Package ‘expert’

February 19, 2015

Type Package
Title Modeling without data using expert opinion
Version 1.0-0
Date 2008-09-01
Author Mathieu Pigeon, Michel Jacques, Vincent Goulet
Maintainer Mathieu Pigeon <mathieu.pigeon.3@ulaval.ca>
Description Expert opinion (or judgment) is a body of techniques to
estimate the distribution of a random variable when data is scarce
or unavailable. Opinions on the quantiles of the distribution are
sought from experts in the field and aggregated into a final
estimate. The package supports aggregation by means of the Cooke,
Mendel-Sheridan and predefined weights models.
Depends R (>= 2.6.0), stats
License GPL (>= 2)
Encoding latin1
LazyLoad yes
LazyData yes
ZipData yes
NeedsCompilation no
Repository CRAN
Date/Publication 2008-10-02 14:18:55

R topics documented:

cdf ... 2
expert ... 3
hist.expert .. 5
mean.expert ... 7
ogive ... 8
quantile.expert .. 10

Index 12
Description

Compute or plot the cumulative distribution function for objects of class "expert".

Usage

cdf(x, ...)

S3 method for class 'cdf'
print(x, digits =getOption("digits") - 2, ...)

S3 method for class 'cdf'
knots(Fn, ...)

S3 method for class 'cdf'
plot(x, ..., ylab = "F(x)", verticals = FALSE,
 col.01line = "gray70")

Arguments

x an object of class "expert"; for the methods, an object of class "cdf", typically.
digits number of significant digits to use, see print.
Fn an R object inheriting from "cdf".
... arguments to be passed to subsequent methods, e.g. plot.stepfun for the plot
 method.
ylab label for the y axis.
verticals see plot.stepfun.
col.01line numeric or character specifying the color of the horizontal lines at y = 0 and 1,
 see colors.

Details

The function builds the expert aggregated cumulative distribution function corresponding to the
results of expert.

The function plot.cdf which implements the plot method for cdf objects, is implemented via a
call to plot.stepfun; see its documentation.

Value

For cdf, a function of class "cdf", inheriting from the "function" class.
See Also

expert to create objects of class "expert"; ogive for the linear interpolation; ecdf and stepfun for related documentation.

Examples

```
x <- list(E1 <- list(A1 <- c(0.14, 0.22, 0.28),
                 A2 <- c(130000, 150000, 200000),
                 X <- c(350000, 400000, 525000)),
         E2 <- list(A1 <- c(0.2, 0.3, 0.4),
                 A2 <- c(165000, 205000, 250000),
                 X <- c(550000, 600000, 650000)),
         E3 <- list(A1 <- c(0.2, 0.4, 0.52),
                 A2 <- c(200000, 400000, 500000),
                 X <- c(625000, 700000, 800000))
probs <- c(0.1, 0.5, 0.9)
true.seed <- c(0.27, 210000)
fit <- expert(x, "cooke", probs, true.seed, 0.03)
Fn <- cdf(fit)
Fn
knots(Fn)  # the group boundaries
Fn(knots(Fn))  # true values of the cdf
plot(Fn)  # graphic
```

Description

Compute an aggregated distribution from expert opinion using either of the Cooke, Mendel-Sheridan or predefined weights models.

Usage

```
expert(x, method = c("cooke", "ms", "weights"), probs, true.seed,
       alpha = NULL, w = NULL)

## S3 method for class 'expert'
print(x, ...)

## S3 method for class 'expert'
summary(object, ...)

## S3 method for class 'summary.expert'
print(x, ...)
```
Arguments

- **x**: a list giving experts’ quantiles for the seed variables and the decision variable. See details below for the exact structure of the object. For the methods: an object of class "expert".
- **method**: method to be used to aggregate distributions.
- **probs**: vector of probabilities corresponding to the quantiles given by the experts.
- **true.seed**: vector of true values for the seed variables.
- **alpha**: confidence level in Cooke model. If NULL or missing, the function determines the confidence level that maximizes the weight given to the aggregated distribution for the seed variables.
- **w**: vector of weights in predefined weights model. If NULL or missing, equal weights are given to each expert.
- **object**: an object of class "expert"
- **...**: further arguments to format for the print and print.summary methods; unused for the summary method.

