w2 = 0.4, c1i = 2.5, c1f = 0.5, c2i = 0.5, c2f = 2.5, b = 5, pr.mut, graph, fn1 = NULL, fn2 = NULL, fn3 = NULL, fn4 = NULL, nresp)
```
Arguments

in.name A vector containing the names of the input variables (factors).

nlev A numeric vector of the same length as in.name, containing the number of factor levels.

lower A numeric vector of the same length as in.name, containing the lower values of the factors.

upper A numeric vector of the same length as in.name, containing the upper values of the factors.

out.name A vector containing the name(s) of the output/response variable(s).

opt A character vector of the same length as the number of responses, indicating for each response function, if the response must be minimized ('mn') or maximized ('mx').

nd Number of experimental points to be selected when t = 0.

na A numeric value indicating the number of experimental points to be selected when t > 0.

weight A numerical vector of the same length as the number of responses, reflecting the relevance of each response. Use weight = 1 if only one response is investigated; if multiple responses are investigated, the sum of the values in weight must be 1.

C A numeric value indicating the maximum number of iterations.

w1 The first numeric value used to calculate the inertia weight parameter of the time variant PSO algorithm; the default is $w_1 = 0.7$.

w2 The second numeric value used to calculate the inertia weight parameter of the time variant PSO algorithm; The default is $w_2 = 0.4$.

c1i The first numeric value used to calculate the acceleration coefficient c_1 of the time variant PSO algorithm; the default is $c_{1i} = 2.5$.

c1f The second numeric value used to calculate the acceleration coefficient c_1 of the time variant PSO algorithm; the default is $c_{1f} = 0.5$.

c2i The first numeric value used to calculate the acceleration coefficient c_2 of the time variant PSO algorithm; the default is $c_{2i} = 0.5$.

c2f The second numeric value used to calculate the acceleration coefficient c_2 of the time variant PSO algorithm; the default is $c_{2f} = 2.5$.

b A numeric value, used in the mutation operator, that determines the degree of dependence of the mutation on the iteration number; the default is $b = 5$.

pr.mut A numeric vector of the same length as the number of iterations C containing the probability of mutation for each time instant.

graph Logical; if 'yes', a plot of the MARS model is produced. A plot is produced only if the model contains more than one explanatory variable.

fn1 The first function to be optimised. Use fn1 = NULL if the function is unknown (e.g. when designing experiments in applied problems).

fn2 The second function to be optimised. Use fn2 = NULL if the function is unknown (e.g. when designing experiments in applied problems).
fn3 The third function to be optimised. Use fn3 = NULL if the function is unknown
(e.g. when designing experiments in applied problems).

fn4 The forth function to be optimised. Use fn4 = NULL if the function is unknown
(e.g. when designing experiments in applied problems).

nresp The response to be plotted. Use nresp = 1 to plot the first response...

Details

To select the new experimental points to be investigated, the following steps are iterated. A MARS
model is fitted to the collected data so that an approximated function is obtained for each response;
these approximated functions are used to predict the response values at the non-investigated exper-
imental points. Each point in the experimental region E (xspace) is now associated with a vector of
response values that has been either measured or estimated. The best (measured or estimated) value
of each response is selected and used to identify the target. Subsequently, for each experimental
point in E, the scalar distance between the response values and the target is computed and the solu-
tion that is closest to the target is selected. If such solution has not been tested yet (see emmacheck),
the experiment needs to be performed and its response values are measured. The target is then
updated, as well as the scalar distances of all the experimental points from the target. The scalar
distances are used to identify the good performing experimental points. The experimental point
whose response values are closest to the target is referred to as the global best. Similarly, a personal
