Package ‘fast’

August 2, 2015

Type Package
Title Implementation of the Fourier Amplitude Sensitivity Test (FAST)
Version 0.64
Date 2015-08-01
Author Dominik Reusser
Depends zoo
Maintainer Dominik Reusser <reusser@pik-potsdam.de>
Description The Fourier Amplitude Sensitivity Test (FAST) is a method to determine global sensitivities of a model on parameter changes with relatively few model runs. This package implements this sensitivity analysis method.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2015-08-02 16:02:45

R topics documented:

fast-package ... 2
double_serie ... 3
example_model2 ... 4
fast_parameters ... 5
freq_cukier ... 6
na2mean ... 7
p.sensitivity ... 8
rerange ... 9
S ... 10
s ... 11
sa ... 12
sensitivity .. 13
sensitivity_rep .. 14

Index 16
Description

The Fourier Amplitude Sensitivity Test (FAST) is a method to determine global sensitivities of a model on parameter changes with relatively few model runs. This package implements this sensitivity analysis method.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.5</td>
</tr>
<tr>
<td>Date:</td>
<td>2007-12-15</td>
</tr>
<tr>
<td>License:</td>
<td>GPL2</td>
</tr>
</tbody>
</table>

Generate a set of parameter sets with the function `fast_parameters`. Run your model with each parameter set. `sensitivity` then evaluates the sensitivities of the model results on each of the parameters.

Author(s)

Dominik Reusser Maintainer: Dominik Reusser <dreusser@uni-potsdam.de>

References

SCHAIBLY, J. H. & SHULER, K. E. Study Of Sensitivity Of Coupled Reaction Systems To Uncertainties In Rate Coefficients .2. Applications Journal Of Chemical Physics, 1973 , 59 , 3879-3888

CUKIER, R. I.; SCHAIBLY, J. H. & SHULER, K. E. Study Of Sensitivity Of Coupled Reaction Systems To Uncertainties In Rate Coefficients .3. Analysis Of Approximations Journal Of Chemical Physics, 1975 , 63 , 1140-1149

Examples

#A simple model depending on two
double_serie

#parameters and an additional
"hyperparameter" x. Depending on
#x the model is sensitive to p[1] only (x=1)
#or p[2] only (x=0) or both (0<x<1)

e.example_model1<-function(p,x){
 return(p[1]*x+p[2]*(1-x))
}
paras<-fast_parameters(minimum=c(0,0), maximum=c(1,1))
paras
model_results <- apply(paras, 1, example_model1, x=0.5)
plot(model_results)
sensitivity <- sensitivity(x=model_results, number=3, make.plot=TRUE)
sensitivity

#In the second example, sensitivities are calculated for
#200 model results (which might be a time series).
#The model depends on 4 parameters
#It produces a weighted sum of the 4 parameters and returns this sum
#The weights depend on an additional parameter x=1:200

e.example_model2(p=c(1,3,1,1), fig=TRUE)
e.example_model2(p=c(1,2,2,3), fig=TRUE)
paras<-fast_parameters(min=c(0,0,0,0), max=c(1,2,2,3))
paras
model_results <- apply(paras, 1, example_model2)
plot(model_results)
dev.new()
sensitivity <- sensitivity_rep(data = model_results, xval=1:200, direction = 1, order=4, number=4)
p.sensitivity(sen=sensitivity, xval=1:200, legend=names(paras))

double_serie

Double the length of a data series for the FAST algorithm

Description

This function is used internally for the FAST-algorithm. It duplicates the length of a data series assuming that the second part is a mirror image of the first part

Usage

double_serie(x)

Arguments

x x is the data series to make longer
Details

This function reverses the model output series from a number of model runs for the FAST analysis and appends it to the original series. The last element of the existing series is not duplicated during this process.

This is required in order to process the model run results for the FAST analysis with the \texttt{fft} function.

Value

If \(x = c(1,2,3,4)\) the returned vector is \(c(1,2,3,4,3,2,1)\)

Author(s)

Dominik Reusser

References

cukier 1978

Examples

\begin{verbatim}
x=c(1,2,3,4)
double_serie(x)
\end{verbatim}

Description

Model 1 depends on a flexible number of parameters. It is documented in Saltelli and Sobol 1995 and Davis and Rabinowith 1984.

Model 2 depends on 4 parameters. It produces a weighted sum of the 4 parameters and returns this sum. The weights depend on an additional parameter \(x=1:200\).

