Package ‘fastR’

July 27, 2017

Type Package
Title Foundations and Applications of Statistics Using R
Version 0.10.3
Date 2017-07-26
Author Randall Pruim
Maintainer Randall Pruim <rpruim@calvin.edu>
Description Data sets and utilities to accompany
``Foundations and Applications of Statistics: an Introduction using R'' (R Pruim, published by AMS, 2011), a text covering topics from probability and mathematical statistics at an advanced undergraduate level. R is integrated throughout, and access to all the R code in the book is provided via the snippet function.
License GPL (>= 2)
Depends R (>= 3.0.0), mosaic, mosaicCalc
Imports lattice, grid, mosaicData
Suggests MASS, faraway, Hmisc, DAAG, multcomp, vcd, car, alr3, corrgram, BradleyTerry2, cubature, Devore7, knitr
VignetteBuilder knitr
LazyLoad yes
LazyData yes
RoxygenNote 6.0.1.9000
NeedsCompilation no
Repository CRAN
Date/Publication 2017-07-27 20:52:06 UTC

R topics documented:

 fastR-package ... 3
 actgpa ... 4
 airlineArrival ... 4
R topics documented:

airpollution ... 5
balldrop .. 5
batting ... 6
births78 ... 7
buckthorn ... 8
bugs ... 8
col.fastR .. 9
col.perc .. 10
concrete .. 10
corn ... 11
cuckoo .. 12
deathPenalty ... 13
drag ... 13
endurance .. 14
familySmoking .. 15
fumbles .. 16
geolm ... 17
givenOrder .. 18
golfballs .. 18
gpa ... 19
heliumFootballs ... 19
ice ... 20
inflation .. 22
Jordan8687 .. 22
kids ... 23
littleSurvey ... 24
mathnoise .. 25
miaa05 .. 26
mlb2004 .. 27
ncaa2010 ... 28
nfl2007 ... 29
nlmax ... 29
noise ... 30
palettes ... 31
paperplanes ... 32
pendulum .. 33
petstress ... 34
pheno .. 35
pigs ... 36
pitching2005 ... 37
poison .. 39
punting .. 40
ratpoison .. 41
rgolfballs .. 41
rubberband ... 42
scent .. 42
snippet .. 43
soap ... 44
Index

fastR-package | Foundations and Applications of Statistics

Description

Author(s)

Randall Pruim

Maintainer: Randall Pruim <rpruim@calvin.edu>

References

Examples

```r
require(fastR)
trellis.par.set(theme=col.fastR())
```
actgpa

ACT scores and GPA

Description

ACT scores and college GPA for a small sample of college students.

Format

A data frame with 26 observations on the following 2 variables.

- ACT a numeric vector
- GPA a numeric vector

Examples

```r
if (require(mosaicData)) {
  xyplot(GPA ~ ACT, data=actgpa)
}
```

airlinearrival

Airline On-Time Arrival Data

Description

Flights categorized by destination city, airline, and whether or not the flight was on time.

Format

A data frame with 11000 observations on the following 3 variables.

- Airport a factor with levels LosAngeles Phoenix SanDiego SanFrancisco Seattle
- Result a factor with levels Delayed OnTime
- Airline a factor with levels Alaska AmericaWest

Source

References

These and similar data appear in many text books under the topic of Simpson’s paradox.
Examples

\[
\text{row.perc(xtabs(~Airline+Result, data=airlineArrival))}\\
\text{for (city in levels(airlineArrival$Airport))} {\\
\text{cat(paste('\nArriving in ', city, ':\n', sep=''))}\\
\text{print(row.perc(xtabs(~Airline+Result, airlineArrival, subset=Airport==city)))}\\
}\]

airpollution

Air pollution measurements

Description

Air pollution measurements at three locations.

Format

A data frame with 6 observations on the following 2 variables.

- pollution a numeric vector
- location a factor with levels Hill Suburb Plains Suburb Urban City

Source

Examples

\[
data(airpollution)\\
\text{summary(lm(pollution ~ location, data=airpollution))}
\]

balldrop

Ball dropping data

Description

Undergraduate students in a physics lab recorded the height from which a ball was dropped and the time it took to reach the floor.
Format

A data frame with 30 observations on the following 2 variables.

- height height in meters
- time time in seconds

Source

Steve Plath, Calvin College Physics Department

Examples

```r
xyplot(time ~ height, data=balldrop)
```

Description

Major League batting data for the seasons from 2000-2005.

Format

A data frame with 8062 observations on the following 22 variables.

- player unique identifier for each player
- year year
- stint for players who were traded mid-season, indicates which portion of the season the data cover
- team three-letter code for team
- league a factor with levels AA AL NL
- G games
- AB at bats
- R runs
- H hits
- H2B doubles
- H3B triples
- HR home runs
- RBI runs batted in
- SB stolen bases
- CS caught stealing
- BB bases on balls (walks)
- SO strike outs
- IBB intentional base on balls
- HBP hit by pitch
- SH a numeric vector
- SF sacrifice fly
- GIDP grounded into double play

Examples

```r
data(batting)
histogram(~HR,batting)
```

births78
Births by Day

Description

The number of live births in the United States for each day of the year 1978.

Format

A data frame with 365 observations on the following 3 variables.

- date date (as a factor)
- births number of live births
- dayofyear number of days since start of year

Examples

```r
data(births78)
xyplot(births ~ dayofyear, births78)
```
buckthorn Buckthorn

Description
Data from an experiment to determine the efficacy of various methods of eradicating buckthorn, an invasive woody shrub. Buckthorn plants were chopped down and the stumps treated with various concentrations of glyphosate. The next season, researchers returned to see whether the plant had regrown.

Format
A data frame with 165 observations on the following 3 variables.

- shoots number of new shoots coming from stump
- conc concentration of glyphosate applied
- dead weather the stump was considered dead

Source
David Dornbos, Calvin College

Examples

data(buckthorn)

bugs Bugs

Description
This data frame contains data from an experiment to see if insects are more attracted to some colors than to others. The researchers prepared colored cards with a sticky substance so that insects that landed on them could not escape. The cards were placed in a field of oats in July. Later the researchers returned, collected the cards, and counted the number of cereal leaf beetles trapped on each card.

Format
A data frame with 24 observations on the following 2 variables.

- Color color of card; one of B(lue) G(reen) W(hite) Y(ellow)
- NumTrap number of insects trapped on the card
Source

Examples

```r
data(bugs)
summary(NumTrap ~ Color, bugs, fun=favstats)
```

Description
A theme for use with lattice graphics.

Usage

```r
col.fastR(bw = FALSE, lty = 1:7)
```

Arguments

- `bw`: whether color scheme should be "black and white"
- `lty`: vector of line type codes

Value

Returns a list that can be supplied as the theme to `trellis.par.set()`.

Note

This theme was used in the production of the book *Foundations and Applications of Statistics*

Author(s)

Randall Pruim

See Also

`trellis.par.set.show.settings`

Examples

```r
trellis.par.set(theme=col.fastR(bw=TRUE))
show.settings()
trellis.par.set(theme=col.fastR())
show.settings()
```
Description
Convenience wrappers around apply() to compute row and column percentages of matrix-like structures, including output of xtabs.

Usage

```
col.perc(x)
row.perc(x)
```

Arguments

x matrix-like structure

Author(s)
Randall Pruim

Examples

```
row.perc(xtabs(~Airline+Result, airlineArrival))
```

Concrete Compressive Strength Data

These data were collected by I-Cheng Yeh to determine how the compressive strength of concrete is related to its ingredients (cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate) and age.

Format

concreteAll is a data frame with the following 9 variables.

- cement amount of cement (kg/m^3)
- slag amount of blast furnace slag (kg/m^3)
- ash amount of fly ash (kg/m^3)
- water amount of water (kg/m^3)
• superP amount of superplasticizer (kg/m³)
• coarseAg amount of coarse aggregate (kg/m³)
• fineAg amount of fine aggregate (kg/m³)
• age age of concrete in days
• strength compressive strength measured in MPa

concrete28 is a subset of concreteAll.

