Package ‘extraBinomial’

February 19, 2015

Type Package
Title Extra-binomial approach for pooled sequencing data
Version 2.1
Date 2012-07-09
Author Xin Yang, Chris Wallace
Maintainer Xin Yang <xin.yang@cimr.cam.ac.uk>
Description This package tests for differences in minor allele frequency between groups and is based on an extra-binomial variation model for pooled sequencing data.
License GPL-3
Repository CRAN
Date/Publication 2012-07-09 15:39:12
NeedsCompilation no

R topics documented:

extraBinomial-package ... 1
exbio ... 2

Index

extraBinomial-package Extra-binomial approach for pooled sequencing data

Description

This package tests for differences in minor allele frequency between groups and is based on extra-binomial variation model for pooled sequencing data.
To use the function `exbio`, simply define two matrices `R`, `R.alt` with the same dimensions (rows index SNPs and columns index pools), a vector `cc` indicating the case and control status, number of chromosomes (`n`) and then do: `exbio(R, R.alt, cc, n)` to yield the estimated allele frequencies and p-value based on extra-binomial model.

Author(s)

Xin Yang, Chris Wallace
Maintainer: Xin Yang <xin.yang@cimr.cam.ac.uk>

References

Yang et al. "Extra-binomial variation approach for analysis of pooled DNA sequencing data", under review.

Description

This function tests for differences in minor allele frequency between groups and is based on extra-binomial variation model for pooled sequencing data.

Usage

```r
exbio(R, R.alt, cc, n, tol = 0.001, a.start = 1, b.start = 1, max.it = 1000, digits = NULL, model.maf = NULL)
```

Arguments

- `R`: A matrix with rows indexed by SNPs and columns by pools. The entries are counts of allele 1.
- `R.alt`: A similarly formatted matrix containing the counts of allele 2.
- `cc`: A case/control indicator vector with length = number of pools containing 0s (control pool) and 1s (case pool).
- `n`: Number of chromosomes (twice the number of subjects) in each pooled sample.
- `tol`: Maximum difference between coefficient values in successive glm before we can stop, the default=0.001.
a.start An initial value for the parameter a in linear regression, the default=1.
b.start An initial value for the parameter b in linear regression, the default=1.
max.it Maximum iterations, the default=1000.
digits How many significant digits are to be used for allele frequency and p-value. The default, 'NULL', uses 'getOption(digits)'.
model.maf A logical value indicating whether to allow the modelled error structure to depend on allele frequency (the default) or just read depth. The default=TRUE.

Details

R and R.alt contain the read counts for the major allele and the alternative allele respectively and are required to have the same dimension.

The extra-binomial model defined: E(R/N)=p, Var(R/N)=p(1-p)(a/n+b/N) when N=R+R.alt

We denote: W=1/(a/n+b/N), which may be interpreted as the adjusted depth of pool j for SNP i. Given the expected quantities: E(r2)=1/W=a/n+b/N, the parameters a and b can be estimated by linear regression of r2 on 1/N, giving a/n as the intercept and b as the slope. If model.maf=TRUE, W=1/(a/n+b/N+b2*p+b3*p^2) and two additional parameters (b2 and b3) are estimated. This regression is carried out using generalized linear model (GLM) by first adopting Gaussian errors to estimate a relatively good start value of a and b, and then using these start values to do GLM with gamma errors and identity link because both a and b are positive.

Since the estimated allele frequency p depends on a and b, the calculations are carried out iteratively. A chi-square test is performed on a 2*2 table using the weighted allele counts to calculate the p-value.

Value

A list containing the following components:

result a data.frame with three columns: the first shows the minor allele frequency of controls; the second shows the minor allele frequency of cases; the third shows the p-value. Each row stands for a SNP.
parameters a character vector indicating the values of the parameters a and b (and b2, b3 if model.maf=TRUE) in the linear regression and and the times of iteration.

Author(s)

Xin Yang, Chris Wallace

References

Yang et al. "Extra-binomial variation approach for analysis of pooled DNA sequencing data", under review.
Examples

R <- matrix(c(1409, 1530, 1490, 1630, 924, 998, 1000, 1012), nrow = 2, ncol = 4, byrow = TRUE)
R.alt <- matrix(c(170, 210, 192, 209, 13, 14, 30, 38), nrow = 2, ncol = 4, byrow = TRUE)
cc <- c(0, 1, 1)
n = 96
exbio(R, R.alt, cc, n, max.it = 100, digits = 3)
##=> p.value = 9.91e-01 for SNP1 and 4.01e-11 for SNP2,
##so association for SNP2 is established, but not for SNP1.
Index

*Topic package
 extraBinomial-package, 1

exbio, 2
extraBinomial (extraBinomial-package), 1
extraBinomial-package, 1