Details

Expert opinion is given by means of quantiles for \(k \) seed variables and one decision variable. Results for seed variables are compared to the true values and used to determine the influence of each expert on the aggregated distribution. The three methods supported are different ways to aggregate the information provided by the experts in one final distribution.

The aggregated distribution in the "cooke" method is a convex combination of the quantiles, with weights obtained from the calibration phase. The "weights" method is similar, but weights are provided in argument to the function.

In the "ms" (Mendel-Sheridan) method, the probabilities associated with each quantile are adjusted by a bayesian procedure to reflect results of the calibration phase.

Object \(x \) is a list of lists, one for each expert. The latter contains \(k + 1 \) vectors of quantiles, one for each seed variable and one for the decision variable (in this order).

If \(x \) does not contain the 0th and/or the 100th quantile, they are determined by removing and adding 10% of the smallest interval containing all quantiles given by the experts to the bounds of this interval. Note also that only the Mendel-Sheridan model allows non-finite lower and upper bounds.

Value

Function expert computes the aggregated distribution using the model specified in model. The value returned is an object of class "expert".

An object of class "expert" is a list containing at least the following components:

- **breaks**: vector of knots of the aggregated distribution.
- **probs**: vector of probabilities of the aggregated distribution.
- **nexp**: number of experts in the model.
- **nseed**: number of seed variables in the model.
- **quantiles**: vector of probabilities corresponding to the quantiles given by the experts.
In addition, for method = "cooke", a component alpha containing the confidence level: either the value given in argument to the function or the optimized value.

There are methods available to represent (print), plot (plot), compute quantiles (quantile), summarize (summary) and compute the mean (mean) of "expert" objects.

References

Examples

```r
## An example with three experts (E1, E2, E3), two seed variables
## (A1, A2) and three quantiles (10th, 50th and 90th).
x <- list(E1 <- list(A1 <- c(0.14, 0.22, 0.28),
               A2 <- c(130000, 150000, 200000),
               X <- c(350000, 400000, 525000)),
           E2 <- list(A1 <- c(0.2, 0.3, 0.4),
               A2 <- c(165000, 205000, 250000),
               X <- c(550000, 600000, 650000)),
           E3 <- list(A1 <- c(0.2, 0.4, 0.52),
               A2 <- c(200000, 400000, 500000),
               X <- c(625000, 700000, 800000))
probs <- c(0.1, 0.5, 0.9)
true.seed <- c(0.27, 210000)

## Cooke model
expert(x, "cooke", probs, true.seed, alpha = 0.03) # fixed alpha
expert(x, "cooke", probs, true.seed) # optimized alpha

## Mendel-Sheridan model
fit <- expert(x, "ms", probs, true.seed)
fit # print method
summary(fit) # more information

## Predefined weights model
expert(x, "weights", probs, true.seed) # equal weights
expert(x, "weights", probs, true.seed, w = c(0.25, 0.5, 0.25))
```

```r
hist.expert

Histogram of the Expert Aggregated Distribution
```

Description

This method for the generic function hist is mainly useful to plot the histogram of objects of class "expert". If plot = FALSE, the resulting object of class "histogram" is returned for compatibility with hist.default, but does not contain much information not already in x.
Usage

```r
## S3 method for class 'expert'
hist(x, freq = NULL, probability = !freq,
     density = NULL, angle = 45, col = NULL, border = NULL,
     main = paste("Histogram of", xname),
     xlim = NULL, ylim = NULL, xlab = "x", ylab = expression(f(x)),
     axes = TRUE, plot = TRUE, labels = FALSE, ...)
```

Arguments

- `x` an object of class "expert"
- `freq` logical; if TRUE, the histogram graphic is a representation of frequencies, the counts component of the result; if FALSE, probability densities, component density, are plotted (so that the histogram has a total area of one). Defaults to TRUE iff group boundaries are equidistant (and probability is not specified).
- `probability` an alias for `freq`, for S compatibility.
- `density` the density of shading lines, in lines per inch. The default value of NULL means that no shading lines are drawn. Non-positive values of density also inhibit the drawing of shading lines.
- `angle` the slope of shading lines, given as an angle in degrees (counter-clockwise).
- `col` a colour to be used to fill the bars. The default of NULL yields unfilled bars.
- `border` the color of the border around the bars. The default is to use the standard foreground color.
- `main`, `xlab`, `ylab` these arguments to `title` have useful defaults here.
- `xlim`, `ylim` the range of x and y values with sensible defaults. Note that `xlim` is not used to define the histogram (breaks), but only for plotting (when `plot = TRUE`).
- `axes` logical. If TRUE (default), axes are draw if the plot is drawn.
- `plot` logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks and counts is returned.
- `labels` logical or character. Additionally draw labels on top of bars, if not FALSE; see `plot.histogram`.
- `...` further graphical parameters passed to `plot.histogram` and their to `title` and `axis` (if `plot=TRUE`).