Usage

\begin{verbatim}
example_model1(par,a, output=c("model", "analytical sensitivities"))
example_model2(p, fig=FALSE)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{par} A vector with parameters
 \item \texttt{a} A vector with a values of the same length as \texttt{par}. \texttt{a} is a measure for the importance of each parameter, with highest importance for \texttt{a}=0, non important parameters for \texttt{a}=9 and neglegible parameters for \texttt{a}=99
 \item \texttt{output} A character indicating whether to return the model results or the analytical parameter sensitivities
\end{itemize}
fast_parameters

p A vector of 4 parameters
fig boolean: Plot the model(x)

Value
A vector of the weighted sum of parameters.

Author(s)
Dominik Reusser

References

See Also
fast, sensitivity_rep

Examples

```r
eexample_model1(par=c(0.5,0.5,0.5),a=c(1,1,1))

#The model depends on 4 parameters
#
#It produces a weighted sum of the 4 parameters and returns this sum
#
#The weights depend on an additional parameter x=1:200
example_model2(p=c(1,3,1,1),fig=TRUE)
example_model2(p=c(1,2,2,3),fig=TRUE)
```

Description
This function generates an array of parameters for the FAST method.

Usage

```r
fast_parameters(minimum, maximum, names=paste(sep="", "P", 1:n), factor=1, logscale=rep(FALSE, n), cukier=TRUE, reorder=1:n)
```
Arguments

- **minimum**: Vector of lower boundaries for parameters
- **maximum**: Vector of upper boundaries for parameters
- **names**: A vector of parameter names.
- **factor**: Create more values than the minimum requires. Passed to `s`
- **logscale**: A vector of booleans indicating whether a parameter is varied on a logarithmic scale. In this case, minimum and maximum are exponents
- **cukier**: boolean. Indicates whether to use `freq_cukier` or `freq_mcrae82`
- **reorder**: A vector of indices that allows to use a different order for the parameters. This is important to check effects of the sampling scheme on results

Value

An array of dimension `c(min_number_of_runs, n)`

Author(s)

Dominik Reusser

See Also

- `fast_parameters`

Examples

```r
paras <- fast_parameters(minimum = c(0, 0), maximum = c(1, 2))
```

Description

This function returns a vector of independent frequencies for usage in the `fast` method.

Usage

```r
freq_cukier(m, i = 1, omega_before = 0)
freq_mcrae82(m, i = 1, omega_before = 0)
```

Arguments

- **m**: Number of frequencies (parameters) needed.
- **i**: Used internally, recursion counter
- **omega_before**: Used internally, previous frequency.
Value
A vector of independent frequencies to the order of 4.

Author(s)
Dominik Reusser

References
CUKIER, R. I.; SCHAIBLY, J. H. & SHULER, K. E. Study Of Sensitivity Of Coupled Reaction Systems To Uncertainties In Rate Coefficients. 3. Analysis Of Approximations Journal Of Chemical Physics, 1975, 63, 1140-1149

See Also
fast

Examples
freq_cukier(5)

na2mean
Replace NA in a vector by mean of neighboring values.

Description
This method replaces NA-Values in a vector by the mean of the neighboring values. Example: c(1,NA,3) is converted to c(1,2,3).

Usage
na2mean(x)

Arguments
x Vector to fill

Details
The method does not work if multiple NA are in sequence.

Value
Vector with NA replaced by mean.
Author(s)
Dominik Reusser

Examples
```r
na2mean(c(1,NA,2))
na2mean(c(1,NA,NA,2))
```

p.sensitivity
Plot a vector (e.g. time series) of sensitivities

Description
This function plots the results from the `sensitivity_rep` function.

Usage
```r
p.sensitivity(sen, xval, legend, legend.cex = 0.5, range = 1:NROW(sen), col = 1:NROW(sen), lty = rep(1, NROW(sen)), smooth = rep(FALSE, NROW(range)), x.range = 1:length(xval), m.max = max(sen[range, ], na.rm = TRUE), limits = rep(FALSE, NROW(range)), xlab = "time", ylab = "Sensitivity", ...)```

Arguments
- `sen` returned object from `sensitivity_rep`
- `xval` Data defining the position on the x-axis. Usually a vector of POSIX-Dates
- `legend` Entries for the legend text
- `legend.cex` Size of the legend
- `range` List of parameter-sensitivities to plot
- `col` Vector of colors for parameters
- `smooth` Vector of TRUE or FALSE values. Sensitivity series are smooted using a LOWES smoother if TRUE.
- `lty` see `par`
- `xlab` see `par`
- `ylab` see `par`
- `x.range` Range of x-values to plot.
- `m.max` Maximum value for the y-axis
- `limits` Vector of limits for sensitivities. Ploted as … If FALSE, the limit for the corresponding series is ignored
- `...` Parameters passed to the plot-function
**rerange**

**Value**

This value is used for its plot-function.

**Author(s)**

Dominik Reusser

**See Also**

`sensitivity_rep`

---

**rerange**    *Linear transformation of data*

**Description**

The function performs a linear transformation of the data, such that afterwards range(data) = (theMin, theMax).

**Usage**

