bayesQR is an MCMC sampler to fit a Bayesian quantile regression model. This does not assume a factor structure.

Arguments

- **formula**: A formula of the form `formula = Y ~ X1 + X2`, where `Y` is the response and variables on the right-hand side are covariates.
- **dataSet**: An optional data frame, list, or environment containing the variables in the model.
- **pQuant**: Response quantile to model. Defaults to `pQuant=PNU`.
- **nSamp**: Number of MCMC iterations, with a default of 5000.
- **burn**: Iterations of burn-in, with a default of 0.
- **thin**: Number of iterations to skip between stored values, with a default of 0.
- **β0**: Prior shape for `τ`, which is the inverse scale of the response. Defaults to 1.
- **D0**: Prior scale for `τ`.
- **B0**: Prior precision (i.e., inverse variance) for β regression parameters. Default is a diagonal matrix with non-zero values of 0.01. May be left at NULL, or changed to a non-negative scalar, a vector with length equal to the number of covariates, or a symmetric, positive semi-definite matrix with dimension equal to the number of covariates.
- **betaZero**: Starting value for β.
- **verbose**: If TRUE, prints progress updates in Gibbs sampler.

Value

Returns an item of the class bayesQR composed of the following components:

- **param**: Matrix of sampled parameter values.
- **call**: The matched call.
- **betLen**: The number of β components.
- **nObs**: The number of observations.
- **burn**: The number of Gibbs iterations before samples were stored.
- **thin**: The number of Gibbs iterations between stored values.
- **nSamp**: The total number of Gibbs iterations.

Author(s)

Lane F. Burgette, Department of Statistical Science, Duke University. <lb131@stat.duke.edu>
checkFcn

Check function

Description
checkFcn is the check function, or tilted absolute value function.

Arguments
- **x**: A vector of points at which we evaluate the function.
- **p**: The quantile of interest.

Value
Returns a vector with the same length as x. The check loss is defined to be -1*(x < 0)*x*(1-p) + (x>0)*p*x.

Author(s)
Lane F. Burgette, Department of Statistical Science, Duke University. <1b131@stat.duke.edu>

factorQR

A Bayesian factor model for quantile regression

Description
factorQR is an MCMC sampler to fit a Bayesian factor model for quantile regression.

Arguments
- **factorForm**: A formula of the form factorForm = Y ~ X1 + X2, where Y is the response and variables on the right-hand side are manifest variables related to the latent factors on which we are regressing Y. The right-hand side variables will be centered automatically, though they are not scaled.
- **nonFactorForm**: An optional formula of the form nonFactorForm = ~ X3 + X4. These covariates are used to model Y, but they do not relate to any of the latent factors.
- **dataset**: An optional data frame, list, or environment containing the variables in the model.
- **pQuant**: Response quantile to model. Defaults to pQuant=0.5.
- **whichFactor**: Vector of indicators to show factor grouping. E.g., if whichFactor=c(1,1,1,2,2,2), it would mean the first three variables in the right-hand side of factorForm group and the last three group together in two factors. If whichFactor = NULL, a single latent factor will be assumed.
- **nSamp**: Number of MCMC iterations, with a default of 5000.
burn

Iterations of burn-in, with a default of 0.

thin

Number of iterations to skip between stored values in the chain, with a default of 0.

cTau0

Prior shape for τ, which is the inverse scale of the response. Defaults to 1.

dTau0

Prior scale for τ.

cPsi0

Prior shape for Ψ, the inverse scale of the manifest variables related to the factors. Defaults to 1.

dPsi0

Prior rate for Ψ. Defaults to 1.

sig0

Hyperparameter for scale of free Λ_{-s} variables, which is rows of the factor loading matrix that do not correspond to the response. Defaults to 1.

mu0

Prior mean for Λ_{-s} components. Defaults to 1.

R0

Prior scale of Φ^{-1}. If not specified, defaults to the identity matrix.

nu0

Prior degrees of freedom for inverse Wishart associated with Φ. Must be an integer greater than or equal to the dimension of Φ, but defaults to one greater than that dimension.

