Package ‘fAssets’

February 19, 2015

Title Rmetrics - Analysing and Modelling Financial Assets
Date 2014-10-30
Version 3011.83
Author Rmetrics Core Team,
 Diethelm Wuertz [aut],
 Tobias Setz [cre],
 Yohan Chalabi [ctb]
Maintainer Tobias Setz <tobias.setz@rmetrics.org>
Description Environment for teaching
 "Financial Engineering and Computational Finance".
Depends R (>= 2.15.1), timeDate, timeSeries, fBasics
Imports fMultivar, robustbase, MASS, sn, ecodist, mvnormtest, energy
Suggests methods, mnormt, RUnit
Note SEVERAL PARTS ARE STILL PRELIMINARY AND MAY BE CHANGED IN THE
 FUTURE. THIS TYPICALLY INCLUDES FUNCTION AND ARGUMENT NAMES, AS
 WELL AS DEFAULTS FOR ARGUMENTS AND RETURN VALUES.
LazyData yes
License GPL (>= 2)
URL https://www.rmetrics.org
NeedsCompilation no
Repository CRAN
Date/Publication 2014-10-30 13:38:28

R topics documented:

fAssets-package .. 2
assets-arrange .. 6
assets-distance ... 7
assets-lpm ... 9
assets-meancov .. 10
Description

The Rmetrics fAssets package is a collection of functions to manage, to investigate and to analyze data sets of financial assets from different points of view.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>Type</th>
<th>Date</th>
<th>License</th>
<th>Copyright</th>
<th>Repository</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>fAssets</td>
<td>Package</td>
<td>2014</td>
<td>GPL Version 2 or later</td>
<td>(c) 1999-2014 Rmetrics Association</td>
<td>R-FORGE</td>
<td>https://www.rmetrics.org</td>
</tr>
</tbody>
</table>

1 Introduction

The package fAssets was written to explore and investigate data sets of financial assets. Included are functions to make the asset selection process easier, to robustify return and covariances for modeling portfolios, to test financial returns for multivariate normality, and to measure in a simple way performance and risk of funds and portfolios.

Beside this many functions for graphs and plots, and for a more sophisticated explorative data analysis are provided. They range from simple time series plots to more elaborated statistical charts.
tools: histogram, density, boxplots, and QQ plots; pairs, similarities, and covariance ellipses plots; star plots, and risk/reward graphs.

2 Assets Selection

The assets selection chapter contains functions which arrange assets from a data set according to different measures applying ideas from principal component analysis, from hierarchical clustering, or by a user defined statistical measure:

assetsArrange Rearranges the columns in a data set of assets
pcaArrange Returns PCA correlation ordered column names
hclustArrange Returns hierarchical clustered column names
abcArrange Returns assets sorted by column names
orderArrange Returns assets ordered by column names
sampleArrange Returns a re-sampled set of assets
statsArrange Returns statistically rearranged column names

In addition we have summarized and bundle of distance measure functions to determine the similarity or dissimilarity of individual assets from a set of multivariate financial return series.

assetsDist Computes the distances between assets
corDist Returns correlation distance measure
kendallDist Returns kendalls correlation distance measure
spearmanDist Returns spearmans correlation distance measure
mutinfodist Returns mutual information distance measure
euclideanDist Returns Euclidean distance measure
maximumDist Returns maximum distance measure
manhattanDist Returns Manhattan distance measure
canberraDist Returns Canberra distance measure
binaryDist Returns binary distance measure
minkowskidist Returns Minkowsky distance measure
braycurtisDist Returns Bray Curtis distance measure
mahalanobisDist Returns Mahalanobis distance measure
jaccardDist Returns Jaccard distance measure
sorensendist Returns Sorensen distance measure

A last group of functions allows to select assets by concepts from hierarchical or k-means clustering:

assetsSelect Selects similar or dissimilar assets
.hclustSelect Selects due to hierarchical clustering
.kmeansSelect Selects due to k-means clustering

3 Assets Covariance Robustification

We provide several functions to compute robust measures for mean and/or covariance estimates which can be used for example in robustified Markowitz portfolio Optimization.
assetsMeanCov Estimates mean and variance for a set of assets
.covMeanCov uses sample covariance estimation
.mveMeanCov uses cov.mve from [MASS]
.mcdMeanCov uses cov.mcd from [MASS]
.studentMeanCov uses cov.trob from [MASS]
.MCDMeanCov requires covMcd from [robustbase]
.OGKMeanCov requires covOGK from [robustbase]
nnevMeanCov uses builtin from [covRobust]
.shrinkMeanCov uses builtin from [corpcor]
.baggedMeanCov uses builtin from [corpcor]
.arwMeanCov uses builtin from [mvoutlier]
.donostahMeanCov uses builtin from [robust]
.bayesSteinMeanCov uses builtin from Alexios Ghalanos
.ledoitWolfMeanCov uses builtin from [tawny]
.rmtMeanCov uses builtin from [tawny]

An additional function allows to detect outliers from a PCA outlier analysis.

assetsOutliers Detects outliers in multivariate assets sets

4 Testing Assets for Normality

The multivariate Shapiro test and the E-Statistic Energy Test allow to test multivariate Normality of financial returns.