Value

An object of class "histogram" which is a list with components:

- `breaks` the \(r + 1 \) group boundaries.
- `counts` \(r \) integers; the frequency within each group.
- `density` the relative frequencies within each group \(n_j / n \), where \(n_j = \text{counts}[j] \).
- `intensities` same as `density`. Deprecated, but retained for compatibility.
- `mids` the \(r \) group midpoints.
- `xname` a character string with the actual `x` argument name.
- `equidist` logical, indicating if the distances between `breaks` are all the same.
Note

The resulting value does not depend on the values of the arguments freq (or probability) or plot. This is intentionally different from S.

References

See Also

hist and hist.default for histograms of individual data and fancy examples.

Examples

```{r}
x <- list(E1 <- list(A1 <- c(0.14, 0.22, 0.28),
                   A2 <- c(130000, 150000, 200000),
                   X <- c(350000, 400000, 525000)),
        E2 <- list(A1 <- c(0.2, 0.3, 0.4),
                   A2 <- c(165000, 205000, 250000),
                   X <- c(550000, 600000, 650000)),
        E3 <- list(A1 <- c(0.2, 0.4, 0.52),
                   A2 <- c(200000, 400000, 500000),
                   X <- c(625000, 700000, 800000)))
probs <- c(0.1, 0.5, 0.9)
ttrue.seed <- c(0.27, 210000)
fit <- expert(x, "cooke", probs, true.seed, 0.03)
hist(fit)
```

mean.expert

Arithmetic Mean of the Expert Aggregated Distribution

Description

Mean of objects of class "expert".

Usage

```{r}
## S3 method for class 'expert'
mean(x, ...)
```

Arguments

- `x`: an object of class "expert".
- `...`: further arguments passed to or from other methods.
Details

The mean of a distribution with probabilities p_1, \ldots, p_r on intervals defined by the boundaries c_0, \ldots, c_r is

$$\sum_{j=1}^{r} \frac{c_{j-1} + c_j}{2} p_j.$$

Value

A numeric value.

References

See Also

expert to create objects of class "expert"

Examples

```r
x <- list(A1 <- c(0.14, 0.22, 0.28),
          A2 <- c(130000, 150000, 200000),
          X <- c(350000, 400000, 525000),
          E2 <- list(A1 <- c(0.2, 0.3, 0.4),
                      A2 <- c(165000, 205000, 250000),
                      X <- c(550000, 600000, 650000),
                      E3 <- list(A1 <- c(0.2, 0.4, 0.52),
                                      A2 <- c(200000, 400000, 500000),
                                      X <- c(625000, 700000, 800000))
          probs <- c(0.1, 0.5, 0.9)
          true.seed <- c(0.27, 210000)
          fit <- expert(x, "cooke", probs, true.seed, 0.03)
          mean(fit)
```

ogive

Ogive of the Expert Aggregated Distribution

Description

Compute a smoothed empirical distribution function for objects of class "expert".
[Usage]

ogive(x, ...)

S3 method for class 'ogive'
print(x, digits = getOption("digits") - 2, ...)

S3 method for class 'ogive'
knots(Fn, ...)

S3 method for class 'ogive'
plot(x, main = NULL, xlab = "x", ylab = "G(x)", ...)

[Arguments]

- **x**: an object of class "expert"; for the methods, an object of class "ogive", typically.
- **digits**: number of significant digits to use, see print.
- **Fn**: an R object inheriting from "ogive".
- **main**: main title.
- **xlab, ylab**: labels of x and y axis.
- **...**: arguments to be passed to subsequent methods.

[Details]

The ogive is a linear interpolation of the empirical cumulative distribution function.

