Package ‘epr’

February 19, 2015

Type Package
Title Easy polynomial regression
Version 2.0
Date 2013-07-30
Author Emmanuel Arnhold
Maintainer Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>
Description The package performs analysis of polynomial regression in simple designs with quantitative treatments
Depends R (>= 2.13), car
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2013-07-30 21:36:47

R topics documented:

epr-package ... 2
data1 ... 3
data2 ... 4
data3 ... 4
data4 ... 5
data5 ... 6
pr1 ... 6
pr2 ... 7
regplot .. 9

Index 12
Description

The package performs analysis of polynomial regression in simple designs with quantitative treatments.

Details

Package: epr
Type: Package
Version: 2.0
Date: 2013-07-30
License: GPL-2

Author(s)

Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>

References

Examples

analysis in completely randomized design
data(data1)
r1=pr2(data1)
names(r1)
r1
r1[1]

analysis in randomized block design
data(data2)
r2=pr2(data2, design=2)
r2

analysis in latin square design
data(data3)
Description

Quantitative treatments in completely randomized design.

Usage

data(data1)

Format

A data frame with 24 observations on the following 2 variables.

- treatment a numeric vector
- gain a numeric vector

References

Examples

```r
data(data1)
summary(data1)
```

data2
data2: Kaps and Lamberson (2009): page 434

Description

Quantitative treatments in randomized block design.

Usage

```r
data(data2)
```

Format

A data frame with 25 observations on the following 3 variables.

- `protein_level` a numeric vector
- `litter` a factor with levels `l1 l2 l3 l4 l5`
- `feed_conversion` a numeric vector

References

Examples

```r
data(data2)
summary(data2)
```

data3
data3: fictional example

Description

Quantitative treatments in latin square design.

Usage

```r
data(data3)
```
data4

Format

A data frame with 25 observations on the following 4 variables.

- **treatment**: a numeric vector
- **animal**: a factor with levels `a1 a2 a3 a4 a5`
- **period**: a factor with levels `p1 p2 p3 p4 p5`
- **milk_fat**: a numeric vector

Examples

```r
data(data4)
summary(data4)
```

data4: fictional example

Description

Quantitative treatments in several latin squares design.

Usage

```r
data(data4)
```

Format

A data frame with 50 observations on the following 5 variables.

- **treatment**: a numeric vector
- **square**: a numeric vector
- **animal**: a factor with levels `a1 a2 a3 a4 a5`
- **period**: a factor with levels `p1 p2 p3 p4 p5`
- **milk_fat**: a numeric vector

Examples

```r
data(data4)
summary(data4)
```
data5: fictional example

Description
Quantitative treatments and three response variable.

Usage
data(data5)

Format
A data frame with 24 observations on the following 4 variables.
treatments a numeric vector
variable1 a numeric vector
variable2 a numeric vector
variable3 a numeric vector

Examples
data(data5)
summary(data5)

pr1

Analysis of polynomial regression

Description
The function performs analysis of polynomial regression in simple designs with quantitative treatments. The function also performs model fits with plateaus (plateaus linear and quadratic).

Usage
pr1(data, plateau = FALSE, x.plateau = NULL)

Arguments
data data is a data.frame
The first column should contain the treatments (explanatory variable) and the remaining columns the response variables.
plateau FALSE = function returns the linear and quadratic
TRUE = function returns the linear, quadratic, linear.plateau and quadratic.plateau
x.plateau NULL = starting value for the linear plateau will be the point of maximum (or minimum) of the quadratic equation
The function performs analysis of polynomial regression in simple designs with quantitative treatments. This function performs analysis the lack of fit.

Usage

```r
pr2(data, design = 1, list = FALSE, type = 2)
```

Arguments

- `data` data is a data.frame
data frame with two columns, treatments and response (completely randomized design)data frame with three columns, treatments, blocks and response (randomized block design)data frame with four columns, treatments, rows, cols and response (latin square design)data frame with five columns, treatments, square, rows, cols and response (several latin squares)

Value

Returns coefficients of the models, t test for coefficients, R squared, adjusted R squared, AIC, BIC and the maximum (or minimum) values of y and critical point of x.

Author(s)

Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>

See Also

lm, eal(easyanova package), pr2, regplot

Examples

```r
# data
data(data5)

# linear and quadratic models
results1=prl(data5)
results1

# including plateaus models
results2=prl(data5, plateau=TRUE)
results2
```
design 1 = completely randomized design
2 = randomized block design
3 = latin square design
4 = several latin squares

type type is form of obtain sum of squares
1 = a sequential sum of squares
2 = a partial sum of squares

Details

The response and the treatments must be numeric. Other variables can be numeric or factors.