assetsTest Tests for multivariate Normal Assets
mvshapiroTest Multivariate Shapiro Test
mvenergyTest Multivariate E-Statistic (Energy) Test

5 Lower Partial Moments Measures

The computation of Lower partial moments is done by the following two functions:

assetsLPM Computes asymmetric lower partial moments
assetsSLPM Computes symmetric lower partial moments

6 Assets Time Series and Density Plot Functions

Dozens of tailored plot functions are included in the fAssets package. This makes it very easy to visualize properties and to perform an explorative data analysis. Starting from simple time series functions.

assetsReturnPlot Displays time series of individual assets
assetsCumulatedPlot Displays time series of individual assets
assetsSeriesPlot Displays time series of individual assets
we can also explore the distributional properties of the returns by histogram, density, boxplots, and QQ Plots:

- assetsHistPlot: Displays a histograms of a single asset
- assetsLogDensityPlot: Displays a pdf plot on logarithmic scale
- assetsHistPairsPlot: Displays a bivariate histogram plot
- assetsBoxPlot: Displays a standard box plot
- assetsBoxPercentilePlot: Displays a side-by-side box-percentile plot
- assetsQQNormPlot: Displays normal qq-plots of individual assets

7 Assets Dependency and Structure Plot Functions

Corellation and similarities are another source of information about the dependence structure of individual financial returns. The functions which help us to detect those properties in data sets of financial assets include:

- assetsPairsPlot: Displays pairs of scatterplots of assets
- assetsCorgramPlot: Displays pairwise correlations between assets
- assetsCorTestPlot: Displays and tests pairwise correlations
- assetsCorImagePlot: Displays an image plot of a correlations
- covEllipsesPlot: Displays a covariance ellipses plot
- assetsDendrogramPlot: Displays hierarchical clustering dendrogram
- assetsCorEigenPlot: Displays ratio of the largest two eigenvalues

Beside correlations und dependencies also risk/reward graphs give additional insight into the structure of assets.

- assetsRiskReturnPlot: Displays risk-return diagram of assets
- assetsNIGShapeTrianglePlot: Displays NIG Shape Triangle
- assetsTreePlot: Displays a minimum spanning tree of assets

Statistic visualized by star plots is a very appealing tool for characterization and classification of assets by eye:

- assetsStarsPlot: Draws segment/star diagrams of asset sets
- assetsBasicStatsPlot: Displays a segment plot of basic return stats
- assetsMomentsPlot: Displays a segment plot of distribution moments
- assetsBoxStatsPlot: Displays a segment plot of box plot statistics
- assetsNIGFitPlot: Displays a segment plot NIG parameter estimates

About Rmetrics:

The fAssets Rmetrics package is written for educational support in teaching “Computational Finance and Financial Engineering” and licensed under the GPL.
Rearranging Assets Columnwise

Description

Allows to rearrange a set of assets columnwise.

Usage

assetsArrange(x, method = c("pca", "hclust", "abc"), ...)

pcaArrange(x, robust = FALSE, ...)
hclustArrange(x, method = c("euclidean", "complete"), ...)
abcArrange(x, ...)
orderArrange(x, ...)
sampleArrange(x, ...)
statsArrange(x, FUN = colMeans, ...)

Arguments

x an rectangular time series object which can be converted by the function as.matrix() into a matrix object, e.g. like an object of class timeSeries, data.frame, or mts.
method a character string, which method should be applied to rearrange the assets? Either "pca" which arranges the columns by an eigenvalue decomposition, "hclust" which arranges the columns by hierarchical clustering, "abc" which arranges the columns alphabetically, "order" which arranges the columns by the order function, "sample" which arranges the columns randomly, or "stats" which arranges by an statistical strategy.
robust a logical flag. Should robust statistics applied?
FUN function name of the statistical function to be applied.
... optional arguments to be passed.

Value

A character vector with the rearranged assets names.

Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
Examples

```r
## LPP -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC[, 1:3]
head(LPP)

## assetsArrange -
# Arrange Assets Columns:
assetsArrange(x=LPP, "pca")
assetsArrange(x=LPP, "hclust")
assetsArrange(x=LPP, "abc")

## Alternative Usage -
pcaArrange(x=LPP, robust=FALSE)
pcaArrange(x=LPP, robust=TRUE)
hclustArrange(x=LPP, method = c("euclidean", "complete"))
abcArrange(x=LPP)
orderArrange(x=LPP)
sampleArrange(x=LPP)
statsArrange(x=LPP, FUN=colMeans)
```

assets-distance

Distance Measures

<table>
<thead>
<tr>
<th>Description</th>
<th>Assets to measure the distance or similarity between assets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>assetsDist(x, method="cor", ...)</td>
</tr>
<tr>
<td></td>
<td>corDist(x)</td>
</tr>
<tr>
<td></td>
<td>kendallDist(x)</td>
</tr>
<tr>
<td></td>
<td>spearmanDist(x)</td>
</tr>
<tr>
<td></td>
<td>mutinfoDist(x, nbin=10)</td>
</tr>
<tr>
<td></td>
<td>euclideanDist(x)</td>
</tr>
<tr>
<td></td>
<td>maximumDist(x)</td>
</tr>
<tr>
<td></td>
<td>manhattanDist(x)</td>
</tr>
<tr>
<td></td>
<td>canberraDist(x)</td>
</tr>
<tr>
<td></td>
<td>binaryDist(x)</td>
</tr>
<tr>
<td></td>
<td>minkowskiDist(x)</td>
</tr>
<tr>
<td></td>
<td>braycurtisDist(x)</td>
</tr>
<tr>
<td></td>
<td>mahalanobisDist(x)</td>
</tr>
</tbody>
</table>
Arguments