Source
Data were obtained from the Machine Learning Repository (http://archive.ics.uci.edu/ml/) where they were deposited by I-Cheng Yeh (<icyeh at chu.edu.tw>) who retains the copyright for these data.

References

Examples

data(concreteAll)
data(concrete28)

corn Corn Yield

Description
William Gosset analyzed data from an experiment comparing the yield of regular and kiln-dried corn.

Format
A data frame with 11 observations on the following 2 variables.

• reg yield of regular corn (lbs/acre)
• kiln yield of kiln-dried corn (lbs/acre)

Details
Gosset (Student) reported on the results of seeding plots with two different kinds of seed. Each type of seed (regular and kiln-dried) was planted in adjacent plots, accounting for 11 pairs of "split" plots.
Source

These data are also available at DASL, the data and story library (http://lib.stat.cmu.edu/DASL/).

References

W.S. Gosset, "The Probable Error of a Mean," Biometrika, 6 (1908), pp 1-25.

Examples

corn2 <- stack(corn)
names(corn2) <- c('yield', 'treatment')
lm(yield ~ treatment, data = corn2)
t.test(yield ~ treatment, data=corn2)
t.test(corn$reg, corn$kiln)

cuckoo Cuckoo eggs in other birds' nests

Description

Cuckoos are known to lay their eggs in the nests of other (host) birds. The eggs are then adopted and hatched by the host birds. These data were originally collected by O. M. Latter in 1902 to see how the size of a cuckoo egg is related to the species of the host bird.

Format

A data frame with 120 observations on the following 2 variables.

- length length of egg (mm)
- species a factor with levels hedge sparrow meadow pipet pied wagtail robin tree pipet wren

Source

References

These data are also available from DASL, the data and story library (http://lib.stat.cmu.edu/DASL/).

Examples

data(cuckoo)
bwplot(length ~ species, cuckoo)
deathPenalty

Death Penalty and Race

Description

A famous example of Simpson’s paradox.

Format

A data frame with 326 observations. The factors are coded more succinctly in deathPen, but otherwise the data are the same.

- DeathPenalty a factor with levels Yes No
- Penalty a factor with levels Death Not
- Victim a factor with levels Black White (or Bl Wh)
- Defendant a factor with levels Black White (or Bl Wh)

Source

Examples

```r
xtabs(~Defendant+Penalty,deathPenalty)
xtabs(~Defendant+Victim+Penalty,deathPenalty)
```

drag

Drag force experiment

Description

The data come from an experiment to determine how terminal velocity depends on the mass of the falling object. A helium balloon was rigged with a small basket and just the ballast to make it neutrally buoyant. Mass was then added and the terminal velocity is calculated by measuring the time it took to fall between two sensors once terminal velocity has been reached. Larger masses were drop from higher heights and used sensors more widely spaced.
Format

A data frame with 42 observations on the following 5 variables.

• time time (in seconds) to travel between two sensors
• mass net mass (in kg) of falling object
• height distance (in meters) between two sensors
• velocity average velocity (in m/s) computed from time and height
• force.drag calculated drag force (in N, force.drag = mass \times 9.8) using the fact that at terminal velocity, the drag force is equal to the force of gravity

Source

Calvin College physics students under the supervision of Professor Steve Plath.

Examples

data(drag)
with(drag,force.drag / mass)
xyplot(velocity ~ mass, drag)

endurance

Endurance and vitamin C

Description

The effect of a single 600 mg dose of ascorbic acid versus a sugar placebo on the muscular endurance (as measured by repetitive grip strength trials) of fifteen male volunteers (19-23 years old).

Format

A data frame with 15 observations on the following 5 variables.

• Vitamin number of repetitions until reaching 50 maximal grip after taking vitamin
• First which treatment was done first, a factor with levels Placebo Vitamin
• Placebo number of repetitions until reaching 50 strength after taking placebo

Details

Three initial maximal contractions were performed for each subject, with the greatest value indicating maximal grip strength. Muscular endurance was measured by having the subjects squeeze the dynamometer, hold the contraction for three seconds, and repeat continuously until a value of 50 maximum grip strength was achieved for three consecutive contractions. Endurance was defined as the number of repetitions required to go from maximum grip strength to the initial 50 positive verbal encouragement in an effort to have them complete as many repetitions as possible.

The study was conducted in a double-blind manner with crossover.
familySmoking

Source

These data are available from OzDASL, the Australasian data and story library (http://www.statsci.org/data/).

References

Examples

data(endurance)
t.test(endurance$Vitamin, endurance$Placebo, paired=TRUE)
t.test(log(endurance$Vitamin), log(endurance$Placebo), paired=TRUE)
t.test(1/endurance$Vitamin, 1/endurance$Placebo, paired=TRUE)
xqqmath(-Vitamin - Placebo, data = endurance)
xqqmath(-log(Vitamin) - log(Placebo), data = endurance)
xqqmath(-1/Vitamin - 1/Placebo, data = endurance)

Description

A cross-tabulation of whether a student smokes and how many of his or her parents smoke from a study conducted in the 1960’s.

Format

A data frame with 5375 observations on the following 2 variables.

- Student a factor with levels DoesNotSmoke Smokes
- Parents a factor with levels NeitherSmokes OneSmokes BothSmoke

Source

S. V. Zagona (ed.), *Studies and issues in smoking behavior*, University of Arizona Press, 1967.

References

The data also appear in

Examples

data(familySmoking)
xchisq.test(xtabs(~Parents + Student, familySmoking))

```
<table>
<thead>
<tr>
<th>fumbles</th>
<th>NCAA football fumbles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Description

This data frame gives the number of fumbles by each NCAA FBS team for the first three weeks in November, 2010.

Format

A data frame with 120 observations on the following 7 variables.

- team NCAA football team
- rank rank based on fumbles per game through games on November 26, 2010
- W number of wins through games on November 26, 2010
- L number of losses through games on November 26, 2010
- week1 number of fumbles on November 6, 2010
- week2 number of fumbles on November 13, 2010
- week3 number of fumbles on November 20, 2010

Details

The fumble counts listed here are total fumbles, not fumbles lost. Some of these fumbles were recovered by the team that fumbled.

Source

http://www.teamrankings.com/college-football/stat/fumbles-per-game

Examples

data(fumbles)
m <- max(fumbles$week1)
table(factor(fumbles$week1, levels=0:m))
favstats(~ week1, data=fumbles)
compare with Poisson distribution
signif(cbind(
 fumbles=0:m,
 observedCount=table(factor(fumbles$week1, levels=0:m)),
 modelCount= 120* dpois(0:m,mean(fumbles$week1)),
)
geolm

Geometric representation of linear model

Description

geolm create a graphical representation of the fit of a linear model.

Usage

geolm(formula, data = parent.env(), type = "xz", version = 1,
 plot = TRUE, ...)

to2d(x, y, z, type = NULL, xas = c(0.4, -0.3), yas = c(1, 0),
 zas = c(0, 1))

Arguments

formula a formula as used in lm.
data a data frame as in lm.
type character: indicating the type of projection to use to collapse multi-dimensional
data space into two dimensions of the display.
version an integer (currently 1 or 2). Which version of the plot to display.
plot a logical: should the plot be displayed?
... other arguments passed to lm
x, y, z numeric.
xas, yas, zas numeric vector of length 2 indicating the projection of c(1,0,0), c(0,1,0),
and c(0,0,1).
Author(s)
Randall Pruim

See Also
`lm`

Examples

```
geolm(pollution ~ location, data=airpollution)
geolm(distance ~ projectileWt, data=trebuchet2)
```

givenOrder

Create ordered factor with order inferred from order given

Description

The order of the resulting factor is determined by the order in which unique labels first appear in the vector or factor `x`.

Usage

```
givenOrder(x)
```

Arguments

`x`
a vector or factor to be converted into an ordered factor.

Examples

