Package ‘fTrading’

February 19, 2015

Version 3010.78
Revision 5400
Date 2012-11-30
Title Technical Trading Analysis
Author Diethelm Wuertz and many others, see the SOURCE file
Depends R (>= 2.4.0), methods, timeDate, timeSeries, fBasics
Suggests RUnit, tcltk
Maintainer Yohan Chalabi <yohan.chalabi@rmetrics.org>
Description Environment for teaching ”Financial Engineering and Computational Finance”

NOTE SEVERAL PARTS ARE STILL PRELIMINARY AND MAY BE CHANGED IN THE FUTURE. THIS TYPICALLY INCLUDES FUNCTION AND ARGUMENT NAMES, AS WELL AS DEFAULTS FOR ARGUMENTS AND RETURN VALUES.

LazyData yes
License GPL (>= 2)

URL http://www.rmetrics.org

NeedsCompilation no
Repository CRAN
Date/Publication 2013-12-10 23:39:57

R topics documented:

BenchmarkAnalysis ... 2
RollingAnalysis .. 4
TechnicalAnalysis ... 6

Index 10
Utilities and Benchmark Analysis

Description

A collection and description of utility and benchmark functions for the analysis of financial markets. The collection provides a set of functions for the computation of returns, for the display of price charts, and for benchmark measurements.

The functions are:

- `ohlcPlot` plots open–high–low–close bar charts,
- `sharpeRatio` computes Sharpe Ratio,
- `sterlingRatio` computes Sterling Ratio,
- `maxDrawDown` computes maximum drawdown.

Usage

```r
ohlcPlot(x, xlim = NULL, ylim = NULL, xlab = "Time", ylab, col = par("col"),
         bg = par("bg"), axes = TRUE, frame.plot = axes, ann = par("ann"),
         main = NULL, date = c("calendar", "julian"), format = "%Y-%m-%d",
         origin = "1899-12-30", ...)

sharpeRatio(x, r = 0, scale = sqrt(250))
sterlingRatio(x)

maxDrawDown(x)
```

Arguments

- `date`, `format`, `origin` [ohlcPlot] - date elements,
 `date`, a string indicating the type of x axis annotation. Default is calendar dates.
 `format`, a string indicating the format of the x axis annotation if `date` is "calendar".
 For details see `format.POSIXct`.
 `origin` an R object specifying the origin of the Julian dates if `date` is "calendar".
 Defaults to 1899-12-30 (Popular spreadsheet programs internally also use Julian dates with this origin).

- `r` [sharpeRatio] - the risk free rate. Default corresponds to using portfolio returns not in excess of the riskless return.

- `scale` [sharpeRatio] - a scale factor. Default corresponds to an annualization when working with daily financial time series data.
x a numeric vector of prices. For ohlcPlot a multivariate time series object of class mts is required.

xlim, ylim, xlab, ylab, col, bg, axes, frame.plot, ann, main
[ohlcPlot] -
graphical arguments, see plot, plot.default and par.

... [ohlcPlot] -
further graphical arguments passed to plot.window, title, axis, and box.

Details

Open–High–Low–Close Chart:
Within an open–high–low–close bar chart, each bar represents price information for the time interval between the open and the close price. The left tick for each bar indicates the open price for the time interval. The right tick indicates the closing price for the time interval. The vertical length of the bar represents the price range for the time interval. The time scale of x must be in Julian dates (days since the origin).
[tseries:plotOHLC]

Sharpe and Sterling Ratios:
The Sharpe ratio is defined as a portfolio’s mean return in excess of the riskless return divided by the portfolio’s standard deviation. In finance the Sharpe Ratio represents a measure of the portfolio’s risk-adjusted (excess) return. The Sterling ratio is defined as a portfolio’s overall return divided by the portfolio’s maximum drawdown statistic. In finance the Sterling Ratio represents a measure of the portfolio’s risk-adjusted return.
[tseries:sharpe]

Maximum Drawdown:
The maximum drawdown or maximum loss statistic is defined as the maximum value drop after one of the peaks of x. For financial instruments the maximum drawdown represents the worst investment loss for a buy–and–hold strategy invested in x.
[tseries:maxdrawdown]

Get Returns:
The function computes the return series given a financial security price series. The price series may be an object of class numeric or a time series object. This includes objects of classes "ts", "its" and/or "timeSeries".

Value

ohlcPlot creates an Open–High–Low–Close chart.
sharpeRatio
sterlingRatio
return the Sharpe or Sterling ratio, a numeric value.
maxDrawDown
returns a list containing the following three components: maxDrawDown, double representing the
max drawdown or max loss statistic; from, the index (or vector of indices) where the maximum
drawdown period starts; to, the index (or vector of indices) where the max drawdown period ends.

Author(s)
Adrian Trapletti for the ohlcPlot,*Ratio and maxDrawDown functions,
Diethelm Wuertz for the Rmetrics R-port.