The equation of the ogive is

\[G(x) = \frac{(c_j - x)F(c_{j-1}) + (x - c_{j-1})F(c_j)}{c_j - c_{j-1}} \]

for \(c_{j-1} < x \leq c_j \) and where \(c_0, \ldots, c_r \) are the \(r + 1 \) group boundaries and \(F \) is the cumulative distribution function.

[Value]

For ogive, a function of class "ogive", inheriting from the "function" class.

[References]

[See Also]

- expert to create objects of class "expert"; cdf for the true cumulative distribution function;
- approxfun, which is used to compute the ogive; stepfun for related documentation (even though the ogive is not a step function).
Examples

```r
x <- list(E1 <- list(A1 <- c(0.14, 0.22, 0.28),
          A2 <- c(130000, 150000, 200000),
          X <- c(350000, 400000, 525000)),
       E2 <- list(A1 <- c(0.2, 0.3, 0.4),
          A2 <- c(165000, 205000, 250000),
          X <- c(550000, 600000, 650000)),
       E3 <- list(A1 <- c(0.2, 0.4, 0.52),
          A2 <- c(200000, 400000, 500000),
          X <- c(625000, 700000, 800000))
probs <- c(0.1, 0.5, 0.9)
true.seed <- c(0.27, 210000)
fit <- expert(x, "cooke", probs, true.seed, 0.03)
Fn <- ogive(fit)
Fn
knots(Fn) # the group boundaries
Fn(knots(Fn)) # true values of the empirical cdf
Fn(c(80, 200, 2000)) # linear interpolations
```

quantile.expert Quantiles of the Expert Aggregated Distribution

Description

Quantile for objects of class "expert".

Usage

```r
## S3 method for class 'expert'
quantile(x, probs = seq(0, 1, 0.25),
         smooth = FALSE, names = TRUE, ...)
```

Arguments

- **x**: an object of class "expert".
- **probs**: numeric vector of probabilities with values in [0, 1).
- **smooth**: logical; when TRUE and x is a step function, quantiles are linearly interpolated between knots.
- **names**: logical; if true, the result has a names attribute. Set to FALSE for speedup with many probs.
- **...**: further arguments passed to or from other methods.
Details

The quantiles are taken directly from the cumulative distribution function defined in x. Linear interpolation is available for step functions.

Value

A numeric vector, named if names is TRUE.

See Also

expert

Examples

```r
x <- list(E1 <- list(A1 <- c(0.14, 0.22, 0.28),
                      A2 <- c(130000, 150000, 200000),
                      X <- c(350000, 400000, 525000)),
             E2 <- list(A1 <- c(0.2, 0.3, 0.4),
                      A2 <- c(165000, 205000, 250000),
                      X <- c(550000, 600000, 650000)),
             E3 <- list(A1 <- c(0.2, 0.4, 0.52),
                      A2 <- c(200000, 400000, 500000),
                      X <- c(625000, 700000, 800000)))
probs <- c(0.1, 0.5, 0.9)
true.seed <- c(0.27, 210000)
fit <- expert(x, "cooke", probs, true.seed, 0.03)
quantile(fit) # default probs
quantile(fit, probs = c(0.9, 0.95, 0.99)) # right tail
```
Index

*Topic distribution
 expert, 3
 hist.expert, 5
*Topic dplot
 cdf, 2
 hist.expert, 5
 ogive, 8
*Topic hplot
 cdf, 2
 hist.expert, 5
 ogive, 8
*Topic models
 expert, 3
*Topic univar
 mean.expert, 7
 quantile.expert, 10

approxfun, 9
axis, 6

cdf, 2, 9
colors, 2
ecdf, 3
eexpert, 2, 3, 3, 8, 9, 11
format, 4
function, 2, 9
hist, 5, 7
hist.default, 5, 7
hist.expert, 5

knots.cdf (cdf), 2
knots.ogive (ogive), 8

mean.expert, 7
ogive, 3, 8
plot, 2

plot.cdf (cdf), 2
plot.histogram, 6
plot.ogive (ogive), 8
plot.stepfun, 2
print, 2, 9
print.cdf (cdf), 2
print.expert (expert), 3
print.ogive (ogive), 8
print.summary.expert (expert), 3

quantile.expert, 10
stepfun, 3, 9
summary.expert (expert), 3
title, 6