Title Gamma Lasso Regression
Version 1.13-4
Author Matt Taddy <mataddy@gmail.com>
Maintainer Matt Taddy <mataddy@gmail.com>
Depends R (>= 2.15), Matrix, methods, graphics, stats
Suggests parallel
Description
The gamma lasso algorithm provides regularization paths corresponding to a range of non-convex cost functions between L0 and L1 norms. As much as possible, usage for this package is analogous to that for the glmnet package (which does the same thing for penalization between L1 and L2 norms). For details see: Taddy (2017 JCGS), One-Step Estimator Paths for Concave Regularization, <arXiv:1308.5623>.
License GPL-3
URL http://github.com/TaddyLab/gamlr
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-02-11 20:41:20 UTC

R topics documented:

AICc ... 2
cv.gamlr .. 3
gamlr ... 5
hockey .. 8

Index 10
AICc

Corrected AIC

Description

Corrected AIC calculation.

Usage

AICc(object, k=2)

Arguments

object Some model object that you can call logLik on (such as a gamlr or glm fit).
k The usual AIC complexity penalty. k defaults to 2.

Details

This works just like usual AIC, but instead calculates the small sample (or high dimensional) corrected version from Hurvich and Tsai

$$AICc = -2 \log LHD + k \cdot df \cdot \frac{n}{n - df - 1}.$$

Value

A numeric value for every model evaluated.

Author(s)

Matt Taddy <mataddy@gmail.com>

References

See Also

gamlr, hockey

cv.gamlr
Cross Validation for gamlr

Description

Cross validation for gamma lasso penalty selection.

Usage

```r
cv.gamlr(x, y, nfold=5, foldid=NULL, verb=FALSE, cl=NULL, ...)
```

S3 method for class 'cv.gamlr'

```r
plot(x, select=TRUE, df=TRUE, ...)
```

S3 method for class 'cv.gamlr'

```r
coef(object, select=c("l1se","min"), ...)
```

S3 method for class 'cv.gamlr'

```r
predict(object, newdata, select=c("l1se","min"), ...)
```

Arguments

- **x**
 Covariates; see `gamlr`.

- **y**
 Response; see `gamlr`.

- **nfold**
 The number of cross validation folds.

- **foldid**
 An optional length-n vector of fold memberships for each observation. If specified, this dictates `nfold`.

- **verb**
 Whether to print progress through folds.

- **cl**
 possible parallel library cluster. If this is not-NULL, the CV folds are executed in parallel. This copies the data `nfold` times, so make sure you have the memory space.

- **...**
 Arguments to `gamlr`.

- **object**
 A `gamlr` object.

- **newdata**
 New x data for prediction.

- **select**
 In prediction and coefficient extraction, select which "best" model to return: `select="min"` is that with minimum average OOS deviance, and `select="l1se"` is that whose average OOS deviance is no more than 1 standard error away from the minimum. In `plot`, whether to draw these selections.

- **df**
 Whether to add to the plot degrees of freedom along the top axis.

Details

Fits a `gamlr` regression to the full dataset, and then performs `nfold` cross validation to evaluate out-of-sample (OOS) performance for different penalty weights.

`plot.cv.gamlr` can be used to plot the results: it shows mean OOS deviance with lse error bars.
Value

- `gamlr` The full-data fitted `gamlr` object.
- `nfold` The number of CV folds.
- `foldid` The length-n vector of fold memberships.
- `cvm` Mean OOS deviance by `gamlr$lambda`
- `cvs` The standard errors on `cvm`
- `seg.min` The index of minimum `cvm`
- `seg.1se` The index of 1se `cvm` (see details).
- `lambda.min` Penalty at minimum `cvm`
- `lambda.1se` Penalty at 1se `cvm`

Author(s)

Matt Taddy <mataddy@gmail.com>

References

See Also

gamlr, hockey

Examples

```r
n <- 100
p <- 100
xvar <- matrix(ncol=p, nrow=p)
for(i in 1:p) for(j in 1:p) xvar[i,j] <- 0.5*abs(i-j)
x <- matrix(rnorm(p*n), nrow=n)%*%chol(xvar)
beta <- matrix((-1)^((1:p)*exp((-1:p)/10)))
mu = x%*%beta
y <- mu + rnorm(n, sd = sd(as.vector(mu))/2)

## fit with gamma=1 concavity
cvfit <- cv.gamlr(x, y, gamma=1, verb=TRUE)
coef(cvfit)[1:3,] # 1se default
coef(cvfit, select="min")[1:3,] # min OOS deviance
predict(cvfit, x[1:2,], select="min")
predict(cvfit$gamlr, x[1:2,], select=cvfit$seg.min)

par(mfrow=c(1,2))
plot(cvfit)
plot(cvfit$gamlr)
```
Gamma-Lasso regression

Description

Adaptive L1 penalized regression estimation.