```
givenOrder(c("First", "Second", "Third", "Fourth", "Fifth", "Sixth"))
```

golfballs

Golf ball numbers

Description

Allan Rossman used to live on a golf course in a spot where dozens of balls would come into his yard every week. He collected the balls and eventually tallied up the numbers on the first 5000 golf balls he collected. Of these 486 bore the number 1, 2, 3, or 4. The remaining 14 golf balls were omitted from the data.

Format

The format is: num [1:4] 137 138 107 104
gpa

Source

Data collected by Allan Rossman in Carlisle, PA.

Examples

```r
data(golfballs)
golfballs/sum(golfballs)
chisq.test(golfballs, p=rep(.25,4))
```

gpa

GPA, ACT, and SAT scores

Description

GPA, ACT, and SAT scores for a sample of students.

Format

A data frame with 271 observations on the following 4 variables.

- `satm` SAT mathematics score
- `satv` SAT verbal score
- `act` ACT score
- `gpa` college grade point average

Examples

```r
data(gpa)
splom(gpa)
```

heliumFootballs

Punting helium- and air-filled footballs

Description

Two identical footballs, one air-filled and one helium-filled, were used outdoors on a windless day at The Ohio State University’s athletic complex. Each football was kicked 39 times and the two footballs were alternated with each kick. The experimenter recorded the distance traveled by each ball.
Format

A data frame with 39 observations on the following 3 variables.

- Trial trial number
- Air distance traveled by air-filled football (yards)
- Helium distance traveled by helium-filled football (yards)

Source

These data are available from DASL, the data and story library (http://lib.stat.cmu.edu/DASL/).

References

Examples

data(heliumFootballs)
xyplot(Helium~Air, data=heliumFootballs)
bwplot(~(Helium~Air), data=heliumFootballs)

Description

This data set contains the results of an experiment comparing the efficacy of different forms of dry ice application in reducing the temperature of the calf muscle.

Details

The 12 subjects in this study came three times, at least four days apart, and received one of three ice treatments (cubed ice, crushed ice, or ice mixed with water). In each case, the ice was prepared in a plastic bag and applied dry to the subjects calf muscle. The temperature measurements were taken on the skin surface and inside the calf muscle (via a 4 cm long probe) every 30 seconds for 20 minutes prior to icing, for 20 minutes during icing, and for 2 hours after the ice had been removed. The temperature measurements are stored in variables that begin with B (baseline), T (treatment), or R (recovery) followed by a numerical code for the elapsed time formed by concatenating the number of minutes and seconds. For example, R1230 contains the temperatures 12 minutes and 30 seconds after the ice had been removed.

Variables include

- Subject identification number
• Sex a factor with levels female male
• Weight weight of subject (kg)
• Height height of subject (cm)
• Skinfold skinfold thickness
• Calf calf diameter (cm)
• Age age of subject
• Location a factor with levels intramuscular surface
• Treatment a factor with levels crushed cubed wet
• B0 baseline temperature at time 0
• B30 baseline temperature 30 seconds after start
• B100 baseline temperature 1 minute after start
• B1930 baseline temperature 19 minutes 30 seconds start
• T0 treatment temperature at beginning of treatment
• T30 treatment temperature 30 seconds after start of treatment
• T100 treatment temperature 1 minute after start of treatment
• T1930 treatment temperature 19 minutes 30 seconds after start of treatment
• R0 recovery temperature at start of recovery
• R30 recovery temperature 30 seconds after start of recovery
• R100 recovery temperature 1 minute after start of recovery
• R12000 recovery temperature 120 minutes after start of recovery

Source

Examples

data(ice)
xyplot(Weight ~ Skinfold, groups=Sex, data=ice, auto.key=TRUE)
Description

The article developed four measures of central bank independence and explored their relation to inflation outcomes in developed and developing countries. This datafile deals with two of these measures in 23 nations.

Format

A data frame with 23 observations on the following 5 variables.

- country country where data were collected
- ques questionnaire index of independence
- inf annual inflation rate, 1980-1989 (percent)
- legal legal index of independence
- dev developed (1) or developing (2) nation

Source

These data are available from OzDASL, the Australasian Data and Story Library (http://www.statsci.org/data/).

References

Examples

data(inflation)

Description

The number of points scored by Michael Jordan in each game of the 1986-87 regular season.
kids

Goals and popularity factors for school kids

Description

Subjects were students in grades 4-6 from three school districts in Michigan. Students were selected from urban, suburban, and rural school districts with approximately 1/3 of their sample coming from each district. Students indicated whether good grades, athletic ability, or popularity was most important to them. They also ranked four factors: grades, sports, looks, and money, in order of their importance for popularity. The questionnaire also asked for gender, grade level, and other demographic information.

Format

A data frame with 478 observations on the following 11 variables.

- Gender a factor with levels boy girl
- Grade grade in school
- Age student age
- Race a factor with levels Other White
- Urban.Rural a factor with levels Rural Suburban Urban
- School a factor with levels Brentwood Elementary Brentwood Middle Brown Middle Elm Main Portage Ridge Sand Westdale Middle
- Goals a factor with levels Grades Popular Sports
- Grades rank of ‘make good grades’ (1=most important for popularity; 4=least important)
- Sports rank of ‘becoming good at sports’ (1=most important for popularity; 4=least important)
- Looks rank of ‘becoming handsome or pretty’ (1=most important for popularity; 4=least important)
- Money rank of ‘having lots of money’ (1=most important for popularity; 4=least important)

Source

These data are available at DASL, the data and story library (http://lib.stat.cmu.edu/DASL/).

References

Examples

data(kids)
xtabs(~Goals + Urban.Rural, data=kids)
chisq.test(xtabs(~Goals + Urban.Rural, data=kids))

Results from a little survey

Description

These data are from a little survey given to a number of students in introductory statistics courses. Several of the items were prepared in multiple versions and distributed randomly to the students.

Format

A data frame with 279 observations on the following 20 variables.

- number a number between 1 and 30
- colorVer which version of the 'favorite color' question was on the survey. A factor with levels v1 v2
- color favorite color if among predefined choices. A factor with levels black green other purple red
- otherColor favorite color if not among choices above.
- animalVer which version of the 'favorite color' question was on the survey. A factor with levels v1 v2
- animal favorite animal if among predefined choices. A factor with levels elephant giraffe lion other.
- otherAnimal favorite animal if not among the predefined choices.
- pulseVer which version of the 'pulse' question was on the survey
- pulse self-reported pulse
- TV ver which of three versions of the TV question was on the survey
- tvBox a factor with levels <1 >4 >8 1-2 2-4 4-8 none other
- tvHours a numeric vector
mathnoise

• surpriseVer which of two versions of the 'surprise' question was on the survey
• surprise a factor with levels no yes
• playVer which of two versions of the 'play' question was on the survey
• play a factor with levels no yes
• diseaseVer which of two versions of the 'play' question was on the survey
• disease a factor with levels A B
• homeworkVer which of two versions of the 'homework' question was on the survey
• homework a factor with levels A B

Examples

data(littleSurvey)
xtabs(~surprise+surpriseVer, data=littleSurvey)
xtabs(~disease+diseaseVer, data=littleSurvey)

mathnoise

Description

In this experiment, hyperactive and control students were given a mathematics test in either a quiet or loud testing environment.

Format

A data frame with 40 observations on the following 3 variables.

• score score on a mathematics test
• noise a factor with levels hi lo
• group a factor with levels control hyper

Source

Examples

data(mathnoise)
xyplot(score~noise, data=mathnoise, group=group, type='a',
auto.key=list(columns=2, lines=TRUE, points=FALSE))
Description

Format

A data frame with 134 observations on the following 27 variables.

- Number
- Jersey number
- Player’s name
- Games played
- Games started
- Minutes played
- Average minutes played per game
- Field goals made
- Field goals attempted
- Field goal percentage
- 3-point field goals made
- 3-point field goals attempted
- 3-point field goal percentage
- Free throws made
- Free throws attempted
- Free throw percentage
- Off rebounds
- Def rebounds
- Total rebounds
- RBG rebounds per game
- Personal fouls
- Games fouled out
- Assists
- Turnovers
- Blocked shots
- Steals
- Points scored
- Points per game
Source

MIAA sports archives (http://www.miaa.org/)

Examples