Value

Returns analysis of variance, models, t test for coefficients and R squared and adjusted R squared.

Author(s)

Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>

References

See Also

lm, lme(package nlme), ea1(package easyanova), pr1, regplot

Examples

analysis in completely randomized design
data(data1)
r1=pr2(data1)
names(r1)
r1
r1[1]

analysis in randomized block design
data(data2)
r2=pr2(data2, design=2)
r2

analysis in latin square design
data(data3)
r3=pr2(data3, design=3)
r3

analysis in several latin squares
data(data4)
r4=pr2(data4, design=4)
r4

data
treatments=rep(c(0.5,1.5,2,2.5,3), c(3,3,3,3,3))
r1=rnorm(18,60,3)
r2=r1*1:18
r3=r1*18:1
r4=r1*c(c(1:10),10,10,10,10,10,10,10,10)
data=data.frame(treatments,r1,r2,r3, r4)

use the argument list = TRUE
pr2(data6, design=1, list=TRUE)

graphs
regplot(data6,variable=1, poly=2)
regplot(data6,variable=2, poly=1)
regplot(data6,variable=3, poly=1)
regplot(data6,variable=4, poly=4)
regplot(data6,variable=4, poly=3)

regplot

Regression graphics

Description

The function generates the scatter plot with the regression equation.

Usage

\[
\text{regplot(data, xlab = NULL, ylab = NULL, poly = 1, position = 6, colors = TRUE, mean = TRUE, variable = 1, x.plateau = NULL)}
\]

Arguments

- **data**
 - data is a data.frame
 - the first column contain the explanatory variable
 - the others columns contain the responses variables
- **xlab**
 - name of variable x
- **ylab**
 - name of variable y
poly indicates which regression plot
1 = linear (default)
2 = quadratic
3 = linear.plateau
4 = quadratic.plateau

position position of equation in the graph
top=1
bottomright=2
bottom=3
bottomleft=4
left=5
topleft=6 (default)
topright=7
right=8
center=9

colors TRUE = the line is red (default)
FALSE = the line is black

mean TRUE = scatter plots with averages (default)
FALSE = scatter plots with all data

variable 1 = second column of data.frame (default)
2 = third column of data.frame

x.plateau default is NULL = starting value for the linear plateau will be the point of maximum (or minimum) of the quadratic equation

Value
The function generates the scatter plot with the regression equation.

Author(s)
Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>

See Also
lm, lme, ea1(easyanova package), pr2, pr2, dplot(ds package)

Examples

```
# data
data(data5)

# first response variable
par(mfrow=c(2,2))
regplot(data5, "Variable X", "Variable Y")
```
regplot(data5, "Variable X", "Variable Y", poly=2)
regplot(data5, "Variable X", "Variable Y", poly=3)
regplot(data5, "Variable X", "Variable Y", poly=4)

second response variable
par(mfrow=c(2,2))
regplot(data5, "Variable X", "Variable Y", variable=2)
regplot(data5, "Variable X", "Variable Y", variable=2, poly=2)
regplot(data5, "Variable X", "Variable Y", variable=2, poly=3)
regplot(data5, "Variable X", "Variable Y", variable=2, poly=4)

third response variable
par(mfrow=c(2,2))
regplot(data5, variable=3, colors=FALSE, position=4, mean=FALSE)
regplot(data5, variable=3, poly=2, mean=FALSE)
regplot(data5, variable=3, poly=3, mean=FALSE)
regplot(data5, variable=3, poly=4, mean=FALSE)

data
treatments=rep(c(0.5,1,1.5,2,2.5,3), c(3,3,3,3,3,3))
r1=rnorm(18,60,3)
r2=r1*1:18
r3=r1*18:1
r4=r1*c(1:10),10,10,10,10,10,10,10,10,10)
data5=data.frame(treatments, r1, r2, r3, r4)

graphs
regplot(data5, variable=1, poly=2)
regplot(data5, variable=2, poly=1)
regplot(data5, variable=3, poly=1)
regplot(data5, variable=4, poly=4)
regplot(data5, variable=4, poly=3)
Index

data1, 3
data2, 4
data3, 4
data4, 5
data5, 6

epr (epr-package), 2
epr-package, 2

pr1, 6
pr2, 7

regplot, 9