B0s

Prior precision (i.e., inverse variance) for Λ_s. Default is a diagonal matrix with non-zero values of 0.01. May be left at NULL, or changed to a non-negative scalar, a vector with length equal to the number of latent factors, or a symmetric, positive definite matrix with dimension equal to the number of latent factors.

B0Beta

Prior precision for regression coefficients related to nonFactorForm. Default is a diagonal matrix with non-zero values of 0.01. May be left at NULL, or changed to a non-negative scalar, a vector with length equal to the number of covariates not related to the latent factors, or a symmetric, positive definite matrix with that dimension.

betaZero

Starting value for β.

PhiZero

Initial value of Φ.

invPsiZero

Initial value of Ψ^{-1}.

LambdaZero

Initial value of Λ_{-s}. Must be a scalar or vector with length equal to the number of manifest variables in the right-hand side of factorForm. Will be expanded to its matrix form internally, and elements that should be fixed at 1 will be adjusted if necessary, with warning.

LambdaSZero

Initial value of last row of Λ, i.e. the part that models the left-hand side of factorForm. If specified, must either be a scalar or vector with length equal to the number of latent factors being modeled. Defaults to 0.1

OmegaZero

Initial value for latent Ω.

verbose

If TRUE, prints progress updates in Gibbs sampler.

storeOmega

If TRUE, stores the sampled Ω values.

latentInteract

If TRUE, interacts the first two latent factors. More latent/latent interactions are not currently supported.

interactX

If supplied, a matrix of variables with which to interact the latent factors. Repeated columns are allowed.

whichFactorInteract

A vector that indicates which factors to interact with the columns of interactX. For example, whichFactorInteract = c(1,1) would indicate that the two columns of interactX are to be interacted with the first latent factor.
Value

Returns an item of the class factorQR composed of the following components:

- **param**
 Matrix of sampled parameter values.
- **call**
 The matched call.
- **nReg**
 The number of regression parameters.
- **betLen**
 The number of β components.
- **nObs**
 The number of observations.
- **burn**
 The number of Gibbs iterations before samples were stored.
- **thin**
 The number of Gibbs iterations between stored values.
- **nSamp**
 The total number of Gibbs iterations.
- **nFact**
 The number of modeled latent factors.
- **nFactorX**
 The number of manifest variables related to the factors.
- **omega**
 Sampled Ω values, if storeOmega is TRUE.
- **nFactInt**
 Number of factor/manifest variable interactions.

Author(s)

Lane F. Burgette, Department of Statistical Science, Duke University. <b1b131@stat.duke.edu>

makeData

Function to make synthetic data for the factorQR function

Description

makeData simulates data from a factor quantile regression model.

Arguments

- **N**
 The sample size.
- **whichFactor**
 A vector that indicates which factor each manifest variable relates to. E.g.,
 whichFactor = c(1,1,1,2,2) would indicate a two-factor model, with the
 first three manifest variables relating to the first factor and the second two to
 the second factor.
- **pQuant**
 The quantile of interest. Defaults to 0.5.
- **lambda**
 The vector of the non-zero elements of the factor loading matrix, with length
 equal to that of **whichFactor**. Do not include the factor loadings related to the
 response variable. Defaults to 1.
- **LambdaS**
 The vector of factor loadings related to the response. Must have length equal to
 the number of distinct values in **whichFactor**. Defaults to 0.
- **Phi**
 Matrix of latent factor covariances. Must be symmetric and positive-definite and
 have dimension equal to the number of latent factors. Defaults to the identity
 matrix.
- **lapScale**
 Scale of the asymmetric Laplace error distribution. Defaults to 1.
- **Psi**
 Vector of error variances for the manifest explanatory variables.
Value

Returns a matrix whose first column is the response \(Y \) and whose remaining columns are the explanatory manifest variables with the underlying factor grouping implied by \texttt{whichFactor}.

Author(s)

Lane F. Burgette, Department of Statistical Science, Duke University. <lb131@stat.duke.edu>
Index

bayesQR, 2
checkFcn, 3
factorQR, 3
makeData, 5