Ideas and issues illustrated by the graphs in this vignette

The fitting of a tree proceeds by making a succession of splits on the x-variable or variables. For tree-based regression, the splitting criterion is named Anova. (To explicitly request use of this criterion, specify `method="anova"` in the call to `rpart()`.)

```r
# To include the figures, change `showFigs <- FALSE` 
# to `showFigs <- TRUE` in the source `.Rnw` file, 
# and regenerate the PDF. 
# 
showFigs <- FALSE
```

1 Code for the Figures

```r
fig8.1A <- function(){
  if(!exists('car90.rpart'))
    car90.rpart <- rpart(Mileage ~ tonsWt, data=Car90)
  plot(car90.rpart)
  text(car90.rpart, xpd=TRUE, digits=3)
  mtext(side=3, line=1.25, "A: Regression tree", adj=0)
}
```

```r
fig8.1B <- function(){
  if(!exists('car90.rpart'))
    car90.rpart <- rpart(Mileage ~ tonsWt, data=Car90)
  plot(Mileage ~ tonsWt, data=Car90)
  wt <- with(Car90, tonsWt)
  hat <- predict(car90.rpart)
  addhlines(wt, hat, lwd=2, col="gray")
  mtext(side=3, line=1.25, "B: Predicted values from tree", adj=0)
}
```
fig8.2 <- function()
BSS <- bssBYcut(tonsWt, Mileage, Car90)
with(BSS, plot(xOrd, bss, xlab="Cutpoint",

 ylab="Between groups sum of squares")
abline(v=1.218, lty=2)
)

fig8.3A <- function()
opar <- par(mar=c(4,4,2.6,1.6))
if(!exists('car90x.rpart'))
 car90x.rpart <- rpart(Mileage ~ tonsWt, data=Car90,
 minbucket=5, minsplit=10,
 cp=0.001)
plot(car90x.rpart, uniform=TRUE)

text(car90x.rpart, digits=3, xpd=TRUE)
mtext(side=3, line=0.75, "A: Decision tree", adj=0)
par(opar)

fig8.3B <- function()
if(!exists('car90x.rpart'))
 car90x.rpart <- rpart(Mileage ~ tonsWt, data=Car90,
 minbucket=5, minsplit=10,
 cp=0.001)
plot(Mileage ~ tonsWt, data=Car90)
hat <- predict(car90x.rpart)
wt <- with(Car90, tonsWt)
addhlines(wt, hat, lwd=2, col="gray")
mtext(side=3, line=0.75, "B: Mileage vs tonsWt", adj=0)
par(opar)

fig8.4 <- function()
if(!exists('car90x.rpart'))
 car90x.rpart <- rpart(Mileage ~ tonsWt, data=Car90,
 minbucket=5, minsplit=10,
 cp=0.001)
plotcp(car90x.rpart)

fig8.5 <- function()
{
if(!exists('car90.rf'))
 car90.rf <- randomForest(Mileage ~ tonsWt,
 data=Car90)
plot(Mileage ~ tonsWt, data=Car90, type="n")
with(Car90, points(Mileage ~ tonsWt, cex=0.8))
hat <- predict(car90.rf)
with(Car90, points(hat ~ tonsWt, pch="-"))
}

fig8.6 <- function()
{
 ran <- range(errsmat)
 at <- round(ran+c(0.02,-0.02)*diff(ran),2)
 lis <- list(limits=ran, at=at, labels=format(at, digits=2))
 lims=list(lis,lis,lis,lis,lis,lis)
 library(lattice)
 splom(errsmat, pscaler=lims,
 par.settings=simpleTheme(cex=0.75),
 col=adjustcolor("black", alpha=0.5),
 panel=function(x,y,...){lpoints(x,y,...)
 panel.abline(0,1,col="gray")
 })
}

2 Show the Figures

pkg <- c("rpart","mgcv","randomForest","gamclass")
z <- sapply(pkg, require, character.only=TRUE, warn.conflicts=FALSE)
if(any(!z))
 notAvail <- paste(names(z)[!z], collapse=",
 print(paste("The following packages should be installed:", notAvail))

if(!exists('Car90'))
Car90 <- na.omit(car90[, c("Mileage","Weight")])
Express weight in metric tonnes
Car90 <- within(Car90, tonsWt <- Weight/2240)
getmeuse <- function(){
if(require('sp', quietly=TRUE)){
data("meuse", package="sp", envir = environment())
meuse <- within(meuse, {
 levels(soil) <- c("1","2","2")
 ffreq <- as.numeric(ffreq)
 loglead <- log(lead)
})
invisible(meuse)
} else if(!exists("meuse"))
 print("Dataset 'meuse' was not found, get from package 'sp'")
}

cfRF <- function(nrep=50){
form1 <- ~ dist + elev + soil + f freq
form3 <- ~ s(dist, k=3) + s(elev,k=3) + soil +ffreq
form3x <- ~ s(dist, k=3) + s(elev,k=3) + s(x, k=3) + soil+ffreq
form8x <- ~ s(dist, k=8) + s(elev,k=8) + s(x, k=8) + soil+ffreq
formlist <- list("Hybrid1"=form1, "Hybrid3"=form3,
 "Hybrid3x"=form3x, "Hybrid8x"=form8x)
----rfgam-setup----
rfVars <- c("dist", "elev", "soil", "ffreq", "x", "y")
errsmat <- matrix(0, nrep, length(formlist)+2)
dimnames(errsmat)[[2]] <- c(names(formlist), "rfTest", "rfOOB")
n <- 95
for(i in 1:nrep){
 sub <- sample(1:nrow(meuse), n)
 meuseOut <- meuse[-sub,]
 meuseIn <- meuse[sub,]
 errsmat[i,] <- gamRF(formlist=formlist, yvar="loglead",
 rfVars=rfVars,
 data=meuseIn, newdata=meuseOut,
 printit=FALSE)
}
invisible(errsmat)
}

Figure 1: Regression tree for predicting Mileage given Weight. At each node, observations for which the criterion is satisfied take the branch to the left. Thus at the first node, tonsWt≥1.218 chooses the branch to the left, while tonsWt<1.218 chooses the branch to the right. Panel B plots Mileage versus tonsWt, with fitted values from the rpart model shown as horizontal grey lines.
Figure 2: Between group sum of squares for Mileage, as a function of the value of tonsWt at which the split is made. The choice \(c = 1.218 \) maximizes the between groups sum of squares.

Figure 3: For the decision tree to which these panels relate, the minimum number at each terminal leaf (\texttt{minbucket}) has been reduced (from 10) to 5, the minimum number to allow further splitting (\texttt{minsplit}) has been reduced (from 20) to 10, and the complexity parameter has been reduced to \(cp = 0.001 \).

```r
if(exists('errsmat')) nrep <- nrow(errsmat) else {
  nrep <- 25
  errsmat <- cfRF(nrep=nrep)
}
```
Figure 4: Change in cross-validated error rate, relative to baseline error, with successive splits. Because of the random element that arises from the cross-validation, the tree that is fitted and the pattern of change of cross-validated error will commonly change from one run to the next.

Figure 5: Plot of Mileage versus tonsWt, with fitted values from a randomForest regression shown as horizontal bars.

Figure 6: Scatterplot matrix of accuracies for the several models. Each panel shows the line $y = x$. The label rfOOB is out-of-bag accuracy for the 95 training set observations, while rfTest is test data accuracy, for a random forest model. Other results are test set accuracy from fitting a random forest model to residuals from a preliminary smooth. Labels are the name of the formula for the smooth. Random forest fits were from NA bootstrap samples.