Examples
```r
## ohlcPlot -
# Plot OHLC for SP500
# ohlcPlot(x, ylab = "price", main = instrument)

## sharpeRatio -
# Sharpe Ratio for DAX and FTSE:
data(EuStockMarkets)
da = log(EuStockMarkets[, "DAX"])
dfse = log(EuStockMarkets[, "FTSE"])
# Ratios:
  sharpeRatio(dax)
  sharpeRatio(ftse)

## maxDrawDown -
data(EuStockMarkets)
da = log(EuStockMarkets[, "DAX"])
dmd = maxDrawDown(dax)
dmd
# Plot DAX:
plot(dax)
grid()
segments(time(dax)[mddfrom], dax[mddfrom],
  time(dax)[mddto], dax[mddto])
segments(time(dax)[mddfrom], dax[mddto],
  time(dax)[mddto], dax[mddto])
mid = time(dax)[(mddfrom + mddto)/2]
arrows(mid, dax[mddfrom], mid, dax[mddto], col = 2)
title(main = "DAX: Max Drawdown")
```

Description
A collection and description of functions to perform a rolling analysis. A rolling analysis is often
required in building trading models.

The functions are:
RollingAnalysis

rollFun Rolling or moving sample statistics,
rollVar Rolling or moving sample variance.

Usage

rollFun(x, n, trim = TRUE, na.rm = FALSE, FUN, ...)

rollVar(x, n = 9, trim = TRUE, unbiased = TRUE, na.rm = FALSE)

Arguments

FUN the rolling function, arguments to this function can be passed through the ... argument.
n an integer specifying the number of periods or terms to use in each rolling/moving sample.
na.rm a logical flag: if TRUE, missing values in x will be removed before computation. The default is FALSE.
trim a logical flag: if TRUE, the first n-1 missing values in the returned object will be removed; if FALSE, they will be saved in the returned object. The default is TRUE.
unbiased a logical flag. If TRUE, the unbiased sample variance will be returned. The default is TRUE.
x an univariate timeSeries object or a numeric vector.
... additional arguments to be passed.

Value

The functions return a timeSeries object or a numeric vector, depending on the argument x.
rollMax returns the rolling sample maximum,
rollMin returns the rolling sample minimum,
rollMean returns the rolling sample mean, and
rollVar returns the biased/unbiased rolling sample variance.

Note, that the function rollFun always returns a numeric vector, independent of the argument x.
If you like to operate for x with rectangular objects, you have to call the functions columnwise within a loop.

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

See Also

var.
Examples

```r
## Rolling Analysis:
x = (1:10)^2
x
trim = c(TRUE, TRUE, FALSE, FALSE)
na.rm = c(TRUE, FALSE, TRUE, FALSE)
for (i in 1:4)
  rollFun(x, 5, trim[i], na.rm[i], FUN = min)
for (i in 1:4)
  rollFun(x, 5, trim[i], na.rm[i], FUN = max)
for (i in 1:4)
  rollVar(x, 5, trim[i], unbiased = TRUE, na.rm[i])
for (i in 1:4)
  rollVar(x, 5, trim[i], unbiased = FALSE, na.rm[i])
```

Description

A collection and description of functions for the technical analysis of stock markets. The collection provides a set of the most common technical indicators.

Utility Functions:

- `emaTA` - Exponential Moving Average,
- `biasTA` - Bias Indicator,
- `medpriceTA` - Medium Price Indicator,
- `typicalpriceTA` - Typical Price Indicator,
- `wcloseTA` - Weighted Close Indicator,
- `rocTA` - Rate of Change,
- `oscTA` - Oscillator Indicator.

Oscillator Indicators:

- `momTA` - Momentum Indicator,
- `macdT` - MACD Indicator,
- `cdsTA` - MACD Signal Line,
- `cdoTA` - MACD Oscillator,
- `vohlTA` - High/Low Volatility,
- `vorTA` - Volatility Ratio.

- `stochasticTA` - Stochastics Oscillator,
- `fpkTA` - Fast Percent K,
- `fpdTA` - Fast Percent D,
- `spdTA` - Slow Percent D,
Technical Analysis

apdTA Averaged Percent D,
wprTA William’s Percent R,
rsiTA Relative Strength Index.

S-Plus Like Moving Averages:

SMA Simple Moving Average,
EWMA Exponentially Weighted Moving Average.

