Package ‘exactLoglinTest’

February 19, 2015

Version 1.4.2
Title Monte Carlo Exact Tests for Log-linear models
Author Brian Caffo <bcaffo@gmail.com>
Maintainer Brian Caffo <bcaffo@gmail.com>
Depends R (>= 1.5)
Suggests stats
Description Monte Carlo and MCMC goodness of fit tests for log-linear models
License GPL
URL http://www.bcaffo.com
Repository CRAN
Date/Publication 2013-02-05 13:40:27

R topics documented:

alligator.dat ... 2
czech.dat ... 2
gof ... 3
hyper ... 4
mcexact ... 4
mcexact.internals ... 6
pathologist.dat ... 8
print.mcexact ... 8
residence.dat ... 9
simulateConditional ... 10
titanic.dat .. 11
update.bab .. 12
update.cab .. 13

Index 15
alligator.dat Data frame of alligator food choice by lake, gender and size.

Description
A 5x4x2x2 table of alligators food choice, lake, gender and size stored in a data frame.

Usage
data(alligator.dat)

Format
alligator.dat is a data frame

References

czech.dat Czech auto workers data

Description
Czech auto workers data

Usage
data(czech.dat)

Format
A data frame with 64 observations on the following 7 variables.
y a numeric vector
A a factor with levels no yes
B a factor with levels no yes
C a factor with levels no yes
D a factor with levels small large
E a factor with levels small large
F a factor with levels neg pos

Source
Edwards and Havranek (1985)
gof

Examples

 data(czech.dat)

gof

Goodness-of-fit function for Poisson log-linear models

Description

A goodness-of-fit function for Poisson log-linear models as required by *mcexact*.

Usage

gof(y = NULL, mu = NULL, rowlabels = FALSE)

Arguments

- **y**: counts
- **mu**: mean
- **rowlabels**: labels of returned goodness-of-fit statistics

Details

This function is a useful shell for writing alternative goodness-of-fit statistics for *mcexact*.

Value

If `rowlabels = TRUE`, then `gof` returns only the labels of the goodness of fit statistics. Otherwise it returns the actual values as a vector.

Author(s)

Brian S. Caffo

See Also

mcexact

Examples

```r
#data(residence)
#get fitted values
#mu <- glm(residence$y ~ residence$x, family = poisson)$fit
#gof(residence$y, mu)
#gof(rowlabels = TRUE)
```
Description

Returns the log hypergeometric conditional probability of a vector of Poisson counts up to an additive constant of proportionality.

Usage

hyper(y)

Arguments

y

Counts

Value

A real-valued scalar.

Author(s)

Brian S. Caffo

See Also

mcexact

mcexact

Computes Monte Carlo exact P-values for general log-linear models.

Description

This function computes Monte Carlo estimates of conditional P-values for goodness of fit tests for general log-linear models.

Usage

mcexact(formula, data, stat = gof, dens = hyper, nosim = 10^3, method = "bab", savechain = FALSE, tdf = 3,
Arguments

- **formula**: Null model formula specified as in glm
- **data**: Data frame
- **stat**: The test statistic, a function of the form $\text{function}(y, \hat{\mu})$ where y is the observed and μ are the fitted values. Current default gof is a bivariate function of the deviance and the Pearson chi-squared.
- **dens**: The target density on the log scale up to a constant of proportionality. A function of the form $\text{function}(y)$. Current default is (proportional to) the log of the generalized hypergeometric density.
- **nosim**: Desired number of simulations.
- **method**: Possibly two values, the importance sampling method of Booth and Butler, method = "bab" or the MCMC approach of Caffo and Booth method = "cab".
- **savechain**: If TRUE saves the values of the chain.
- **tdf**: A tuning parameter
- **maxiter**: For method = "bab" number of iterations is different from the number of simulations. maxiter is a bound on the total number of iterations.
- **p**: A tuning parameter for method = "cab".
- **batchsize**: Required batchsizes for method = "cab".

Value

Returns a list of class either "bab" or "cab" depending on method. The list contains all of the inputs plus all required information to resume the simulation. Generic functions print and summary format the output while update can be used to resume simulations. mcexact is the front end while build.mcex.obj simply builds the basic object that mcexact applies to. simulate.conditional generates a matrix of simulated tables.