- **x**: any rectangular time series object which can be converted by the function `dist()` into a distance object.
- **method**: a character string, the method from which to compute the distances. Allowed methods include `cor`, `kendall`, `spearman`, `mutinfo`, `euclidean`, `maximum`, `manhattan`, `canberra`, `binary`, `minkowski`, `braycurtis`, `mahalanobis`, `jaccard`, `difference`, or `sorensen`.
- **nbin**: an integer value, the number of bins, by default 10.
- **...**: optional argument to be passed the distance function.

Details

corDist, kendallDist, and spearmanDist call the base `cov` function from R.
mutinfodist calls the function `mutinfo` from the contributed R package bioDist.
euclideandist, maximumDist, manhattandist, canberraDist, binaryDist, and minkowskidist are functions build on top of R's base package.
braycurtisDist, mahalanobisDist, jaccardDist, and sorensenDist call functions from the contributed R package ecodist.

Value

an object of class `dist`.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); *Portfolio Optimization with R/Rmetrics*, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC[, 1:6]
head(LPP)

## Returns correlation distance measure
corDist(LPP)

## Returns kendalls correlation distance measure
ekendalDist(LPP)

## Returns spearmans correlation distance measure
spearmanDist(LPP)
```
Description

Computes lower partial moments from a time series of assets.

Usage

```r
assetsLPM(x, tau, a, ...)
assetsSLPM(x, tau, a, ...)
```

Arguments

- `x` any rectangular time series object which can be converted by the function `as.matrix()` into a matrix object, e.g. like an object of class `timeSeries`, `data.frame`, or `mts`
tau the target return.
a the value of the moment.
... optional arguments to be passed.

Value

returns a list with two entries named mu and Sigma. The first denotes the vector of lower partial moments, and the second the co-LPM matrix. Note, that the output of this function can be used as data input for the portfolio functions to compute the LPM efficient frontier.

Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); *Portfolio Optimization with R/Rmetrics*, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP -
# Percentual Returns:
LPP <- 100 * as.timeSeries(data(LPP2005REC))[, 1:6]
colnames(LPP)
```

assets-meancov

Estimation of Mean and Covariances of Asset Sets

Description

Estimates the mean and/or covariance matrix of a time series of assets by traditional and robust methods.

Usage

```r
assetsMeanCov(x,
    method = c("cov", "mve", "mcd", "MCD", "OGK", "nnve", "shrink", "bagged"),
    check = TRUE, force = TRUE, baggedR = 100, sigmamu = scaleTau2,
    alpha = 1/2, ...)

centerRob(object)
covRob(object)
```
Arguments

x any rectangular time series object which can be converted by the function as.matrix() into a matrix object, e.g. like an object of class timeSeries, data.frame, or mts.

method a character string, which determines how to compute the covariance matrix. If method="cov" is selected then the standard covariance will be computed by R's base function cov. If method="shrink" is selected then the covariance will be computed using the shrinkage approach as suggested in Schaefer and Strimmer [2005], if method="bagged" is selected then the covariance will be calculated from the bootstrap aggregated (bagged) version of the covariance estimator.

check a logical flag. Should the covariance matrix be tested to be positive definite? By default TRUE.

force a logical flag. Should the covariance matrix be forced to be positive definite? By default TRUE.

baggedR when method="bagged", an integer value, the number of bootstrap replicates, by default 100.

sgmamu when method="OGK", a function that computes univariate robust location and scale estimates. By default it should return a single numeric value containing the robust scale (standard deviation) estimate. When mu.too is true (the default), sgmamu() should return a numeric vector of length 2 containing robust location and scale estimates. See scaleTau2, s_Qn, s_Sn, s_mad or s_IQR for examples to be used as sgmamu argument. For details we refer to the help pages of the R-package robustbase.

object a list as returned by the function assetsMeanCov.

alpha when method="MCD", a numeric parameter controlling the size of the subsets over which the determinant is minimized, i.e., alpha*n observations are used for computing the determinant. Allowed values are between 0.5 and 1 and the default is 0.5. For details we refer to the help pages of the R-package robustbase.

... optional arguments to be passed to the underlying estimators. For details we refer to the manual pages of the functions cov.rob for arguments "mve" and "mcd" in the R package MASS, to the functions covMcd and covOGK in the R package robustbase.

Value

assetsMeanCov returns a list with for entries named center cov, mu and Sigma. The list may have a character vector attributed with additional control parameters.

centerRob extracts the center from an object as returned by the function assetsMeanCov.

covRob extracts the covariance from an object as returned by the function assetsMeanCov.