best is identified for each particle by considering the experimental points visited by that particle and
selecting that point featuring the response values that are closest to the target. Finally, the particles
velocity and position are updated and a new set of experimental points is identified.

The parameters w1 and w2 are used to calculate the inertia weight w of the PSO algorithm, namely the
parameter that controls the influence of the previous particle velocity on the present velocity. High
values of w favour a global search, whereas lower values of w encourage a local search. In EMMA
the inertia weight is allowed to decrease linearly with iteration from w1 to w2 thus favouring the
exploration initially and the exploitation subsequently. The parameters c1i and c1f are used to
calculate the cognitive acceleration coefficient c1 of the PSO algorithm, whereas the parameters
c2i and c2f are used to calculate the social acceleration coefficient c2 of the PSO algorithm. Higher
values of c1 ensure larger deviation of the particle in the search space (exploration), while higher
values of c2 signify the convergence to the current global best (exploitation). In EMMA c1 is
allowed to decrease from c1i to c1f and c2 is allowed to increase from c2i to c2f. See Tripathi et
al. (2007) for more details.

Value

An object of class emma with the components listed below:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xpop</td>
<td>Experimental points investigated.</td>
</tr>
<tr>
<td>ypop</td>
<td>Response values observed at the experimental points investigated.</td>
</tr>
</tbody>
</table>
| xspace | Experimental region. It is given by all the possible combinations of the factors’
| | levels and contains xpop. The rownames uniquely identify the experimental
| | points and are reported also in xpop. |
| yspace | Response values that have been either observed or predicted. Observed response
| | values are stored also in ypop. Predicted response values are obtained using a
| | MARS model fitted to the available data. |
opt Indicates if each single function is either minimized (‘mn’) or maximized (‘mx’).

nd Number of experimental points selected initially (t=0).

na Number of experimental points selected in subsequent iterations (t>0).

tested IDs of the tested experimental points.

time Current time instant of the EMMA procedure.

weight Relative importance of each response. If only one response is investigated, then weight = 1; if multiple responses are investigated, the sum of the values in weight must be 1.

Gb ID of the best experimental point investigated (global best). Use xspace[Gb] to visualise the global best and use yspace[Gb] to visualise its measured response value(s). Gb identifies the experimental point whose response values are closest to the target; the target is a set of desirable response values which are automatically selected on the basis of the measured and predicted response values.

Pb ID of the best experimental point investigated by each particle (personal best). Use xspace[Pb] to identify the personal bests and use yspace[Pb] to visualise their measured response values. Among the experimental points associated to one particle, the Pb identifies the experimental point that is whose response values are closest to the target.

Gb.arch Archive of the global bests identified. Because the global best changes as new experimental points are investigated, an archive is maintained.

Pb.arch Archive of the personal bests identified. Because the personal bests change as new experimental points are investigated, an archive is maintained.

v Velocities used to update the particles position. The position of a particle is uniquely determined by the predictors’ values; it also defines the experiment to be performed. At each step of EMMA, the position of a particle is updated by adding a numerical value (velocity) to the current value of each single predictor.

sam.x IDs of the experiments that have been selected in the current iteration of the procedure. Use xspace[sam.x] to visualise the experiments to be performed.

add Logical. If '0' indicates that an additional experimental point needs to be investigated; if '1' indicates that an additional experimental point is not required.

Author(s)

Laura Villanova, Kate Smith-Miles and Rob J Hyndman

References

Examples