```r
rerange(data, min.goal = 0, max.goal = 1, min.data =
 min(data, na.rm=na.rm), max.data = max(data, na.rm=na.rm),
 center = NA, na.rm=FALSE)
```

**Arguments**

- `data`: vector with the data to transform
- `min.goal`: new minimum value
- `max.goal`: new maximum value
- `min.data`: old minimum value
- `max.data`: old maximum value
- `center`: which old value should become the new center \((\text{max.goal} + \text{min.goal}) / 2\)
- `na.rm`: boolean, passed to `min` and `max`

**Value**

vector with the transformed data

**Author(s)**

Dominik Reusser

**Examples**

```r
rerange(data=1:20)
rerange(data=1:30, center=5)
```
Generate S-set for FAST method

Description

This function generates an array of values which provide the base for parameters for the FAST method. It is usually not used directly but called from `fast_parameters`.

Usage

```r
S(m, factor = 1, cukier = TRUE, par.names = NULL, reorder = 1:m)
```

Arguments

- `m` Number of parameters/frequencies
- `factor` Create more values than the minimum requires. Passed to `s`
- `cukier` boolean. Indicates whether to use `freq_cukier` or `freq_mcrae82`
- `par.names` A vector of parameter names.
- `reorder` A vector of indices that allows to use a different order for the parameters. This is important to check effects of the sampling scheme on results

Value

An array of dimension `c(min_number_of_runs, n)`

Author(s)

Dominik Reusser

See Also

`fast_parameters`

Examples

```r
S(3)
```
s

Generate an s-set for FAST-method

Description
Generates a number of equally spaced values between -pi/2 and pi/2. The number is determined by the number of runs required for the FAST method for a number of runs.

Usage
s(m, factor = 1, cukier = TRUE)

Arguments
- m: number of frequencies/parameters
- factor: the length of the returned vector is the minimum number required for FAST time
- cukier: boolean. Indicates whether to use freq_cukier or freq_mcrae82

Value
A vector of equally spaced values between -pi/2 and pi/2

Author(s)
Dominik Reusser

See Also
- fast

Examples
s(4)
diff(s(3))
Calculate sensitivities

**Description**

sa provides a general interface to sensitivity analysis, similar to optim.

**Usage**

```r
sa(par, fn, method = c("FAST"), ..., xval = NULL)
```

**Arguments**

- `par`: A matrix with two columns. The first giving the lower, the second giving the upper bound to the parameters of fn.
- `fn`: Function for which to analyse sensitivities, with first argument the vector of parameters for which to analyze sensitivities.
- `method`: Currently, only fast is available.
- `...`: Additional arguments passed to fn
- `xval`: Values for the x-axis if fn returns a vector.

**Details**

Let me know what details you would like to know (email to the maintainer)!

**Value**

A vector of sensitivities

**Author(s)**

Dominik Reusser

**References**


**See Also**

See Also as `sensitivity, sensitivity_rep` for the internally used functions.

**Examples**

```r
Does the same as the example in sensitivity_rep but with less code
sa(par=matrix(c(0,0,0,0, 1,2,3), ncol=2), fn=example_model2)
```
**sensitivity**

*Calculate sensitivity according to the FAST algorithm*

**Description**

`sensitivity` calculates the sensitivity from a series of model outputs (`x`) according to the FAST algorithm.

**Usage**

```r
sensitivity(x, numberfL order = 4, make.plot = FALSE, show.legend
 = TRUE, plot.max = max(ff[-1]), include.total.variance
 = FALSE, cukier = TRUE, names = paste(sep = "", "P",
 1:numberf), main = "," freq = "frequency", ylab =
 "Fourier Coef", pch = rep(0, numberf), col =
 (1:2*numberf) + 1, reorder = 1:numberf, ...)
```

**Arguments**

- **x** A vector of model outputs where parameters vary between runs according to the FAST algorithm.
- **numberf** Number of parameters varied.
- **order** Order of parameter frequency independence (see Cukier).
- **make.plot** plot the Fourier spectrum?
- **plot.max** xmax in the spectrum
- **include.total.variance** include the sum of all variances in the result list.
- **pch** see `par`
- **col** see `par`
- **...** Additional parameters passed to `plot`
- **xlab** see `par`
- **ylab** see `par`
- **main** Title for the plot
- **show.legend** Boolean indicating whether to plot the legend
- **names** A vector of parameter names.
- **cukier** boolean: Calculate FAST-parameters according to Cukier 1975 or McRae 1982
- **reorder** A vector of indices that allows to use a different order for the parameters. This is important to check effects of the sampling scheme on results. Use the same as for `fast_parameters`

**Value**

A list of the partial variance accounted for by each parameter.
Author(s)

Dominik Reusser

References


CUKIER, R. I.; SCHAIJLY, J. H. & SHULER, K. E. Study Of Sensitivity Of Coupled Reaction Systems To Uncertainties In Rate Coefficients .3. Analysis Of Approximations Journal Of Chemical Physics, 1975 , 63 , 1140-1149


See Also

S, fast

Examples