```r
data(miaa05)
histogram(~FTPct, data=miaa05)
```

mlb2004

Major League Baseball 2004 team data

Description

Team batting statistics, runs allowed, and runs scored for the 2004 Major League Baseball season.

Format

A data frame with 30 observations on the following 20 variables.

- Team team city, a factor
- League League, a factor with levels AL NL
- W number of wins
- L number of losses
- G number of games
- R number of runs scored
- OR opponents’ runs – number of runs allowed
- Rdiff run difference – R - OR
- AB number of at bats
- H number of hits
- DBL number of doubles
- TPL number of triples
- HR number of home runs
- BB number of walks (bases on balls)
- SO number of strike outs
- SB number of stolen bases
- CS number of times caught stealing
- BA batting average
- SLG slugging percentage
- OBA on base average
Examples

data(mlb2004)
xyplot(W ~ Rdiff, data=mlb2004)

ncaa2010 NCAA Division I Basketball Results

Description

Results of NCAA basketball games

Format

Seven variables describing NCAA Division I basketball games.

- date date on which game was played
- away visiting team
- ascore visiting team’s score
- home home team
- hscore home team’s score
- notes code indicating games played at neutral sites (n or N) or in tournaments (T)
- location where game was played

Source

kenpom.com

Examples

data(ncaa2010)
add some additional variables to the data frame
ncaa2010$dscore <- ncaa2010$score - ncaa2010$ascore
ncaa2010$homeTeamWon <- ncaa2010$dscore > 0
ncaa2010$numHomeTeamWon <- -1 + 2 * as.numeric(ncaa2010$homeTeamWon)
w <- which(ncaa2010$homeTeamWon)
ncaa2010$winner <- as.character(ncaa2010$away)
ncaa2010$winner[w] <- as.character(ncaa2010$home)[w]
ncaa2010$loser <- as.character(ncaa2010$home)
ncaa2010$loser[w] <- as.character(ncaa2010$away)[w]
ncaa2010$homeTeamWon <- ncaa2010$winner == ncaa2010$home
ncaa2010$numHomeTeamWon <- -1 + 2 * as.numeric(ncaa2010$homeTeamWon)
nfl2007

NFL 2007 season

Description

Results of National Football League games (2007 season, including playoffs)

Format

A data frame with 267 observations on the following 7 variables.

- Date date on which game was played
- Visitor visiting team
- VisitorScore score for visiting team
- Home home team
- HomeScore score for home team
- Line ‘betting line’
- TotalLine ‘over/under’ line (for combined score of both teams)

Examples

```r
data(nfl2007); nfl <- nfl2007
nfl$dscore <- nfl$HomeScore - nfl$VisitorScore
w <- which(nfl$dscore > 0)
nfl$winner <- nfl$Visitor; nfl$winner[w] <- nfl$Home[w]
nfl$loser <- nfl$Home; nfl$loser[w] <- nfl$Visitor[w]
# did the home team win?
nfl$homeTeamWon <- nfl$dscore > 0
table(nfl$homeTeamWon)
table(nfl$dscore > nfl$line)
```

nlmax

Nonlinear maximization and minimization

Description

`nlmin` and `nlmax` are thin wrappers around `nlm`, a non-linear minimizer. `nlmax` avoids the necessity of modifying the function to construct a minimization problem from a problem that is naturally a maximization problem. The `summary` method for the resulting objects provides output that is easier for humans to read.
Usage

```r
nlmax(f, ...)
nlmin(f, ...)
```

```r
## S3 method for class 'nlmax'
summary(object, nsmall = 4, ...)

## S3 method for class 'nlmin'
summary(object, nsmall = 4, ...)
```

Arguments

- `f`: a function to optimize
- `...`: additional arguments passed to `nlm`. Note that `p` is a required argument for `nlm`. See the help for `nlm` for details.
- `object`: an object returned from `nlmin` or `nlmax`
- `nsmall`: a numeric passed through to `format`

Examples

```r
summary( nlmax( function(x) 5 - 3*x - 5*x^2, p=0 ) )
```

noise

Noise – unfinished documentation

Description

In order to test the effect of room noise, subjects were given a test under 5 different sets of conditions: 1) no noise, 2) intermittent low volume, 3) intermittent high volume, 4) continuous low volume, and 5) continuous high volume.

Format

A data frame with 50 observations on the following 5 variables.

- id: subject identifier
- score: score on the test
- condition: numeric code for condition
- volume: a factor with levels high, low, none
- frequency: a factor with levels continuous, intermittent, none
palettes

Examples

data(noise)
noise2 <- noise[noise$volume != 'none',]
model <- lm(score~volume*frequency, data=noise2)
anova(model)
xyplot(score~volume,noise2, groups=frequency, type='a',
auto.key=list(columns=2, points=FALSE, lines=TRUE))

palettes

Palette repair data

Description

The palettes data set contains data from a firm that recycles palettes. Palettes from warehouses are bought, repaired, and resold. (Repairing a palette typically involves replacing one or two boards.) The company has four employees who do the repairs. The employer sampled five days for each employee and recorded the number of palettes repaired.

Format

A data frame with 20 observations on the following 3 variables.

- palettes number of palettes repaired
- employee a factor with levels A B C D
- day a factor with levels day1 day2 day3 day4 day5

Source

Michael Stob, Calvin College

Examples

data(palettes)
Do the employees differ in the rate at which they repair palettes?
pal.lm1 <- lm(palettes~employee,palettes)
anova(pal.lm1)
Now using day as a blocking variable
pal.lm2 <- lm(palettes~employee+day,palettes)
anova(pal.lm2)
xyplot(palettes~day, data=palettes,
groups=employee,
main="Productivity by day and employee",
type='b',auto.key=list(columns=4,points=FALSE,lines=TRUE))
Description

Student-collected data from an experiment investigating the design of paper airplanes.

Format

A data frame with 16 observations on the following 5 variables.

- distance distance plane traveled (cm)
- paper type of paper used
- angle a numeric vector
- design design of plane (hi performance or simple)
- order order in which planes were thrown

Details

These data were collected by Stewart Fischer and David Tippetts, statistics students at the Queensland University of Technology in a subject taught by Dr. Margaret Mackisack. Here is their description of the data and its collection:

The experiment decided upon was to see if by using two different designs of paper aeroplane, how far the plane would travel. In considering this, the question arose, whether different types of paper and different angles of release would have any effect on the distance travelled. Knowing that paper aeroplanes are greatly influenced by wind, we had to find a way to eliminate this factor. We decided to perform the experiment in a hallway of the University, where the effects of wind can be controlled to some extent by closing doors.

In order to make the experimental units as homogeneous as possible we allocated one person to a task, so person 1 folded and threw all planes, person 2 calculated the random order assignment, measured all the distances, checked that the angles of flight were right, and checked that the plane release was the same each time.

The factors that we considered each had two levels as follows:
- Paper: A4 size, 80g and 50g
- Design: High Performance Dual Glider, and Incredibly Simple Glider (patterns attached to original report)
- Angle of release: Horizontal, or 45 degrees upward.

The random order assignment was calculated using the random number function of a calculator. Each combination of factors was assigned a number from one to eight, the random numbers were generated and accordingly the order of the experiment was found.

Source

These data are also available at OzDASL, the Australasian Data and Story Library (http://www.statsci.org/data/).
References

Examples

data(paperplanes)

data(pendulum)

Description

Period and pendulum length for a number of string and mass pendulums constructed by physics students. The same mass was used throughout, but the length of the string was varied from 10cm to 16 m.

Format

A data frame with 27 observations on the following 3 variables.

- length length of the pendulum (in meters)
- period average time of period (in seconds) over several swings of the pendulum
- delta.length an estimate of the accuracy of the length measurement

Source

Calvin College physics students under the direction of Professor Steve Plath.

Examples

data(pendulum)

xyplot(period ~ length, data=pendulum)
Description

Does having a pet or a friend cause more stress?

Format

A data frame with 45 observations on the following 2 variables.

- **Group**: a factor with levels Control, Friend, or Pet
- **Rate average heart rate while performing a stressful task**

Details

Fourty-five women, all self-proclaimed dog-lovers, were randomly divided into three groups of subjects. Each performed a stressful task either alone, with a friend present, or with their dog present. The average heart rate during the task was used as a measure of stress.

Source

References

These data also appear in

Examples