```r
# 1 response variable
in.name <- c("x1","x2")
nlev <- c(20, 20)
lower <- c(-2.048, -2.048)
upper <- c(2.048, 2.048)
out.name <- "y"
weight <- 1
C <- 10
pr.mut <- c(0.1, 0.07, 0.04, rep(0.01, C-3))

emma(in.name, nlev, lower, upper, out.name, opt = "mn", nd = 10, na = 5,
weight, C , w1 = 0.7, w2 = 0.4, cl1 = 2.5, clf = 0.5, c2i = 0.5,
c2f = 2.5, b = 5, pr.mut, graph = "yes", fn1 = ackley)

# 2 response variables
in.name <- c("x1", "x2")
nlev <- c(20, 20)
lower <- c(-3, -3)
upper <- c(3, 3)
out.name <- c("y1", "y2")
weight <- c(0.2, 0.8)
C <- 10
pr.mut <- c(0.1, 0.07, 0.04, rep(0.01, C-3))

emma(in.name, nlev, lower, upper, out.name, opt = c("mn", "mx"), nd = 10,
na = 5, weight, C , w1 = 0.7, w2 = 0.4, cl1 = 2.5, clf = 0.5,
c2i = 0.5, c2f = 2.5, b = 5, pr.mut, graph = "yes", fn1 = ackley,
fn2 = peaks, nresp = 2)
```

Description

The function evaluates if one additional experimental point is required. If this is the case, the function provides with details about the additional experiment to be performed.

Usage

```r
emmacheck(x, graph, fn1 = NULL, fn2 = NULL, fn3 = NULL, fn4 = NULL, nresp)
```
Arguments

x An object of class `emmatn`.

graph Logical; if "yes", a plot of the MARS model is produced. Note that a plot is produced only if the model contains more than one explanatory variable.

fn1 The first function to be optimised. Use `fn1 = NULL` if the function is unknown (e.g. when designing experiments in applied problems).

fn2 The second function to be optimised. Use `fn2 = NULL` if the function is unknown (e.g. when designing experiments in applied problems).

fn3 The third function to be optimised. Use `fn3 = NULL` if the function is unknown (e.g. when designing experiments in applied problems).

fn4 The fourth function to be optimised. Use `fn4 = NULL` if the function is unknown (e.g. when designing experiments in applied problems).

nresp The response to be plotted. Use `nresp = 1` to plot the first response...

Details

Once the experiments identified by `emma` are implemented, the observed response values, the predicted response values, the target and the scalar distances from the target are updated. The solution with the response values closest to the target is thus identified. If such a solution has not been tested yet, `emmacheck` selects it as an additional experimental point that needs to be investigated.

Value

An object of class `emmatn` with the components listed below:

xpop Experimental points investigated.

ypop Response values observed at the experimental points investigated.

xspace Experimental region. It is given by all the possible combinations of the factors’ levels and contains xpop. The rownames uniquely identify the experimental points and are reported also in xpop.

yspace Response values that have been either observed or predicted. Observed response values are stored also in ypop. Predicted response values are obtained using a MARS model fitted to the available data.

opt Indicates if each single function is either minimized (’mn’) or maximized (’mx’).

nd Number of experimental points selected initially (t=0).

na Number of experimental points selected in subsequent iterations (t>0).

Gb ID of the best experimental point investigated. Use `xspace[Gb,]` to visualise the best experimental point and use `yspace[Gb,]` to visualise the measured response value(s). Gb identifies the experimental point whose response values are closest to the target. The target is a set of desirable response values which are automatically selected on the basis of the measured and predicted response values.

add Logical. If ’0’ indicates that an additional experimental point needs to be investigated; if ’1’ indicates that an additional experimental point is not required.
emmacheck

- **test**: IDs of the tested experimental points.
- **time**: Current time instant of the EMMA procedure.
- **weight**: Importance of each response. If only one response is investigated, then weight = 1; if multiple responses are investigated, the sum of the values in weight must be 1.

Author(s)

Laura Villanova, Kate Smith-Miles and Rob J Hyndman

References

Examples

```r
## define the problem variables
in.name <- c("x1", "x2")
nlev <- c(20, 20)
lower <- c(-2.048, -2.048)
upper <- c(2.048, 2.048)
out.name <- "y"
weight <- 1
c <- 10
pr.mut <- c(0.1, 0.07, 0.04, rep(0.01, C-3))

## Not run:

# simulated problem (with known objective function) #
# Identify the initial set of experimental runs (initialization)
# Identifying the experimental runs during subsequent steps of the
# EMMA procedure

for(t in 1:(C - 1))
{
  tn <- emmatn(t, tn, na = 5, opt = "mn", weight, pr.mut = pr.mut,
  graph = "yes", fnl = ackley)
  tn <- emmacheck(tn, graph = "no", fnl = ackley)
}