Usage

```r
gamlr(x, y, 
    family=c("gaussian","binomial","poisson"),
    gamma=0,nlambda=100, lambda.start=Inf,
    lambda.min.ratio=0.01, free=NULL, standardize=TRUE,
    obsweight=NULL,varweight=NULL,
    prexx=(p<500),
    tol=1e-7,maxit=1e5,verb=FALSE, ...)
```

S3 method for class 'gamlr'
plot(x, against=c("pen","dev"),
 col=NULL, select=TRUE, df=TRUE, ...)

S3 method for class 'gamlr'
coef(object, select=NULL, k=2, corrected=TRUE, ...)

S3 method for class 'gamlr'
predict(object, newdata,
 type = c("link", "response"), ...)

S3 method for class 'gamlr'
logLik(object, ...)
```

Arguments

- **x**: A dense matrix or sparse Matrix of covariates, with `ncol(x)` variables and `nrow(x)==length(y)` observations. This should not include the intercept.
- **y**: A vector of response values. There is almost no argument checking, so be careful to match `y` with the appropriate `family`.
- **family**: Response model type; either "gaussian", "poisson", or "binomial". Note that for "binomial", `y` is in `[0, 1]`.
- **gamma**: Penalty concavity tuning parameter; see details. Zero (default) yields the lasso, and higher values correspond to a more concave penalty.
- **nlambda**: Number of regularization path segments.
- **lambda.start**: Initial penalty value. Default of `Inf` implies the infimum lambda that returns all zero coefficients. This is the largest absolute coefficient gradient at the null model.
- **lambda.min.ratio**: The smallest penalty weight (expected L1 cost) as a ratio of the path start value. Our default is always 0.01; note that this differs from `glmnet` whose default depends upon the dimension of `x`. 

---

**gamma**

Gamma-Lasso regression
free

Free variables: indices of the columns of \( x \) which will be unpenalized.

standardize

Whether to standardize the coefficients to have standard deviation of one. This is equivalent to multiplying the L1 penalty by each coefficient standard deviation.

obsweight

For family="gaussian" only, weights on each observation in the weighted least squares objective. For other response families, obsweights are overwritten by IRLS weights. Defaults to rep(1,n).

varweight

Multipliers on the penalty associated with each covariate coefficient. Must be non-negative. These are further multiplied by \( sd(x_j) \) if standardize=TRUE. Defaults to rep(1,p).

prexx

Only possible for family="gaussian": whether to use pre-calculated weighted variable covariances in gradient calculations. This leads to massive speed-ups for big-n datasets, but can be slow for \( p > n \) datasets. See note.

tol

Optimization convergence tolerance relative to the null model deviance for each inner coordinate-descent loop. This is measured against the maximum coordinate change times deviance curvature after full parameter-set update.

maxit

Max iterations for a single segment coordinate descent routine.

verb

Whether to print some output for each path segment.

object

A gamlr object.

against

Whether to plot paths against log penalty or deviance.

select

In coef (and predict, which calls coef), the index of path segments for which you want coefficients or prediction (e.g., do select=which.min(BIC(object)) for BIC selection). If null, the segments are selected via our AICc function with \( k \) as specified (see also corrected). If select=0 all segments are returned.

In plot, select is just a flag for whether to add lines marking AICc and BIC selected models.

k

If select=NULL in coef or predict, the AICc complexity penalty. \( k \) defaults to the usual 2.

corrected

A flag that swaps corrected (for high dimensional bias) AICc in for the standard AIC. You almost always want corrected=TRUE, unless you want to apply the BIC in which case use \( k = \log(n) \), corrected=FALSE.

newdata

New \( x \) data for prediction.

type

Either "link" for the linear equation, or "response" for predictions transformed to the same domain as \( y \).

col