```r
data(petstress)
```
Description

Phenotype and genotype data from the Finland United States Investigation of NIDDM (type 2) Diabetes (FUSION) study.

Format

Data frames with the following variables.

- id subject ID number for matching between data sets
- t2d a factor with levels case control
- bmi body mass index
- sex a factor with levels F M
- age age of subject at time phenotypes were collected
- smoker a factor with levels former never occasional regular
- chol total cholesterol
- waist waist circumference (cm)
- weight weight (kg)
- height height (cm)
- whr waist hip ratio
- sbp systolic blood pressure
- dbp diastolic blood pressure
- marker RS name of SNP
- markerID numeric ID for SNP
- allele1 first allele coded as 1=A, 2=C, 3=G, 4=T
- allele2 second allele coded as 1=A, 2=C, 3=G, 4=T
- genotype both alleles coded as a factor
- Adose number of A alleles
- Cdose number of C alleles
- Gdose number of G alleles
- Tdose number of T alleles
Source

Examples

```r
data(pheno); data(fusion1); data(fusion2)
fusion1lm <- merge(fusion1, pheno, by="id", all.x=FALSE, all.y=FALSE)
xtabs(~t2d + genotype, data=fusion1lm)
xtabs(~t2d + Gdose, data=fusion1lm)
chisq.test( xtabs(~t2d + genotype, data=fusion1lm) )
f1(glm <- glm(factor(t2d) ~ Gdose, data=fusion1lm, family=binomial))
summary(f1.glm)
```

pigs

Pass the Pigs

Description

This data set contains information collected from rolling the pair of pigs (found in the game "Pass the Pigs") 6000 times.

Format

A data frame with 6000 observations on the following 6 variables.

- roll roll number (1-6000)
- black numerical code for position of black pig
- blackF position of black pig coded as a factor
- pink numerical code for position of pink pig
- pinkF position of pink pig coded as a factor
- score score of the roll
- height height from which pigs were rolled (5 or 8 inches)
- start starting position of the pigs (0 = both pigs backwards, 1 = one bacwards one forwards, 2 = both forwards)
Details

In "Pass the Pigs", players roll two pig-shaped rubber dice and earn or lose points depending on the configuration of the rolled pigs. Players compete individually to earn 100 points. On each turn, a player rolls he or she decides to stop or until "pigging out" or

The pig configurations and their associated scores are

1 = Dot Up (0)
2 = Dot Down (0)
3 = Trotter (5)
4 = Razorback (5)
5 = Snouter (10)
6 = Leaning Jowler (15)
7 = Pigs are touching one another (-1; lose all points)

One pig Dot Up and one Dot Down ends the turn (a "pig out") and results in 0 points for the turn. If the pigs touch, the turn is ended and all points for the game must be forfeited. Two pigs in the Dot Up or Dot Down configuration score 1 point. Otherwise, the scores of the two pigs in different configurations are added together. The score is doubled if both both pigs have the same configuration, so, for example, two Snouters are worth 40 rather than 20.

The vector pigConfig is provided to assist in converting from the numeric codes above to pig configurations.

Source

John C. Kern II, Duquesne University (<kern at mathcs.duq.edu>)

Examples

data(pigs)
table(pigConfig[pigs$black])
Format

A data frame with 653 observations on the following 27 variables.

- `playerID` unique identifier for each player
- `yearID` year
- `stint` for players who played with multiple teams in the same season, `stint` is increased by one each time the player joins a new team
- `teamID` three-letter identifier for team
- `lgID` league team plays in, coded as AL or NL
- W wins
- L losses
- G games played in
- GS games started
- CG complete games
- SHO shut outs
- SV saves recorded
- IPouts outs recorded (innings pitched, measured in outs rather than innings)
- H hits allowed
- ER earned runs allowed
- HR home runs allowed
- BB walks (bases on balls) allowed
- SO strike outs
- BAOpp opposing hitters’ batting average
- ERA earned run average
- IBB intentional walks
- WP wild pitches
- HBP number of batters hit by pitch
- BK balks
- BFP batters faced pitching
- GF ratio of ground balls to fly balls
- R runs allowed

Examples

```r
data(pitching2005)
xyplot(IPouts/3 ~ W, data=pitching2005, ylab="innings pitched", xlab="wins")
```
Poison data

Description

The data give the survival times (in hours) in a 3 x 4 factorial experiment, the factors being (a) three poisons and (b) four treatments. Each combination of the two factors is used for four animals. The allocation to animals is completely randomized.

Format

A data frame with 48 observations on the following 3 variables.

- Poison type of poison (1, 2, or 3)
- Treatment manner of treatment (1, 2, 3, or 4)
- Time time until death (hours)

Source

These data are also available from OzDASL, the Australian Data and Story Library (http://www.statsci.org/data/). (Note: The time measurements of the data at OzDASL are in units of tens of hours.)

References

Examples

data(poisson)
poison.lm <- lm(Time~factor(Poison) * factor(Treatment), data=poison)
xplot(poisson.lm,w=c(4,2))
anova(poisson.lm)

improved fit using a transformation
poison.lm2 <- lm(1/Time~factor(Poison) * factor(Treatment), data=poison)
xplot(poisson.lm2,w=c(4,2))
anova(poisson.lm)
punting

American football punting

Description

Investigators studied physical characteristics and ability in 13 football punters. Each volunteer punted a football ten times. The investigators recorded the average distance for the ten punts, in feet. They also recorded the average hang time (time the ball is in the air before the receiver catches it), and a number of measures of leg strength and flexibility.

Format

A data frame with 13 observations on the following 7 variables.

- distance mean distance for 10 punts (feet)
- hang mean hang time (seconds)
- rStrength right leg strength (pounds)
- lStrength left leg strength (pounds)
- rFlexibility right leg flexibility (degrees)
- lFlexibility left leg flexibility (degrees)
- oStrength overall leg strength (foot-pounds)

Source

These data are also available at OzDASL (http://www.statsci.org/data/).

References

"The relationship between selected physical performance variables and football punting ability" by the Department of Health, Physical Education and Recreation at the Virginia Polytechnic Institute and State University, 1983.

Examples

```r
data(punting)
xyplot(hang ~ distance, data=punting)
```
ratpoison

Rat poison – unfinished documentation

Description

Data from an experiment to see whether flavor and location of rat poison influence the consumption by rats.

Format

A data frame with 20 observations on the following 3 variables.

- consumption a numeric vector
- flavor a factor with levels bread butter-vanilla plain roast beef
- location a factor with levels A B C D E

Examples

data(ratpoison)

rgolfballs

Simulated golf ball data

Description

A matrix of random golf ball numbers simulated using rmultinom(n=10000, size=486, prob=rep(0.25, 4)).

Examples

data(rgolfballs)
rubberband

Rubber band launching – unfinished documentation

Description

Results of an experiment comparing a rubber band travels to the amount it was stretched prior to launch.

Format

A data frame with 16 observations on the following 2 variables.

- Stretch amount rubber band was stretched before launch
- Distance distance rubber band traveled

Examples