## End(Not run)
```
emmat0

Defining the initial design

Description

The function initializes the EMMA procedure. It generates the experimental space and selects the initial set of experimental points, namely the initial set of experiments to be performed. Random sampling is used for that purpose.

Usage

```r
emmat0(in.name, nlev, lower, upper, out.name, nd, fn1 = NULL, fn2 = NULL, fn3 = NULL, fn4 = NULL)
```

Arguments

- `in.name`: A vector containing the names of the input variables (factors).
- `nlev`: A numeric vector of the same length as `in.name`, containing the number of factor levels.
- `lower`: A numeric vector of the same length as `in.name`, containing the lower values of the factors.
- `upper`: A numeric vector of the same length as `in.name`, containing the upper values of the factors.
- `out.name`: A vector containing the name(s) of the output/response variable(s).
- `nd`: Number of experimental points to be selected when `t = 0`.

```r
# applicative problem (with unknown objective function)
# identify the initial set of experimental runs (initialization)
tn <- emmat0(in.name, nlev, lower, upper, out.name, nd = 10)

# perform the experiments in \code{tn$xp0} and measure the response values, then load the measured response values in \code{tn$yp0}

# identify the experimental runs during subsequent steps of the EMMA procedure
for(t in 1:(C-1))
{
  tn <- emmatn(t, tn, na = 5, opt = "mn", weight, pr.mut = pr.mut, graph = "no")
  tn$yp0 <- ackley(tn$xp0)
  tn <- emmacheck(tn, graph = "no")
  if(tn$add==1) tn$yp0 <- ackley(tn$xp0)
}
```
fn1 The first function to be optimised; use fn1 = NULL if the objective function is unknown, like in applied problems.

fn2 The first function to be optimised; use fn2 = NULL if the objective function is unknown, like in applied problems.

fn3 The third function to be optimised; use fn3 = NULL if the objective function is unknown, like in applied problems.

fn4 The fourth function to be optimised; use fn4 = NULL if the objective function is unknown, like in applied problems.

Details
At the moment the function does not implement the use of constraints for the factors. Unfeasible experiments are easily excluded by manipulating the matrix xspace in an object of class emmat0.

Value
An object of class emmat0 with the components listed below:

xpop Experimental points investigated.

ypop Response values observed at the experimental points investigated.

xspace Experimental region.

yspace Response values that have been either observed or predicted. Observed response values are stored also in ypop. Predicted response values are obtained using a MARS model fitted to the available data.

opt Indicates if each single function is either minimized ('mn') or maximized ('mx').

nd Number of experimental points selected initially (t=0).

na Number of experimental points selected in subsequent iterations (t>0).

tested ID of the tested experimental points.

time Current time instant of the EMMA procedure.

opt Indicates if each single objective function is either minimized ('mn') or maximized ('mx').

Author(s)
Laura Villanova, Kate Smith-Miles and Rob J Hyndman

References

Examples

```r

# Definitions of the problem variables
in.name <- c("x1", "x2")
nlev <- c(20, 20)
lower <- c(-2.048, -2.048)
upper <- c(2.048, 2.048)
out.name <- "y"

define the problem variables

## Identify the initial set of experimental runs (initialization)
## Simulated problem (with known objective function)
 tn <- emmatn(in.name, nlev, lower, upper, out.name, nd = 10, fn1 = ackley)

## Applicative problem (with unknown objective function)
 tn <- emmatn(in.name, nlev, lower, upper, out.name, nd = 10)

# Perform the experiments in \code{tn$xpop} and measure the
# response values, then load in \code{tn$ypop} the measured
# response values
# tn$ypop<...