Author(s)

Juliane Schaefer and Korbinian Strimmer for R's corpcov package,
Diethelm Wuertz for the Rmetrics port.
References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); *Portfolio Optimization with R/Rmetrics*, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP -
LPP <- as.timeSeries(data(LPP2005REC))[1:6]
colnames(LPP)

## Sample Covariance Estimation:
assetsMeanCov(LPP)

## Shrinked Estimation:
shrink <- assetsMeanCov(LPP, "shrink")
shrink

## Extract Covariance Matrix:
getCovRob(shrink)
```

.assets-modeling Modeling Multivariate Asset Sets

Description

Fitting and Simulating assets from multivariate asset sets based on modeling skew normal and related distributions.

Usage

```r
assetsFit(x, method = c("st", "sn", "sc"),
          title=NULL, description=NULL, fixed.df=NA, ...)

assetsSim(n, method=c("st", "sn", "sc"),
          model=list(beta=rep(0,2), Omega=diag(2), alpha=rep(0,2), nu=4),
          assetNames=NULL)
```

Arguments

- `x` any rectangular time series object which can be converted by the function `as.matrix()` into a matrix object, e.g. like an object of class `timeSeries`, `data.frame`, or `mts`.
n a numeric value which represents the number of random vectors to be drawn.
method a character string with the names of the supported distributions: sn skew normal, st skew Student-t, and sc skew Cauchy
model a list with the model parameters. beta a numeric vector, representing the location, Omega a symmetric positive-definite matrix (covariance matrix), alpha a numeric vector which regulates the skew of the density, nu a positive value representing the degrees of freedom.
fixed.df a logical value, should the degrees of freedom fitted or held fixed?
title an optional project title.
description an option project description.
assetNames a character vector with optional asset names.
... optional arguments passed to the underlying functions.

Value

assetsFit returns the fitted parameters, assetsSim returns a simulated (return) series.

Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP2005REC -
# Load Swiss Pension Fund Data as Percentual Returns:
LPP <- 100 * LPP2005REC[, 1:3]
head(LPP)

## assetsFit -
# Fit a Skew-Student-t Distribution:
fit <- assetsFit(LPP)
# Extract the Model:
model <- fit$fit$dp
# Show Model Slot:
print(model)

## assetsSim -
# Simulate set with same statistical properties:
set.seed(1953)
LPP.SIM <- assetsSim(n=nrow(LPP), model=model)
colnames(LPP.SIM) <- colnames(LPP)
head(LPP.SIM)
```
assets-outliers

Detection of Outliers in Asset Sets

Description

Detects multivariate outliers in asset sets.

Usage

assetsOutliers(x, center, cov, ...)

Arguments

- **x**: an object of class `timeSeries`.
- **center**: a numeric vector, a (robust) estimate of the vector of means of the multivariate time series `x`.
- **cov**: a numeric matrix, a (robust) estimate of the covariance matrix of the multivariate time series `x`.
- **...**: optional arguments to be passed.

Value

returns a list with the following entries: the estimate for the location named `center`, the estimate for the covariance matrix named `cov`, the estimate for the correlation matrix named `cor`, the quantile named `quantile`, the outliers named `outliers`, and the time series named `series`.

Author(s)

Moritz Gschwandtner and Peter Filzmoser for the original R code from package "mvoutliers", Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP -
LPP <- as.timeSeries(data(LPP2005REC))[, 1:6]
colnames(LPP)

## assetsOutliers -
assetsOutliers(LPP, colMeans(LPP), cov(LPP))
```
Description

Select assets from Multivariate Asset Sets based on clustering.

Usage

assetsSelect(x, method = c("hclust", "kmeans"), control = NULL, ...)

Arguments

- `x`: any rectangular time series object which can be converted by the function `as.matrix()` into a matrix object, e.g., like an object of class `timeSeries`, `data.frame`, or `mts`.
- `method`: a character string, which clustering method should be used? Either `hclust` for hierarchical clustering of dissimilarities, or `kmeans` for k-means clustering.
- `control`: a character string with two entries controlling the parameters used in the underlying cluster algorithms. If set to `NULL`, then default settings are taken: For hierarchical clustering this is `method=c(measure="euclidean", method="complete")`, and for `kmeans` clustering this is `method=c(centers=3, algorithm="Hartigan-Wong")`. For optional arguments to be passed. Note, for the `k-means` algorithm the number of centers has to be specified!

Details

The function `assetsSelect` calls the functions `hclust` or `kmeans` from R's "stats" package. `hclust` performs a hierarchical cluster analysis on the set of dissimilarities `hclust(dist(t(x)))` and `kmeans` performs a k-means clustering on the data matrix itself.

Note, the hierarchical clustering method has in addition a plot method.

Value

If `use="hclust"` was selected then the function returns a S3 object of class "hclust", otherwise if `use="kmeans"` was selected then the function returns an object of class "kmeans". For details we refer to the help pages of `hclust` and `kmeans`.

Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
Examples

```r
## LPP -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC
colnames(LPP)

## assetsSelect -
# Hierarchical Clustering:
hclust <- assetsSelect(LPP, "hclust")
plot(hclust)

## assetsSelect -
# kmeans Clustering:
assetsSelect(LPP, "kmeans", control =
  c(centers = 3, algorithm = "Hartigan-Wong"))
```

Testing Normality of Multivariate Asset Sets

Description

Tests if the returns of a set of assets are normally distributed.

Usage