```r
data(rubberband)
xyplot(Distance ~ Stretch, data=rubberband, type=c("p","r"))
```

scent

Maze tracing and scents

Description

Subjects were asked to complete a pencil and paper maze when they were smelling a floral scent and when they were not.

Format

A data frame with 21 observations on the following 12 variables.

- id ID number
- sex a factor with levels F and M
- smoker a factor with levels N, Y
- opinion opinion of the odor (indiff, neg, or pos)
- age age of subject (in years)
- first which treatment was first, scented or unscented
- u1 time (in seconds) in first unscented trial
- u2 time (in seconds) in second unscented trial
- u3 time (in seconds) in third unscented trial
- s1 time (in seconds) in first scented trial
- s2 time (in seconds) in second scented trial
- s3 time (in seconds) in third scented trial
Source

These data are also available at DASL, the data and story library (http://lib.stat.cmu.edu/DASL/).

References

Examples

data(scent)
snippet(scent)
summary(scent)

snippet
Display or execute a snippet of R code

Description

This command will display and/or execute small snippets of R code from the book *Foundations and Applications of Statistics: An Introduction Using R*.

Usage

```r
snippet(name, execute = TRUE, view = !execute, echo = TRUE, 
ask = getOption("demo.ask"), verbose = getOption("verbose"), 
lib.loc = NULL, character.only = FALSE)
```

Arguments

- **name**
 name of snippet

- **execute**
 a logical. If TRUE, snippet code is executed. (The code and the results of the execution will be visible if echo is TRUE.)

- **view**
 a logical. If TRUE, snippet code is displayed 'as is'.

- **echo**
 a logical. If TRUE, show the R input when executing.

- **ask**
 a logical (or "default") indicating if devAskNewPage(ask=TRUE) should be called before graphical output happens from the snippet code. The value "default" (the factory-fresh default) means to ask if echo == TRUE and the graphics device appears to be interactive. This parameter applies both to any currently opened device and to any devices opened by the demo code. If this is evaluated to TRUE and the session is interactive, the user is asked to press RETURN to start.

- **verbose**
 a logical. If TRUE, additional diagnostics are printed.

- **lib.loc**
 character vector of directory names of R libraries, or NULL. The default value of NULL corresponds to all libraries currently known.

- **character.only**
 logical. If TRUE, use name as character string.
Details

snippet works much like demo, but the interface is simplified.

Author(s)

Randall Pruim

See Also

demo, source.

soap

Dwindling soap

Description

A bar of soap was weighed after showering to see how much soap was used each shower.

Format

A data frame with 15 observations on the following 3 variables.

- Date
- Day days since start of soap usage and data collection
- Weight weight of bar of soap (in grams)

Details

According to Rex Boggs:

I had a hypothesis that the daily weight of my bar of soap [in grams] in my shower wasn’t a linear function, the reason being that the tiny little bar of soap at the end of its life seemed to hang around for just about ever. I wanted to throw it out, but I felt I shouldn’t do so until it became unusable. And that seemed to take weeks.

Also I had recently bought some digital kitchen scales and felt I needed to use them to justify the cost. I hypothesized that the daily weight of a bar of soap might be dependent upon surface area, and hence would be a quadratic function

The data ends at day 22. On day 23 the soap broke into two pieces and one piece went down the plughole.

Source

Data collected by Rex Boggs and available from OzDASL (http://www.statsci.org/data/).
spheres

Examples

data(soap)
xyplot(Weight~Day, data=soap)

spheres Measuring spheres

Description

Measurements of the diameter (in meters) and mass (in kilograms) of a set of steel ball bearings.

Format

A data frame with 12 observations on the following 2 variables.

- diameter diameter of bearing (m)
- mass mass of the bearing (kg)

Source

These data were collected by Calvin College physics students under the direction of Steve Plath.

References

data(spheres)

step Stepping experiment

Description

An experiment was conducted by students at The Ohio State University in the fall of 1993 to explore the nature of the relationship between a person’s heart rate and the frequency at which that person stepped up and down on steps of various heights.

Format

A data frame with 30 observations on the following 7 variables.

- order performance order
- block number of experimenter block
- restHR resting heart rate (beats per minute)
- HR final heart rate
- height height of step (hi or lo)
- freq whether subject stepped fast, medium, or slow
Details

An experiment was conducted by students at The Ohio State University in the fall of 1993 to explore
the nature of the relationship between a person’s heart rate and the frequency at which that person
stepped up and down on steps of various heights. The response variable, heart rate, was measured
in beats per minute. There were two different step heights: 5.75 inches (coded as lo), and 11.5
inches (coded as hi). There were three rates of stepping: 14 steps/min. (coded as slow), 21
steps/min. (coded as medium), and 28 steps/min. (coded as fast). This resulted in six possible
height/frequency combinations. Each subject performed the activity for three minutes. Subjects
were kept on pace by the beat of an electric metronome. One experimenter counted the subject’s
pulse for 20 seconds before and after each trial. The subject always rested between trials until her
or his heart rate returned to close to the beginning rate. Another experimenter kept track of the time
spent stepping. Each subject was always measured and timed by the same pair of experimenters to
reduce variability in the experiment. Each pair of experimenters was treated as a block.

Source

These data are available at DASL, the data and story library (http://lib.stat.cmu.edu/DASL/).

Examples

data(step)
xyplot(HR-restHR ~ freq, data=step, groups=height, type='a')
xyplot(HR-restHR ~ height, data=step, groups=freq, type='a')

stereogram

Stereogram fusion

Description

Results of an experiment on the effect of prior information on the time to fuse random dot stereograms. One group (NV) was given either no information or just verbal information about the shape of the embedded object. A second group (group VV) received both verbal information and visual
information (e.g., a drawing of the object).

Format

A data frame with 78 observations on the following 2 variables.

- Time time until subject was able to fuse a random dot stereogram
- Group treatment group: NV(no visual instructions) VV (visual instructions)

Source

These data are available at DASL, the data and story library (http://lib.stat.cmu.edu/DASL/).
References

Cleveland, W. S. *Visualizing Data*. 1993.

Examples

data(stereogram)
require(Hmisc)
favstats(Time~Group, data=stereogram)

students
Standardized test scores and GPAs

Description

Standardized test scores and GPAs for 1000 students.

Format

A data frame with 1000 observations on the following 6 variables.

- ACT ACT score
- SAT SAT score
- Grad has the student graduated from college?
- GradGPA college GPA at graduation
- HSGPA high school GPA
- Cohort year of graduation or expected graduation

Examples

data(students)
xyplot(ACT ~ SAT, data=students)
xyplot(GradGPA ~ HSGPA, data=students)
Description

The results from a study comparing different preparation methods for taste test samples.

Format

A data frame with 16 observations on 2 (taste1) or 4 (tastetest) variables.

- score: taste score from a group of 50 testers
- scr: a factor with levels coarse fine
- liq: a factor with levels hi lo
- type: a factor with levels A B C D

Details

The samples were prepared for tasting using either a coarse screen or a fine screen, and with either a high or low liquid content. A total taste score is recorded for each of 16 groups of 50 testers each. Each group had 25 men and 25 women, each of whom scored the samples on a scale from -3 (terrible) to 3 (excellent). The sum of these individual scores is the overall taste score for the group.

Source

Examples

```r
data(tastetest)
data(taste1)
require(Hmisc)
xyplot(score~scr, data=tastetest)
xyplot(score~scr, groups=liq, tastetest, type='a')
favstats(score~scr, data=tastetest)
```
tdf

Compute degrees of freedom for a 2-sample t-test

Description

This function computes degrees of freedom for a 2-sample t-test from the standard deviations and sample sizes of the two samples.

Usage

`tdf(sd1, sd2, n1, n2)`

Arguments

- `sd1`: standard deviation of the sample 1
- `sd2`: standard deviation of the sample 2
- `n1`: size of sample 1
- `n2`: size of sample 2

Value

estimated degrees of freedom for 2-sample t-test

Examples