# Definitions of the additional experimental points
in.name <- c("x1", "x2")
nlev <- c(20, 20)
lower <- c(-3, -3)
upper <- c(3, 3)
out.name <- c("y1", "y2")
weight <- c(0.2, 0.8)
C <- 10
pr.mut <- c(0.1, 0.07, 0.04, rep(0.01, C-3))

 tn <- emmatn(in.name, nlev, lower, upper, out.name, nd = 10, fn1 = ackley,
               fn2 = peaks)
```

Description

Given the set of experimental points investigated in previous steps of the EMMA procedure and their measured response values, `emmatn` returns a new set of experimental points to be investigated (and thus new experiments to be performed).
Usage

```
emmatn(t, x, na, opt, weight, C, w1, w2, c1i, c1f, c2i, c2f,
      b, pr.mut, graph, fn1 = NULL, fn2 = NULL, fn3 = NULL, fn4 = NULL, nresp)
```

Arguments

- **t**: A numeric value indicating the current time instant of the EMMA procedure.
- **x**: An object of class `emmatP` or `emmatn`. Use `emmatP` if `t <= 1`; use `emmatn` if `t > 1`.
- **na**: A numeric value indicating the number of experimental points to be selected when `t > 0`.
- **opt**: A character vector of the same length as the number of responses, indicating for each response function, if the response must be minimized ('mn') or maximized ('mx').
- **weight**: A numerical vector of the same length as the number of responses, reflecting the relevance of each response. Use `weight = 1` if only one response is investigated; if multiple responses are investigated, the sum of the values in `weight` must be 1.
- **C**: A numeric value indicating the maximum number of iterations. The default is `C = 20`.
- **w1**: The first numeric value used to calculate the inertia weight parameter of the time variant PSO algorithm. The default is `w1 = 0.7`.
- **w2**: The second numeric value used to calculate the inertia weight parameter of the time variant PSO algorithm. The default is `w2 = 0.4`.
- **c1i**: The first numeric value used to calculate the acceleration coefficient c1 of the time variant PSO algorithm. The default is `c1i = 2.5`.
- **c1f**: The second numeric value used to calculate the acceleration coefficient c1 of the time variant PSO algorithm. The default is `c1f = 0.5`.
- **c2i**: The first numeric value used to calculate the acceleration coefficient c2 of the time variant PSO algorithm. The default is `c2i = 0.5`.
- **c2f**: The second numeric value used to calculate the acceleration coefficient c2 of the time variant PSO algorithm. The default is `c2f = 2.5`.
- **b**: A numeric value, used in the mutation operator, that determines the degree of dependence of the mutation on the iteration number. The default is `b = 5`.
- **pr.mut**: A numeric vector of the same length as the number of iterations C containing the probability of mutation for each time instant.
- **graph**: Logical; if 'yes', a plot of the MARS model is produced. A plot is produced only if the model contains more than one explanatory variable.
- **fn1**: The first function to be optimised; use `fn1 = NULL` if the objective function is unknown, like in applied problems.
- **fn2**: The first function to be optimised; use `fn2 = NULL` if the objective function is unknown, like in applied problems.
fn3 The third function to be optimised; use fn3 = NULL if the objective function is
unknown, like in applied problems.

fn4 The fourth function to be optimised; use fn4 = NULL if the objective function
is unknown, like in applied problems.

nresp The response to be plotted. Use nresp = 1 to plot the first response...

Details

The parameters w1 and w2 are used to calculate the inertia weight w of the PSO algorithm, namely the
parameter that controls the influence of the previous particle velocity on the present velocity. High