Author(s)

Brian Caffo
References

http://www.biostat.jhsph.edu/~bcaffo/downloads.htm

See Also

fisher.test

Examples

#library(mcexact)
set.seed(1)

#importance sampling
data(residence.dat)
mcx <- mcexact(y ~ res.1985 + res.1980 + factor(sym.pair), data = residence.dat)
summary(mcx)

#mcmc
data(pathologist.dat)
mcx <- mcexact(y ~ factor(A) + factor(B) + I(A * B),
data = pathologist.dat,
method = "cab",
p = .5,
nosim = 10 ^ 4,
batchsize = 100)
summary(mcx)

mcexact.internals Internal functions for mcexact

Description

Internal functions used for mcexact.

Usage

rounded.tprob(y, m, s, df)
errorcheck(y,
x,
stat,
dens,
nosim,
method,
savechain,
Arguments

- `y`: counts
- `m`: means
- `s`: variances
- `df`: degrees of freedom
- `x`: model matrix
- `stat`: function to be checked
- `dens`: function to be checked
- `nosim`: number of simulations to be checked
- `method`: method to be checked
- `savechain`: savechain flag to be checked
- `tdf`: t degrees of freedom to be checked
- `maxiter`: maximum number of iterations to be checked
- `p`: prop of table entries left fixed to be checked
- `batchsize`: batchsize to be checked

Value

rounded_tprob returns rounded student's t probabilities for integers `y` with means `m` and variances `s`. `errorcheck` is a function containing most of the error checking that `mcexact` performs.

Author(s)

Brian S. Caffo

See Also

`mcexact`
pathologist.dat
Cross-classification of 118 tumor grades by two pathologists

Description
Data frame of a 5x5 table of pathologists ratings of 118 tumors. Each pathologist, A and B, rated the tumors on a scale of 1 to 5. \(y \) represents the counts of each combination of ratings.

Usage
```r
data(pathologist.dat)
```

Format
A list containing \(y \)-the counts and \(x \)-the design matrix for the uniform association model.

References

See Also
Page 263 of *Categorical Data Analysis* for a description of the uniform association model.

print.mcexact
Print utilities for mcexact

Description
Generic print methods for objects of class `cab` and `bab` outputted from `mcexact`.

Usage
```r
## S3 method for class 'bab'
print(x,...)
## S3 method for class 'bab'
summary(object,...)
```

Arguments
- \(x \)
 An object of class `bab` or `cab`
- `object`
 An object of class `bab` or `cab`
- `...`
 Unused, retained for generic method consistency
Value

print.bab and print.cab prints the P-value estimates obtained from mcexact. summary.bab and summary.cab prints extra information and returns a matrix of the P-value estimates.

Author(s)

Brian S. Caffo

See Also

mcexact

Examples

#data(residence)
#resid.mcx <- mcexact(residence$y ~ residence$x, nosim = 10 ^ 2, maxiter = 10 ^ 4)
#resid.mcx #calls print.bab
#print(resid.mcx) #calls print.bab
#summary(resid.mcx) #calls summary.bab

residence.dat

Description

A data frame of a 4x4 cross-classification of residences in 1980 by residence in 1985. residence$y gives the counts, res.1985 and res.1980 give the 1980 and 1985 residences, sym.pair is used to fit the quasi-symmetry model.

Usage

data(residence.dat)

Format

A list containing y-the counts and x-the design matrix for the quasi-symmetry model.

References

See Also

Page 354 of *Categorical Data Analysis* for a description of the quasi-symmetry model.
Simulate from the conditional distribution of a log-linear model

Description

Simulates from the conditional distribution of log-linear models given the sufficient statistics.

Usage

```r
simulateConditional(formula, data, dens = hyper, nosim = 10^3, method = "bab", tdf = 3, maxiter = nosim, p = NULL, y.start = NULL)
simtable.bab(args, nosim = NULL, maxiter = NULL)
simtable.cab(args, nosim = NULL, p = NULL, y.start = NULL)
```

Arguments

- `formula`: A formula for the log-linear model
- `data`: A data frame
- `dens`: The target density on the log scale up to a constant of proportionality. A function of the form `function(y)`. Current default is (proportional to) the log of the generalized hypergeometric density.
- `nosim`: Desired number of simulations.
- `method`: Possibly two values, the importance sampling method of Booth and Butler, `method = "bab"` or the MCMC approach of Caffo and Booth `method = "cab"`.
- `tdf`: A tuning parameter
- `maxiter`: For `method = "bab"` number of iterations is different from the number of simulations. `maxiter` is a bound on the total number of iterations.
- `p`: A tuning parameter for `method = "cab"`
- `y.start`: An optional starting value when `method = "cab"`
- `args`: An object of class "bab" or "cab"

Value

A matrix where each simulated table is a row.