```r
assetsTest(x, method = c("shapiro", "energy"), Replicates = 99)
mvshapiroTest(x)
mvenergyTest(x, Replicates = 99)
```

Arguments

- `x` any rectangular time series object which can be converted by the function `as.matrix()` into a matrix object, e.g. like an object of class `timeSeries`, `data.frame`, or `mts`.
- `method` a character string, which allows to select the test. If `method="shapiro"` then Shapiro’s multivariate Normality test will be applied as implemented in R’s contributed package `mvnormtest`. If `method="energy"` then the E-statistic (energy) for testing multivariate Normality will be used as proposed and implemented by Szekely and Rizzo [2005] using parametric bootstrap.
- `Replicates` an integer value, the number of bootstrap replicates, by default 100. This value is only used if `method="energy"`.

Value

returns an object of class `htest`.
Author(s)
Diethelm Wuertz for this Rmetrics port.

References
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); *Portfolio Optimization with R/Rmetrics*, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples
```r
## LPP -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC[, 1:6]
head(LPP)

## assetsTest -
# Multivariate Shapiro Test -
assetsTest(LPP, "shapiro")

## assetsTest -
# Multivariate Energy Test -
assetsTest(LPP, "energy")
```

plot-binning Bivariate Histogram Plots of Assets

Description
Displays bivariate histogram plots of assets returns.

Usage
```r
assetsHistPairsPlot(x, bins = 30, method = c("square", "hex"), ...)
```

Arguments
- `x`: any rectangular time series object which can be converted by the function `as.matrix()` into a matrix object, e.g. like an object of class `timeSeries`, `data.frame`, or `mts`.
- `bins`: an integer value, the number of bins used for the biariate histogram.
plot-boxplot

Displays a Box Plot of Assets

Description
Displays standard box and box-percentile plots of assets.

Usage
assetsBoxPlot(x, col = "bisque", ...)
assetsBoxPercentilePlot(x, col = "bisque", ...)

Arguments
x any rectangular time series object which can be converted by the function as.matrix() into a matrix object, e.g. like an object of class timeSeries, data.frame, or mts.

col a character string, defining the color to fill the boxes.

... optional arguments to be passed.

Author(s)
Diethelm Wuertz for the Rmetrics port.

References
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples
LPP2005REC -
Load Swiss Pension Fund Data:
LPP <- LPP2005REC
head(LPP)

assetsHistPairsPlot -
Create a bivariate Binning Plot: assetsHistPairsPlot -
assetsHistPairsPlot(LPP[, c("LMI", "ALT")])

assetsHistPairsPlot -
Now with hexagonal Bins:
assetsHistPairsPlot(LPP[, c("LMI", "ALT")], method = "hex")
grid(col="red")
Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC[, 1:6]
head(LPP)

## assetsBoxPlot -
# Create a Boxplot: assetsBoxPlot -
assetsBoxPlot(LPP)

## assetsBoxPercentilePlot -
# Create a Box Percentile Plot: assetsBoxPercentilePlot -
assetsBoxPercentilePlot(LPP)

grid(NA, NULL, col="red")
```

plot-ellipses

Displays a Covariance Ellipses Plot

Description

Displays a covariance ellipses plot.

Usage

```r
covEllipsesPlot(x = list(), ...)
```

Arguments

- `x` a list of at least two covariance matrices.
- `...` optional arguments to be passed.

Details

This plot visualizes the difference between two or more covariance matrices. It is meant to compare different methods of covariance estimation.
References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC[, 1:6]
head(LPP)

## assetsMeanCov -
# Compute Robust Covariance Matrix: assetsMeanCov -
Cov <- cov(LPP)
robustCov <- assetsMeanCov(LPP, "MCD")$Sigma

## covEllipsesPlot -
# Create Covariance Ellipse Plot:
covEllipsesPlot(list(Cov, robustCov))
```

plot-hist

Histogram Plots of Assets

Description

Displays density of assets returns as a histogram and/or as log density plot.

Usage

```r
assetsHistPlot(x, col = "steelblue", skipZeros = FALSE, ...)
assetsLogDensityPlot(x, estimator = c("hubers", "sample", "both"),
labels = TRUE, ...)
```

Arguments

- `x` any rectangular time series object which can be converted by the function `as.matrix()` into a matrix object, e.g. like an object of class `timeSeries`, `data.frame`, or `mts`.
- `skipZeros` a logical, should zeros be skipped in the histogram plot of the return series?
- `col` a character string, defining the color to fill the boxes.
- `estimator` a character string naming the type of estimator to fit the mean and variance of the normal density. This may be either "huber", "sample", or "both".
- `labels` a logical flag, if TRUE then default labels will be used, otherwise the plots will be displayed without labels and the user can add his own labels.
- `...` optional arguments to be passed.
plot-mst

Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); *Portfolio Optimization with R/Rmetrics*, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP2005REC -
# Load Swiss Pension Fund Data:
x <- LPP2005REC
head(x)

## assetsHistPlot -
# Create Histogram Plot: assetsHistPlot -
# par(mfrow = c(2, 2))
assetsHistPlot(x[, 1:4])

## assetsLogDensityPlot -
# Create Log Density Plot: assetsLogDensityPlot -
# par(mfrow = c(1, 1))
assetsLogDensityPlot(x[, "ALT"], estimator = "both")
```

Description

Creates and displays a minimum spanning tree of assets.