values of w favour a global search, whereas lower values of w encourage a local search. In EMMA
the inertia weight is allowed to decrease linearly with iteration from w1 to w2 thus favouring the
exploration initially and the exploitation subsequently. The parameters c1i and c1f are used to
calculate the cognitive acceleration coefficient c1 of the PSO algorithm, whereas the parameters
c2i and c2f are used to calculate the social acceleration coefficient c2 of the PSO algorithm. Higher
values of c1 ensure larger deviation of the particle in the search space (exploration), while higher
values of c2 signify the convergence to the current global best (exploitation). In EMMA c1 is
allowed to decrease from c1i to c1f and c2 is allowed to increase from c2i to c2f. See Tripathi et
al. (2007) for more details.

Value

An object of class emma with the components listed below:

xpop Experimental points investigated.

ypop Response values observed at the experimental points investigated.

xspace Experimental region. It is given by all the possible combinations of the factors’
levels and contains xpop. The rownames uniquely identify the experimental
points and are reported also in xpop.

yspace Response values that have been either observed or predicted. Observed response
values are stored also in ypop. Predicted response values are obtained using a
MARS model fitted to the available data (xpop, ypop).

opt Indicates if each single function is either minimized ('mn') or maximized ('mx').

nd Number of experimental points selected initially (t=0).

na Number of experimental points selected in subsequent iterations (t>0).

tested IDs of the tested experimental points.

time Current time instant of the EMMA procedure.

weight Relative importance of each response. If only one response is investigated, then
weight = 1; if multiple responses are investigated, the sum of the values in
weight must be 1.

Gb ID of the best experimental point investigated (global best). Gb identifies the
experimental point whose response values are closest to the desirable response
values (target); the target is automatically selected on the basis of the measured
and predicted response values. Use xspace[Gb,] to visualise the global best
and use yspace[Gb,] to visualise its measured response value(s).
Pb ID of the best experimental point investigated by each particle (personal best). Use \texttt{xspace[Pb, \{\}]} to identify the personal bests and use \texttt{yspace[Pb, \{\}]} to visualise their measured response values. Among the experimental points associated to one particle, the Pb identifies the experimental point that is whose response values are closest to the target.

Gb.arch Archive of the global bests identified. Because the global best changes as new experimental points are investigated, an archive is maintained.

Pb.arch Archive of the personal bests identified. Because the personal bests change as new experimental points are investigated, an archive is maintained.

v Velocities used to update the particles position. The position of a particle is uniquely determined by the predictors’ values; it also defines the experiment to be performed. At each step of EMMA, the position of a particle is updated by adding a numerical value (velocity) to the current value of each single predictor.

sam.x IDs of the experiments that have been selected in the current iteration of the procedure. Use \texttt{xspace[sam.x, \{\}]} to visualise the experiments to be performed.

add Logical. If ‘0’ indicates that an additional experimental point needs to be investigated; if ‘1’ indicates that an additional experimental point is not required.

Author(s)

Laura Villanova, Kate Smith-Miles and Rob J Hyndman

References

Examples