Author(s)

Brian Caffo
titanic.dat

See Also

fisher.test

Examples

data(czech.dat)
chain2 <- simulateConditional(y ~ (A + B + C + D + E + F) ^ 2,
data = czech.dat,
method = "cab",
nosim = 10 ^ 3,
p = .4,
dens = function(y) 0)

titanic.dat Titanic Survival Data

Description

A data frame of counts of titanic passengers classified by class, age, sex and survival

Usage

data(titanic.dat)

Format

A data frame with 32 observations on the following 5 variables.

 y a numeric vector
 class a numeric vector
 age a numeric vector
 sex a numeric vector
 surv a numeric vector

Source

Cytel web site http://www.cytel.com

Examples

data(titanic.dat)
Description

An update method for objects created by \texttt{mcexact} when \texttt{method} = 'bab'.

Usage

```r
## S3 method for class 'bab'
update(object, ...)
bab(args, nosim = NULL, maxiter = NULL, savechain = FALSE)
```

Arguments

- **object**: Output from \texttt{mcexact}
- **...**: Alternative arguments for the update
- **args**: Output from \texttt{mcexact}
- **nosim**: The desired number of simulations to be performed in the update
- **maxiter**: The maximum number of iterations allowed.
- **savechain**: Saves the chain of goodness-of-fit statistics and their importance weights

Details

The method \texttt{update.bab} calls the function \texttt{bab}, which is the engine for \texttt{mcexact} when \texttt{method} = 'bab'.

Value

A list of the form outputted from \texttt{mcexact}

Author(s)

Brian S. Caffo

See Also

\texttt{mcexact}

Examples

```r
data(residence.dat)
mcx <- mcexact(y ~ res.1985 + res.1980 + factor(sym.pair), data = residence.dat)
summary(mcx)
mcx <- update(mcx, nosim = 10 ^ 4, maxiter = 10 ^ 6)
summary(mcx)
```
Description

An update method for objects created by mcexact when method = 'cab'.

Usage

```r
## S3 method for class 'cab'
update(object, ...)
cab(args,
    nosim = NULL,
    batchsize = NULL,
    savechain = FALSE,
    p = NULL,
    flush = FALSE)
```

Arguments

- `object`: Output from mcexact
- `...`: Alternative arguments for the update
- `args`: Output from mcexact
- `nosim`: The number of simulations to be performed in the update
- `batchsize`: A new batchsize
- `savechain`: Saves the chain of goodness-of-fit statistics
- `p`: An updated proportion of simulated tables left fixed.
- `flush`: Should the previous information be discarded? `flush` should be set to `true` if the batchsize is changed.

Details

The method `update.cab` calls the function `cab`, which is the engine for mcexact when method = 'cab'.

Value

A list of the form outputted from mcexact

Author(s)

Brian S. Caffo

See Also

mcexact
Examples

data(residence.dat)
mcx <- mcexact(y ~ res.1985 + res.1980 + factor(sym.pair),
 data = residence.dat,
 method = "cab",
 p = .5,
 batchsize = 100)
summary(mcx)
mcx <- update(mcx, nosim = 10 ^ 4)
summary(mcx)
Index

Topic datasets

- alligator.dat, 2
- czech.dat, 2
- pathologist.dat, 8
- residence.dat, 9
- titanic.dat, 11

Topic htest

- gof, 3
- hyper, 4
- mcexact, 4
- mcexact.internals, 6
- print.mcexact, 8
- simulateConditional, 10
- update.bab, 12
- update.cab, 13

- alligator.dat, 2

- bab (update.bab), 12
- build.mcx.obj (mcexact), 4

- cab (update.cab), 13
- czech.dat, 2

- errorcheck (mcexact.internals), 6

- fisher.test, 6, 11

- gof, 3

- hyper, 4

- mcexact, 3, 4, 4, 7, 9, 12, 13
- mcexact.internals, 6

- pathologist.dat, 8
- print.bab (print.mcexact), 8
- print.babSummary (print.mcexact), 8
- print.cab (print.mcexact), 8
- print.cabSummary (print.mcexact), 8
- print.mcexact, 8

- residence.dat, 9
- rounded.tprob (mcexact.internals), 6

- simtable.bab (simulateConditional), 10
- simtable.cab (simulateConditional), 10
- simulateConditional, 10
- summary.bab (print.mcexact), 8
- summary.cab (print.mcexact), 8

- titanic.dat, 11

- update.bab, 12
- update.cab, 13

15