Usage

emaTA(x, lambda, startup = 0)
biasTA(x, lag)
medpriceTA(high, low)
typicalpriceTA(high, low, close)
wclossoTA(high, low, close)
rocoTA(x, lag)
oscTA(x, lag1 = 25, lag2 = 65)

momTA(x, lag)
macdTA(x, lag1, lag2)
cdoTA(x, lag1 = 12, lag2 = 26, lag3 = 9)

vohlTA(high, low)
vorTA(high, low)

stochasticTA(close, high, low, lag1 = 5, lag2 = 3, lag3 = 5,
 type = c("fast", "slow"))
fpkTA(close, high, low, lag)
fpdTA(close, high, low, lag1, lag2)
spdTA(close, high, low, lag1, lag2, lag3)
apdTA(close, high, low, lag1, lag2, lag3, lag4)
wprTA(close, high, low, lag)
rsiTA(close, lag)

SMA(x, n = 5)
EWMA(x, lambda, startup = 0)

Arguments

lag, lag1, lag2, lag3, lag4
 integer values, time lags.

n [SMA] -
 an integer value, time lag.

lambda [emaTA][EWMA] -
 a numeric value between zero and one giving the decay length of the exponential
 moving average. If an integer value greater than one is given, lambda is used as
 a lag of "n" periods to calculate the decay parameter.
startup [ema][EWMA] -
an integer value, the startup position of the exponential moving average, by
default 0.

type [stochasticTA] -
a character string, either "fast" or "slow" characterizing the type of the per-
cent K and percent D indicator. By default type="fast"
x, high, low, close
a numeric vector of prices, either opening, closing, or high and low values. For
ohlcplot a multivariate time series object of class mts.

Value

*TA
The technical Indicators return the following numeric vectors (or matrix):
emaTA returns the Exponential Moving Average, EMA
biasTA returns the EMA-Bias,
medpriceta returns the Medium Price,
typicalpriceta returns the Typical Price,
wcloseta returns the Weighted Closing Price,
rocTA returns the Rate of Change Indicator,
oscTA returns the EMA Oscillator Indicator,
momTA returns the Momentum Oscillator,

macdTA returns the MACD Oscillator,
cdsTA returns the MACD Signal Line,
cdo returns the MACD Oscillator,
vohtLA returns the High/Low Volatility Oscillator,
vorTA returns Volatility Ratio Oscillator,

stochasticTA returns a 2-column matrix with percent K and D Indicator,
fpkTA returns the Fast Percent-K Stochastics Indicator,
fpdTA returns the Fast Percent-D Stochastics Indicator,
spdTA returns the Slow Percent-D Stochastics Indicator,
apdTA returns the Averaged Percent-D Stochastics Indicator,
wprTA returns the Williams Percent-R Stochastics Indicator,
rsiTA returns the Relative Strength Index Stochastics Indicator.

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

Examples

```r
## data -
# Load MSFT Data:
x <- MSFT
colnames(x)
```
x = x[, "Close"]
head(x)

emaTA -
Exponential Moving Average:
y = emaTA(x, lambda = 9)
seriesPlot(x)
lines(y, col = "red")
Index

*Topic math
 BenchmarkAnalysis, 2
 RollingAnalysis, 4
 TechnicalAnalysis, 6

 accelTA (TechnicalAnalysis), 6
 adiT A (TechnicalAnalysis), 6
 adoscillatorTA (TechnicalAnalysis), 6
 apdTA (TechnicalAnalysis), 6
 axis, 3

 BenchmarkAnalysis, 2
 biasTA (TechnicalAnalysis), 6
 bollingerTA (TechnicalAnalysis), 6
 box, 3

 cdoTA (TechnicalAnalysis), 6
 cdsTA (TechnicalAnalysis), 6
 chaikinoTA (TechnicalAnalysis), 6
 chaikinvTA (TechnicalAnalysis), 6

 emaTA (TechnicalAnalysis), 6
 EWMA (TechnicalAnalysis), 6

 format.POSIXct, 2
 fpdTA (TechnicalAnalysis), 6
 fpkTA (TechnicalAnalysis), 6

 garmanklassTA (TechnicalAnalysis), 6

 macdTA (TechnicalAnalysis), 6
 maxDrawDown (BenchmarkAnalysis), 2
 medpriceTA (TechnicalAnalysis), 6
 momTA (TechnicalAnalysis), 6

 nviTA (TechnicalAnalysis), 6

 obvTA (TechnicalAnalysis), 6
 ohlcPlot (BenchmarkAnalysis), 2
 oscTA (TechnicalAnalysis), 6

 par, 3

 plot, 3
 plot.default, 3
 plot.window, 3
 pviTA (TechnicalAnalysis), 6
 pvtrendTA (TechnicalAnalysis), 6

 rocTA (TechnicalAnalysis), 6
 rollFun (RollingAnalysis), 4
 RollingAnalysis, 4
 rollVar (RollingAnalysis), 4
 rsiTA (TechnicalAnalysis), 6

 sharpeRatio (BenchmarkAnalysis), 2
 SMA (TechnicalAnalysis), 6
 spdTA (TechnicalAnalysis), 6
 sterlinaRatio (BenchmarkAnalysis), 2
 stochasticTA (TechnicalAnalysis), 6

 TechnicalAnalysis, 6
 title, 3
 typicalpriceTA (TechnicalAnalysis), 6

 var, 5
 vohlTA (TechnicalAnalysis), 6
 vorTA (TechnicalAnalysis), 6

 wclosetA (TechnicalAnalysis), 6
 williamsadTA (TechnicalAnalysis), 6
 williamsrTA (TechnicalAnalysis), 6
 wprTA (TechnicalAnalysis), 6