```r
## Not run:
### Not run:
### 1 response variable ##
### Not run:

in.name <- c("x1","x2")
nlev <- c(20, 20)
lower <- c(-2.048, -2.048)
upper <- c(2.048, 2.048)
out.name <- "y"
weight <- 1
```
C <- 10
pr.mut <- c(0.1, 0.07, 0.04, rep(0.01, C-3))

simulated problem (with known objective function)
fn <- emmat0(in.name, nlev, lower, upper, out.name, nd = 10, fn1 = ackley)
for(t in 1:(C-1))
{
 tn <- emmatn(t, tn, na = 5, opt = "mn", weight, pr.mut = pr.mut,
 graph = "yes", fn1 = ackley)
 tn <- emmacheck(tn, graph = "no", fn1 = ackley)
}

applicative problem (with unknown objective function)
fn <- emmat0(in.name, nlev, lower, upper, out.name, nd = 10)
use the measured response values to manually fill 'tn$ypop'
fn$ypop <- ackley(tn$xpop)
for(t in 1:(C-1))
{
 tn <- emmatn(t, tn, na = 5, opt = "mn", weight, pr.mut = pr.mut,
 graph = "yes")
 fn$ypop <- ackley(tn$xpop)
 tn <- emmacheck(tn, graph = "no")
 if(tn$add == 1) fn$ypop <- ackley(tn$xpop)
}

End(Not run)

2 response variables

in.name <- c("x1", "x2")
nlev <- c(20, 20)
lower <- c(-3, -3)
upper <- c(3, 3)
out.name <- c("y1", "y2")
weight <- c(0.2, 0.8)
C <- 10
pr.mut <- c(0.1, 0.07, 0.04, rep(0.01, C-3))

fn <- emmat0(in.name, nlev, lower, upper, out.name, nd = 10, fn1 = ackley,
 fn2 = peaks)
for(t in 1:(C-1))
{
 tn <- emmatn(t, tn, na = 5, opt = c("mn", "mx"), weight,
 pr.mut = pr.mut, graph = "yes", fn1 = ackley, fn2 = peaks)
 tn <- emmacheck(tn, graph = "no", fn1 = ackley, fn2 = peaks)
}
peaks

Test problem with multiple peaks

Description
Generates a benchmark function with multiple peaks.

Usage
peaks(x)

Arguments
x A matrix containing the values of the input variables.

Value
Vector of the same length as x giving the values of the benchmark function.

Author(s)
Laura Villanova, Kate Smith-Miles and Rob J Hyndman

Examples
x1 <- seq(-3, 3, length = 50)
x2 <- x1
x <- expand.grid(x1, x2)

z <- matrix(peaks(x), nrow = length(x1))

nrz <- nrow(z)
cmp <- ncol(z)
jet.colors <- colorRampPalette(c("red", "yellow"))
nbc <- 100
color <- jet.colors(nbc)
zfacet <- z[-1, -1] + z[-1, -ncmp] + z[-nrz, -1] + z[-nrz, -ncmp]
facetcol <- cut(zfacet, nbc)

persp(x1, x2, z, col = color[facetcol], theta = 0, phi = 10,
extend = 1, xlab = "x1", ylab = "x2", zlab = "f(x1, x2)",
ticktype = "detailed")
Description

For a problem with 1 response and 2 input variables (factors) plots a 3D graph and shows how the simulation evolves.

Usage

```r
## S3 method for class 'emma'
plot(x, n = 50, fn, C = 10,...)
```

Arguments

- `x` An object of class 'emma'.
- `n` The number of factors' levels to be plotted.
- `fn` The optimization function.
- `C` The number of time instants used in the EMMA procedure.
- `...` Other arguments not used.

Value

...

Author(s)

Laura Villanova, Kate Smith-Miles and Rob J Hyndman

Examples

```r
in.name <- c("x1","x2")
nlev <- c(20, 20)
lower <- c(-3, -3)
upper <- c(3, 3)
out.name <- "y"
weight <- 1
C <- 20
pr.mut <- c(0.1, 0.07, 0.04, rep(0.01, C-3))

emma_peaks<emma(in.name, nlev, lower, upper, out.name, opt = "mx",
nd = 10, na = 5, weight, C , w1 = 0.7, w2 = 0.4, c1i = 2.5,
c1f = 0.5, c2i = 0.5, c2f = 2.5, b = 5, pr.mut, graph = "no",
fn1 = peaks)

plot(emma_peaks, fn = peaks, n = 50, C = 20)
```
Index

*Topic `\textasciitildeDesigned Experiments`
- distance, 4
- emma, 5
- emma-package, 2
- emmacheck, 9
- emmat0, 12
- emmatn, 14

*Topic `\textasciitildeOptimization`
- ackley, 3
- distance, 4
- emma, 5
- emmacheck, 9
- emmat0, 12
- emmatn, 14
- peaks, 19
- plot.emma, 20

ackley, 3

distance, 4

EMMA (emma-package), 2
- emma, 5, 7, 10, 16
- emma-package, 2
- emmacheck, 7, 9
- emmat0, 5, 12, 13, 15
- emmatn, 5, 10, 14, 15

peaks, 19
plot.emma, 20