```r
example_model1<-function(p,x){
 return(p[1]*x+p[2]*(1-x))
}
paras<fast_parameters(min=c(0,0,0),max=c(1,2,2))
paras
model_results <- apply(paras, 1, example_model1, x=0.5)
model_results
sensitivity <- sensitivity(x=model_results, numberf=3, make.plot=TRUE)
sensitivity
```

sensitivity_rep

Repeat calculation of sensitivities for lots of data

Description

This function calculates the sensitivity for a series of data, e.g. a time series.

Usage

```r
sensitivity_rep(data.zoo, xval = index(data.zoo), direction=1, data = coredata(data.zoo), numberf, order=4, legend = paste("P", 1:order, sep = ""), cukier=TRUE, reorder = 1:numberf, ...)
```
sensitivity_rep

Arguments

- **data**: Array of data to use of the form `todo`
- **data.zoo**: Zoo object containing data with one row per parameter set
- **xval**: Vector to use as x data for plotting
- **direction**: Dimension which contains the todo
- **numberf**: Number of parameters used
- **order**: Order of parameter frequency independence (see Cukier1975)
- **legend**: Legend text to plot
- **cukier**: Boolean. Indicates whether to use `freq_cukier`
- **reorder**: A vector of indices that allows to use a different order for the parameters. This is important to check effects of the sampling scheme on results. Use the same as for `fast_parameters`
- ... Arguments passed to `p.sensitivity`

Value

An array of sensitivities of the form ...

Author(s)

Dominik Reusser

See Also

- `fast`, `sensitivity`

Examples

```r
The model depends on 4 parameters
It produces a weighted sum of the 4 parameters and returns this sum
The weights depend on an additional parameter x=1:200
example_model2(p=c(1,3,1,1),fig=TRUE)
exampel_model2(p=c(1,2,2,3),fig=TRUE)
paras<-fast_parameters(min=c(0,0,0,0),max=c(1,2,2,3))
paras
model_results <- apply(paras, 1, example_model2)
model_results
sensitivity <- sensitivity_rep(data = model_results, xval=1:200, direction = 1, order=4, numberf=4)
p.sensitivity(sen=sensitivity, xval=1:200, legend=names(paras))

Alternatively with zoo object
result.zoo <- zoo(model_results, order.by=1:200)
sensitivity <- sensitivity_rep(data.zoo = result.zoo, numberf=4)
```
Index

/*Topic sensensitivity
   sa, 12
/*Topic datagen
   example_model2, 4
   fast_parameters, 5
   freq_cukier, 6
/*Topic hplot
   p.sensitivity, 8
/*Topic misc
   fast-package, 2
/*Topic multivariate
   fast-package, 2
/*Topic package
   fast-package, 2
/*Topic utilities
   double_serie, 3
   example_model2, 4
   fast-package, 2
   fast_parameters, 5
   freq_cukier, 6
   na2mean, 7
   p.sensitivity, 8
   rerange, 9
   S, 10
   s, 11
   sensitivity, 13
   sensitivity_rep, 14
/*Topic util
   sa, 12
   d_m_mcrae82 (freq_cukier), 6
   double_serie, 3
   example_model1 (example_model2), 4
   example_model2, 4
   fast, 5–7, 11, 14, 15
   fast (fast-package), 2
   fast-package, 2
   fast_parameters, 2, 5, 6, 10, 13, 15
   fft, 4
   freq_cukier, 6, 6, 10, 11, 15
   freq_mcrae82, 6, 10, 11
   freq_mcrae82 (freq_cukier), 6
   max, 9
   min, 9
   min_runs_cukier75 (freq_cukier), 6
   min_runs_mcrae82 (freq_cukier), 6
   na2mean, 7
   omega_m_cukier75 (freq_cukier), 6
   omega_m_mcrae82 (freq_cukier), 6
   optim, 12
   p.sensitivity, 8
   par, 8, 13
   rerange, 9
   S, 10, 14
   s, 6, 10, 11
   sa, 12
   sensitivity, 2, 12, 13, 15
   sensitivity_rep, 5, 8, 9, 12, 14