Usage

```r
assetsTreePlot(x, labels = TRUE, title = TRUE, box = TRUE,
method = "euclidian", seed = NULL, ...)
```

Arguments

- `x` : a multivariate timeSeries object.
- `labels` : a logical flag, if TRUE then default labels will be used, otherwise the plots will be displayed without labels and the user can add his own labels.
- `title` : a logical flag, should a default title be added? By default TRUE.
- `box` : a logical flag, should a box be added around the plot? By default TRUE.
- `method` : a character string, the method used to compute the distance matrix, see function `dist`.
- `seed` : an integer value setting the seed in the computation of the sample ranks.
- `...` : optional arguments to be passed.
Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP2005REC -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC[, 1:6]
head(LPP)

## assetsTreePlot(LPP) -
# Create Minimum Spanning Tree Graph: assetsTreePlot -
# par(mfrow = c(2, 2))
assetsTreePlot(LPP)
# new seeds ...
for (i in 1:3) assetsTreePlot(LPP)
```

Description

Display several aspects of correlation between pairs of assets.

Usage

```r
assetsPairsPlot(x, ...)
assetsCorgramPlot(x, 
    method = c("pie", "shade"), ...)
assetsCorTestPlot(x, ...)
assetsCorImagePlot(x, labels = TRUE, show = c("cor", "test"),
    use = c("pearson", "kendall", "spearman"), abbreviate = 3, ...)
```

Arguments

- `x` any rectangular time series object which can be converted by the function `as.matrix()` into a matrix object, e.g. like an object of class `timeSeries`, `data.frame`, or `mts`.
- `labels` a logical flag, if `TRUE` then default labels will be used, otherwise the plots will be displayed without labels and the user can add his own labels.
- `method` a character string, the type of graph used in the lower panel.
show a character string, what should be presented, correlations or results from correlation tests?

use a character string indicating which correlation coefficient or covariance is to be computed. One of "pearson", the default, "kendall", or "spearman".

abbreviate allows to abbreviate strings to at least abbrevi ate characters, such that they remain unique, if they were.

... optional arguments to be passed.

Details

assetsPairsPlot displays pairs of scatterplots of individual assets,
assetsCorgramPlot displays correlations between assets,
assetsCorTestPlot displays and tests pairwise correlations,
assetsCorImagePlot displays an image plot of a correlations.

Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

LPP2005REC -
Load Swiss Pension Fund Data:
LPP <- LPP2005REC[, 1:6]
head(LPP)

assetsPairsPlot -
Create Pairs Plot:
assetsPairsPlot(LPP)

assetsCorgramPlot -
Create Correllogram Plot:
assetsCorgramPlot(LPP, method = "pie")
assetsCorgramPlot(LPP, method = "shade")

assetsCorTestPlot -
Create Correlation Test Plot:
assetsCorTestPlot(LPP)

assetsCorImagePlot -
plot-qqplot

Normal Quantile-Quantile Plots

Description

Displays a normal quantile-quantile plot

Usage

assetsQQNormPlot(x, col = "steelblue", skipZeros = FALSE, ...)

Arguments

x
any rectangular time series object which can be converted by the function as.matrix() into a matrix object, e.g. like an object of class timeSeries, data.frame, or mts.

col
a character string, defining the color to fill the boxes.

skipZeros
a logical, should zeros be skipped in the histogram plot of the return series?

... optional arguments to be passed.

Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP2005REC -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC
head(LPP)

## assetsQQNormPlot -
# Create normal Quantile-Quantile Plot:
# par(mfrow = c(2, 2))
assetsQQNormPlot(LPP[, 1:3])
```
Description

Displays risk plot from assets.

Usage

assetsRiskReturnPlot(x, col = "steelblue", percentage = FALSE, scale = 252,
labels = TRUE, add = TRUE, ...)

assetsNIGShapeTrianglePlot(x, labels, col = "steelblue", ...)

Arguments

- **x**: any rectangular time series object which can be converted by the function `as.matrix()` into a matrix object, e.g. like an object of class `timeSeries`, `data.frame`, or `mts`.
- **col**: a character string, defining the color to fill the boxes.
- **percentage**: a logical flag. Are the returns given by log or percentual log returns?
- **scale**: an integer value, the scale, i.e. number of days, in a year. Used by daily data sets.
- **labels**: a logical flag, if `TRUE` then default labels will be used, otherwise the plots will be displayed without labels and the user can add his own labels.
- **add**: a logical flag, defining the color to fill the boxes.
- **...**: optional arguments to be passed.

Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); *Portfolio Optimization with R/Rmetrics*, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP2005REC -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC
head(LPP)

## assetsRiskReturnPlot -
```
Create Risk/Return Plot:
par(mfrow = c(2, 2))
assetsRiskReturnPlot(LPP)

assetsNIGShapeTrianglePlot -
Create NIG Shape Triangle Plot:
assetsNIGShapeTrianglePlot(LPP)

plot-series

Displays Series Plots of Assets.

Description

Displays series from sets of assets.

Usage

```r
assetsReturnPlot(x, col = "steelblue", ...)
assetsCumulatedPlot(x, col = "steelblue", ...)
assetsSeriesPlot(x, col = "steelblue", ...)
```

Arguments

- `x`
an object of class `timeseries`.
- `col`
a character string, defining the color to fill the boxes.
- `...`
optional arguments to be passed.

Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); *Portfolio Optimization with R/Rmetrics*, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP2005REC -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC
head(LPP)

## assetsReturnPlot -
# Create Return Series Plot:
# par(mfrow = c(3, 2))
assetsReturnPlot(LPP[, 1:3])

## assetsCumulatedPlot -
```
Create Cumulated Price/Index Plot:
assetsCumulatedPlot(LPP[, "LPP40"], col = "red")

Create Time Series Plot:
Create Time Series Plot:
assetsSeriesPlot(LPP[, c("LMI", "ALT")],
 col = c("orange", "brown"))

plot-similarity
Assets Similarity Plots

Description

Displays plots of similarities and dissimilarities between data sets of assets.

Usage

assetsDendrogramPlot(x, labels = TRUE, title = TRUE, box = TRUE,
 method = c(dist = "euclidian", clust = "complete"), ...)

assetsCorEigenPlot(x, labels = TRUE, title = TRUE, box = TRUE,
 method = c("pearson", "kendall", "spearman"), ...)

Arguments

- **box**
 - a logical flag, should a box be added around the plot? By default TRUE.
- **labels**
 - a logical flag, if TRUE then default labels will be used, otherwise the plots will be displayed without labels and the user can add his own labels.
- **method**
 - for the function assetsCorgramPlot a character string, the type of graph used in the lower panel, for the function assetsCorEigenPlot a character string, the method used to compute the correlation matrix.
 - for the function assetsTreePlot a character string, the method used to compute the distance matrix, see function dist.
- **title**
 - a logical flag, should a default title be added? By default TRUE.
- **x**
 - any rectangular time series object which can be converted by the function as.matrix() into a matrix object, e.g. like an object of class timeSeries, data.frame, or mts.
- **...**
 - optional arguments to be passed.

Details

- assetsDendrogramPlot
 - displays a hierarchical clustering dendrogram,
- assetsCorEigenPlot
 - displays ratio plot of the largest two eigenvalues.
Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## Load Swiss Pension Fund Data:
LPP <- LPP2005REC
head(LPP)

## Display a Dendrogram Plot:
assetsDendrogramPlot(LPP)

## Display a Correlation Eigenvalue Ratio Plot:
assetsCorEigenPlot(LPP)
```

plot-stars
Stars Plots of Assets.

Description

Displays star plots to compare assets sets.

Usage

```r
assetsStarsPlot(x, method = c("segments", "stars"), locOffset = c(0, 0),
keyOffset = c(0, 0), ...)

assetsBoxStatsPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4),
keyOffset = c(-0.65, -0.50), main = "Assets Statistics",
title = "Assets", titlePosition = c(3, 3.65),
description = "Box Plot Statistics", descriptionPosition = c(3, 3.50), ...)

assetsBasicStatsPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4),
keyOffset = c(-0.65, -0.50), main = "Assets Statistics",
title = "Assets", titlePosition = c(3, 3.65),
description = "Basic Returns Statistics", descriptionPosition = c(3, 3.50), ...)

assetsMomentsPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4),
keyOffset = c(-0.65, -0.50), main = "Assets Statistics",
title = "Assets", titlePosition = c(3, 3.65),
...)
```
plot-stars

description = "Moments Statistics", descriptionPosition = c(3, 3.50), ...)

assetsNIGFitPlot(x, par = TRUE, oma = c(0, 0, 0, 0), mar = c(4, 4, 4, 4),
keyOffset = c(-0.65, -0.50), main = "Assets Statistics",
title = "Assets", titlePosition = c(3, 3.65),
description = "NIG Parameters", descriptionPosition = c(3, 3.50), ...)

Arguments

description a description string.
descriptionPosition the position of the description string.
method a character string from to select the plot method. Either a "star" or a "segment" plot.
keyOffset a numeric vector of length two, specifying an offset in the legend with respect to x and y direction.
locOffset a numeric vector of length two, specifying an offset in the location of the stars/circles with respect to x and y direction.
main to set the main title.
mar to set the number of lines of margin to be specified on the four sides of the plot. The default is c(5,4,4,2)+0.1.
oma to set the size of the outer margins in lines of text.
par a logical flag. Should be internal par() setting be used?
title a character string, the plot title.
titlePosition the position of the title string.
x any rectangular time series object which can be converted by the function as.matrix() into a matrix object, e.g. like an object of class timeSeries, data.frame, or mts.
... optional arguments to be passed.

Details

assetsStarsPlot
draws segment or star diagrams of data sets,
assetsBasicStatsPlot
displays a segment plot of box plot statistics,
assetsMomentsPlot
displays a segment plot of distribution moments,
assetsBoxStatsPlot
displays a segment plot of box plot statistics,
assetsNIGFitPlot
displays a segment plot NIG parameter estimates.
Author(s)

Diethelm Wuertz for the Rmetrics port.

References

Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); *Portfolio Optimization with R/Rmetrics*, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.

Examples