```r
data(KidsFeet, package="mosaicData")
fs <- favstats( length ~ sex, data=KidsFeet ); fs
t.test( length ~ sex, data=KidsFeet )
tdf( fs[1, 'sd'], fs[2, 'sd'], fs[1, 'n'], fs[2, 'n'])
```

tirewear

Estimating tirewear

Description

Treadwear is estimated by two methods: weight loss and groove wear.

Format

A data frame with 16 observations on the following 2 variables.

- weight estimated wear (1000’s of miles) base on weight loss
- groove estimated wear (1000’s of miles) based on groove wear
Source

These data are available at DASL, the Data and Story Library (http://lib.stat.cmu.edu/DASL/).

References

Examples

data(tirewear)
xyplot(weight ~ groove, data=tirewear)

traffic

New England traffic fatalities (1951-1959)

Description

Used by Tufte as an example of the importance of context, these data show the traffic fatality rates in New England in the 1950s. Connecticut increased enforcement of speed limits in 1956. In their full context, it is difficult to say if the decline in Connecticut traffic fatalities from 1955 to 1956 can be attributed to the stricter enforcement.

Format

A data frame with 9 observations on the following 6 variables.

- year a year from 1951 to 1959
- cn.deaths number of traffic deaths in Connecticut
- ny deaths per 100,000 in New York
- cn deaths per 100,000 in Connecticut
- ma deaths per 100,000 in Massachusetts
- ri deaths per 100,000 in in Rhode Island

Source

References

trebuchet

Examples

data(trebuchet)
xyplot(distance~projectileWt, data=trebuchet)

Description
Measurements from an experiment that involved firing projectiles with a small trebuchet under different conditions.

Format
Data frames with the following variables.

- object the object serving as projectile: bean big washer bigWash bigWashBWB foose golf MWB SWB tennis ball wood
- projectileWt weight of projectile (in grams)
- counterWt weight of counter weight (in kg)
- distance distance projectile traveled (in cm)
- form a factor with levels a b B c describing the configuration of the trebuchet.

Source
Data collected by Andrew Pruim as part of a Science Olympiad competition.

Examples

data(trebuchet); data(trebuchet1); data(trebuchet2)
xyplot(distance~projectileWt, data=trebuchet)
xyplot(distance~projectileWt, data=trebuchet1)
xyplot(distance~projectileWt, data=trebuchet2)
xyplot(distance~projectileWt, groups=projectileWt, data=trebuchet)
Utilities

Utilities bills

Description

Data from utility bills at a residence.

Format

A data frame the following variables.

- month month (coded as a number)
- day day of month on which bill was calculated
- year year of bill
- temp average temperature (F) for billing period
- kwh electricity usage (kwh)
- ccf gas usage (ccf)
- thermsPerDay a numeric vector
- billingDays number of billing days in billing period
- totalbill total bill (in dollars)
- gasbill gas bill (in dollars)
- elecbill electric bill (in dollars)
- notes notes about the billing period

Undocumented

Undocumented functions

Description

These objects are undocumented.

Details

In many cases, these are deprecated in favor of alternative methods (often in the mosaic package) to obtain the same results but remain in the package to avoid breaking code used in Foundations and Applications of Statistics, the book associated with this package. For example, funplot, should be replaced by plotFun and pdfplot, pmfhistogram, and pmfplot should be replaced by plotDist. In other cases, the functions are of limited suitability for general use.

Author(s)

Randall Pruim
- ccfpday average gas usage per day [utilities2 only]
- kwhpday average electric usage per day [utilities2 only]
- gasbillpday gas bill divided by billing days [utilities2 only]
- elecbillpday electric bill divided by billing days a numeric vector [utilities2 only]
- totalbillpday total bill divided by billing days a numeric vector [utilities2 only]
- therms thermsPerDay * billingDays [utilities2 only]
- monthsSinceY2K months since 2000 [utilities2 only]

Source

Examples

data(utilities); data(utilities2)
xyplot(gasbill ~ temp, data=utilities)
xyplot(gasbillpday ~ temp, data=utilities2)

vaov

ANOVA vectors

Description
Compute vectors associated with 1-way ANOVA

Usage
vaov(x, ...)

S3 method for class 'formula'
vaov(x, data = parent.frame(), ...)

Arguments

x a formula.

... additional arguments.

data a data frame.

Details
This is primarily designed for demonstration purposes to show how 1-way ANOVA models partition variance. It may not work properly for more complicated models.
Value

A data frame with variables including grandMean, groupMean, ObsVsGrand, STotal, ObsVsGroup, SError, GroupVsGrand, and STreatment. The usual SS terms can be computed from these by summing.

Author(s)

Randall Pruim

Examples

```r
aov(pollution ~ location, data=airpollution)
vaov(pollution ~ location, data=airpollution)
```

wilson.ci

Confidence Intervals for Proportions

Description

Alternatives to prop.test and binom.test.

Usage

```r
wilson.ci(x, n = 100, conf.level = 0.95)
```

Arguments

- `x` number of 'successes'
- `n` number of trials
- `conf.level` confidence level

Details

wald.ci produces Wald confidence intervals. wilson.ci produces Wilson confidence intervals (also called “plus-4” confidence intervals) which are Wald intervals computed from data formed by adding 2 successes and 2 failures. The Wilson confidence intervals have better coverage rates for small samples.

Value

Lower and upper bounds of a two-sided confidence interval.

Author(s)

Randall Pruim
References

Examples

```r
prop.test(12,30)
prop.test(12,30, correct=FALSE)
wald.ci(12,30)
wilson.ci(12,30)
wald.ci(12+2,30+4)
```

<table>
<thead>
<tr>
<th>workingWomen</th>
<th>Women in the workforce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

The labor force participation rate of women in each of 19 U.S. cities in each of two years. # Reference: United States Department of Labor Statistics # # Authorization: free use # # Description: # # Variable Names: # # 1. City: City in the United States # 2. labor72: Labor Force Participation rate of women in 1972 # 3. labor68: Labor Force Participation rate of women in 1968 # # The Data: #

Format

A data frame with 19 observations on the following 3 variables.

- city name of a U.S. city (coded as a factor with 19 levels)
- labor72 percent of women in labor force in 1972
- labor68 percent of women in labor force in 1968

Source

These data are from the United States Department of Labor Statistics and are also available at DASL, the Data and Story Library (http://lib.stat.cmu.edu/DASL/).

Examples

```r
data(workingWomen)
xyplot(labor72 ~ labor68, workingWomen)
```
xplot

Augmented functions

Description

These functions all behave similarly to the functions with the initial x removed from their names.

Usage

xplot(x, ...)

Default S3 method:
xplot(...)

S3 method for class 'lm'
xplot(x, which = c(1L:3, 5), caption = captions,
panel.default = if (add.smooth) panel.xyplotsmooth else panel.xyplotpoints,
sub.caption = NULL, main = "", print.plots = TRUE, ask = 1 <
length(which) & dev.interactive(), type = "p",
pch = trellis.par.get("plot.symbol")$pch,
addline.col = trellis.par.get("add.line")$col,
line.col = trellis.par.get("plot.line")$col,
symbol.col = trellis.par.get("plot.symbol")$col,
lty = trellis.par.get("superpose.line")$lty, ..., id.n = 3,
labels.id = names(residuals(x)), cex.id = 0.7, qqline = TRUE,
cook.levels = c(0.5, 1), add.smooth = TRUE, label.pos = c("left",
"right"), cex.caption = 1)

Arguments

x A numeric vector or formula.
... arguments passed to other functions.
which A numeric vector indicating which plots to produce
caption caption for the plot
panel.default default panel function
sub.caption secondary caption
main as in xplot
print.plots a logical
ask a logical
type as in xplot
pch as in xplot
addline.col color for added lines
line.col color for lines
symbol.col color for symbols
lty as in xyplot
id.n a numeric
labels.id a character vector of labels
cex.id cex for ids
qqline a logical
cook.levels a logical
add.smooth a logical
label.pos position for labels, one of "left" or "right"
cex.caption cex for the caption
panel a panel function

See Also

plot.

Examples