```r
## LPP2005REC -
# Load Swiss Pension Fund Data:
LPP <- LPP2005REC
head(LPP)

## assetsBasicStatsPlot -
# Create a basic Stats Plot: assetsBasicStatsPlot -
# par(mfrow = c(1, 1))
assetsBasicStatsPlot(LPP, title = "", description = "")

## assetsMomentsPlot -
# Create a Moments Plot: assetsMomentsPlot -
assetsMomentsPlot(LPP, title = "", description = "")

## assetsBoxStatsPlot -
# Create a Box Stats Plot: assetsBoxStatsPlot -
assetsBoxStatsPlot(LPP, title = "", description = "")

## assetsNIGFitPlot -
# Create a NIG Fit Plot: assetsNIGFitPlot -
assetsNIGFitPlot(LPP[, 7:9], title = "", description = "")
```
Index

*Topic models
 assets-arrange, 6
 assets-lpm, 9
 assets-meancov, 10
 assets-modeling, 12
 assets-outliers, 14
 assets-selection, 15
 assets-testing, 16
 fAssets-package, 2
 plot-binning, 17
 plot-boxplot, 18
 plot-ellipses, 19
 plot-hist, 20
 plot-mst, 21
 plot-pairs, 22
 plot-qqplot, 24
 plot-risk, 25
 plot-series, 26
 plot-similarity, 27
 plot-stars, 28

*Topic package
 fAssets-package, 2

*Topic stats
 assets-distance, 7
 abcArrange (assets-arrange), 6
 assets-arrange, 6
 assets-distance, 7
 assets-lpm, 9
 assets-meancov, 10
 assets-modeling, 12
 assets-outliers, 14
 assets-selection, 15
 assets-testing, 16
 assetsArrange (assets-arrange), 6
 assetsBasicStatsPlot (plot-stars), 28
 assetsBoxPercentilePlot (plot-boxplot), 18
 assetsBoxPlot (plot-boxplot), 18
 assetsBoxStatsPlot (plot-stars), 28
 assetsCorEigenPlot (plot-similarity), 27
 assetsCorgramPlot (plot-pairs), 22
 assetsCorImagePlot (plot-pairs), 22
 assetsCorTestPlot (plot-pairs), 22
 assetsCumulatedPlot (plot-series), 26
 assetsDendrogramPlot (plot-similarity), 27
 assetsDist (assets-distance), 7
 assetsFit (assets-modeling), 12
 assetsHistPairsPlot (plot-binning), 17
 assetsHistPlot (plot-hist), 20
 assetsLogDensityPlot (plot-hist), 20
 assetsLPM (assets-lpm), 9
 assetsMeanCov (assets-meancov), 10
 assetsMomentsPlot (plot-stars), 28
 assetsNIGFitPlot (plot-stars), 28
 assetsNIGShapeTrianglePlot (plot-risk), 25
 assetsOutliers (assets-outliers), 14
 assetsPairsPlot (plot-pairs), 22
 assetsQQNormPlot (plot-qqplot), 24
 assetsReturnPlot (plot-series), 26
 assetsRiskReturnPlot (plot-risk), 25
 assetsSelect (assets-selection), 15
 assetsSeriesPlot (plot-series), 26
 assetsSim (assets-modeling), 12
 assetsSLPM (assets-lpm), 9
 assetsStarsPlot (plot-stars), 28
 assetsTest (assets-testing), 16
 assetsTreePlot (plot-mst), 21

binaryDist (assets-distance), 7
binningPlot (plot-binning), 17
boxPlot (plot-boxplot), 18
braycurtisDist (assets-distance), 7
canberraDist (assets-distance), 7
corDist (assets-distance), 7
covEllipsesPlot (plot-ellipses), 19
euclideanDist (assets-distance), 7
fAssets (fAssets-package), 2
fAssets-package, 2
getCenterRob (assets-meancov), 10
getCovRob (assets-meancov), 10
hclustArrange (assets-arrange), 6
histPlot (plot-hist), 20
jaccardDist (assets-distance), 7
kendallDist (assets-distance), 7
mahalanobisDist (assets-distance), 7
manhattanDist (assets-distance), 7
maximumDist (assets-distance), 7
minkowskiDist (assets-distance), 7
mutinfoDist (assets-distance), 7
mvenergyTest (assets-testing), 16
mvshapiroTest (assets-testing), 16
orderArrange (assets-arrange), 6
pairsPlot (plot-pairs), 22
pcaArrange (assets-arrange), 6
plot-binning, 17
plot-boxplot, 18
plot-ellipses, 19
plot-hist, 20
plot-mst, 21
plot-pairs, 22
plot-qqplot, 24
plot-risk, 25
plot-series, 26
plot-similarity, 27
plot-stars, 28
sampleArrange (assets-arrange), 6
seriesPlot (plot-series), 26
seriesPlots (plot-risk), 25
similarityPlot (plot-similarity), 27
sorensenDist (assets-distance), 7
spearmanDist (assets-distance), 7
starsPlot (plot-stars), 28
statsArrange (assets-arrange), 6
treePlot (plot-mst), 21