```r
x <- runif(20)
xplot( lm( 2*x + 5 + rnorm(20) ~ x ) )
```
Index

*Topic **array**
 col.perc, 10

*Topic **datasets**
 actgpa, 4
 airlineArrival, 4
 airpollution, 5
 balldrop, 5
 batting, 6
 birthsW8, 7
 buckthorn, 8
 bugs, 8
 concrete, 10
 corn, 11
 cuckoo, 12
 deathPenalty, 13
 drag, 13
 endurance, 14
 familySmoking, 15
 fumbles, 16
 golfballs, 18
 gpa, 19
 heliumFootballs, 19
 ice, 20
 inflation, 22
 Jordan8687, 22
 kids, 23
 littleSurvey, 24
 mathnoise, 25
 miaa05, 26
 mlb2004, 27
 ncaa2010, 28
 nfl2007, 29
 noise, 30
 palettes, 31
 paperplanes, 32
 pendulum, 33
 petstress, 34
 pheno, 35
 pigs, 36
 pitching2005, 37
 poison, 39
 punting, 40
 ratpoison, 41
 rgolfballs, 41
 rubberband, 42
 scent, 42
 soap, 44
 spheres, 45
 step, 45
 stereogram, 46
 students, 47
 tastetest, 48
 tirewear, 49
 traffic, 50
 trebuchet, 51
 utilities, 52
 workingWomen, 55

*Topic **graphics**
 col.fastR, 9

*Topic **package**
 fastR-package, 3

*Topic **stats**
 geolm, 17
 vaov, 53

*Topic **utilities**
 snippet, 43

 actgpa, 4
 airlineArrival, 4
 airpollution, 5
 apply, 10

 balldrop, 5
 batting, 6
 birthsW8, 7
 buckthorn, 8
 bugs, 8
 col.fastR, 9
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>col.perc</td>
<td>10</td>
</tr>
<tr>
<td>concrete</td>
<td>10</td>
</tr>
<tr>
<td>concrete28 (concrete)</td>
<td>10</td>
</tr>
<tr>
<td>concreteAll (concrete)</td>
<td>10</td>
</tr>
<tr>
<td>corn</td>
<td>11</td>
</tr>
<tr>
<td>cuckoo</td>
<td>12</td>
</tr>
<tr>
<td>deathPen (deathPenalty)</td>
<td>13</td>
</tr>
<tr>
<td>deathPenalty</td>
<td>13</td>
</tr>
<tr>
<td>demo</td>
<td>44</td>
</tr>
<tr>
<td>drag</td>
<td>13</td>
</tr>
<tr>
<td>endurance</td>
<td>14</td>
</tr>
<tr>
<td>familySmoking</td>
<td>15</td>
</tr>
<tr>
<td>fastR (fastR-package)</td>
<td>3</td>
</tr>
<tr>
<td>fastR-package</td>
<td>3</td>
</tr>
<tr>
<td>format</td>
<td>30</td>
</tr>
<tr>
<td>fumbles</td>
<td>16</td>
</tr>
<tr>
<td>funplot (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>funvec (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>fusion1 (pheno)</td>
<td>35</td>
</tr>
<tr>
<td>fusion2 (pheno)</td>
<td>35</td>
</tr>
<tr>
<td>geolm</td>
<td>17</td>
</tr>
<tr>
<td>givenOrder</td>
<td>18</td>
</tr>
<tr>
<td>golfballs</td>
<td>18</td>
</tr>
<tr>
<td>gpa</td>
<td>19</td>
</tr>
<tr>
<td>grid identify points (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>heliumFootballs</td>
<td>19</td>
</tr>
<tr>
<td>ice</td>
<td>20</td>
</tr>
<tr>
<td>inflation</td>
<td>22</td>
</tr>
<tr>
<td>Jordan8687</td>
<td>22</td>
</tr>
<tr>
<td>kids</td>
<td>23</td>
</tr>
<tr>
<td>littleSurvey</td>
<td>24</td>
</tr>
<tr>
<td>lm</td>
<td>17, 18</td>
</tr>
<tr>
<td>make.rm (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>mathnoise</td>
<td>25</td>
</tr>
<tr>
<td>miaa05</td>
<td>26</td>
</tr>
<tr>
<td>mlb2004</td>
<td>27</td>
</tr>
<tr>
<td>multirandom (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>ncaa2008 (ncaa2010)</td>
<td>28</td>
</tr>
<tr>
<td>ncaa2009 (ncaa2010)</td>
<td>28</td>
</tr>
<tr>
<td>ncaa2010</td>
<td>28</td>
</tr>
<tr>
<td>nfl2007</td>
<td>29</td>
</tr>
<tr>
<td>nlm</td>
<td>29, 30</td>
</tr>
<tr>
<td>nlmmax</td>
<td>29</td>
</tr>
<tr>
<td>nlmmax (nlmax)</td>
<td>29</td>
</tr>
<tr>
<td>nlmin (nlmax)</td>
<td>29</td>
</tr>
<tr>
<td>noise</td>
<td>30</td>
</tr>
<tr>
<td>ntigram (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>palettes</td>
<td>31</td>
</tr>
<tr>
<td>panel.lm (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>panel.smooth (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>panel.xplotpoints (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>panel.xplots (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>paperplanes</td>
<td>32</td>
</tr>
<tr>
<td>pdfplot (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>pendulum</td>
<td>33</td>
</tr>
<tr>
<td>petstress</td>
<td>34</td>
</tr>
<tr>
<td>pheno</td>
<td>35</td>
</tr>
<tr>
<td>pigConfig (pigs)</td>
<td>36</td>
</tr>
<tr>
<td>pigs</td>
<td>36</td>
</tr>
<tr>
<td>pitching2005</td>
<td>37</td>
</tr>
<tr>
<td>plot</td>
<td>57</td>
</tr>
<tr>
<td>pmfhistogram (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>pmfplot (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>poison</td>
<td>39</td>
</tr>
<tr>
<td>print.stemplot (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>probplot (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>punting</td>
<td>40</td>
</tr>
<tr>
<td>ratpoison</td>
<td>41</td>
</tr>
<tr>
<td>rgolfballs</td>
<td>41</td>
</tr>
<tr>
<td>row.perc (col.perc)</td>
<td>10</td>
</tr>
<tr>
<td>rubberband</td>
<td>42</td>
</tr>
<tr>
<td>scent</td>
<td>42</td>
</tr>
<tr>
<td>show.fumbles (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>show.poisson (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>show.settings</td>
<td>9</td>
</tr>
<tr>
<td>snippet</td>
<td>43</td>
</tr>
<tr>
<td>soap</td>
<td>44</td>
</tr>
<tr>
<td>source</td>
<td>44</td>
</tr>
<tr>
<td>spheres</td>
<td>45</td>
</tr>
<tr>
<td>stempplot (undocumented)</td>
<td>52</td>
</tr>
<tr>
<td>step</td>
<td>45</td>
</tr>
<tr>
<td>stereogram</td>
<td>46</td>
</tr>
<tr>
<td>students</td>
<td>47</td>
</tr>
<tr>
<td>summary.nlmax (nlmax)</td>
<td>29</td>
</tr>
<tr>
<td>summary.nlmin (nlmax)</td>
<td>29</td>
</tr>
<tr>
<td>taste1 (tastetest)</td>
<td>48</td>
</tr>
</tbody>
</table>
tastetest, 48
tdf, 49
tirewear, 49
to2d(geolm), 17
traffic, 50
trebuchet, 51
trebuchet1 (trebuchet), 51
trebuchet2 (trebuchet), 51
trellis.par.set, 9
undocumented, 52
utilities, 52
utilities2 (utilities), 52
vaov, 53
wald.ci (wilson.ci), 54
wilson.ci, 54
workingWomen, 55
xplot, 56
xtabs, 10