A single plot color, or vector of length \( \text{ncol}(x) \) colors for each coefficient regularization path. NULL uses the matplot default 1:6.

df

Whether to add to the plot degrees of freedom along the top axis.

... Extra arguments to each method. Most importantly, from \texttt{predict.gamlr} these are arguments to \texttt{coef.gamlr}.

Details

Finds posterior modes along a regularization path of \textit{adapted L1 penalties} via coordinate descent.
Each path segment $t$ minimizes the objective $-(\phi/n) \log LHD(\beta_1, \ldots, \beta_p) + \sum \omega_j \lambda |\beta_j|$, where $\phi$ is the exponential family dispersion parameter ($\sigma^2$ for family=\text{"gaussian"}, one otherwise). Weights $\omega_j$ are set as $1/(1 + \gamma |\hat{\beta}_j^{t-1}|)$ where $\hat{\beta}_j^{t-1}$ is our estimate of $\beta_j$ for the previous path segment (or zero if $t = 0$). This adaptation is what makes the penalization 'concave'; see Taddy (2013) for details.

\texttt{plot.gamlr} can be used to graph the results: it shows the regularization paths for penalized $\beta$, with degrees of freedom along the top axis and minimum AICc selection marked.

\texttt{logLik.gamlr} returns log likelihood along the regularization path. It is based on the deviance, and is correct only up to static constants; e.g., for a Poisson it is off by $\sum_i y_i (\log y_i - 1)$ (the saturated log likelihood) and for a Gaussian it is off by likelihood constants $(n/2)(1 + \log 2\pi)$.

\textbf{Value}

- \texttt{lambda} The path of fitted prior expected L1 penalties.
- \texttt{nobs} The number of observations.
- \texttt{alpha} Intercepts.
- \texttt{beta} Regression coefficients.
- \texttt{df} Approximate degrees of freedom.
- \texttt{deviance} Fitted deviance: $(-2/\phi)(\log LHD.fitted - \log LHD.saturated)$.
- \texttt{iter} Number of optimization iterations by segment, broken into coordinate descent cycles and IRLS re-weightings for family=\text{"gaussian"}.
- \texttt{family} The exponential family model.

\textbf{Note}

Under \texttt{prexx=TRUE} (requires family=\text{"gaussian"}), weighted covariances $(V X) X$ and $(V X) y$, weighted column sums of $V X$, and column means $\bar{x}$ will be pre-calculated. Here $V$ is the diagonal matrix of least squares weights (obsweights, so $V$ defaults to I). It is not necessary (they will be built by gamlR otherwise), but you have the option to pre-calculate these sufficient statistics yourself as arguments \texttt{vxx} (matrix or \texttt{dspMatrix}), \texttt{vxy}, \texttt{vxsum}, and \texttt{xbar} (all vectors) respectively. Search \texttt{PREXX} in \texttt{gamlR.R} to see the steps involved, and notice that there is very little argument checking – do at your own risk. Note that $\texttt{xbar}$ is an unweighted calculation, even if $V \neq I$. For really Big Data you can then run with $x=NULL$ (e.g., if these statistics were calculated on distributed machines and full design is unavailable). \textit{Beware}: in this $x=NULL$ case our deviance (and df, if \texttt{gamma>0}) calculations are incorrect and selection rules will always return the smallest-lambda model.

\textbf{Author(s)}

Matt Taddy <mataddy@gmail.com>

\textbf{References}


\textbf{See Also}

cv.gamlr, AICc, hockey
### Examples

```r
a low-D test (highly multi-collinear)

n <- 1000
p <- 3
xvar <- matrix(0.9, nrow=p, ncol=p)
diag(xvar) <- 1
x <- matrix(rnorm(p*n), nrow=n) %*% chol(xvar)
y <- 4 + 3*x[,1] + -11*x[,2] + rnorm(n)

run models to extra small lambda 1e-3*lambda.start
fitlasso <- gamlr(x, y, gamma=0, lambda.min.ratio=1e-3) # lasso
fitgl <- gamlr(x, y, gamma=2, lambda.min.ratio=1e-3) # small gamma
fitglbv <- gamlr(x, y, gamma=10, lambda.min.ratio=1e-3) # big gamma

par(mfrow=c(1,3))
ylim = range(c(fitglbv$beta$x))
plot(fitlasso, ylim=ylim, col="navy")
plot(fitgl, ylim=ylim, col="maroon")
plot(fitglbv, ylim=ylim, col="darkorange")
```

---

### Description

Every NHL goal from fall 2002 through the 2014 cup finals.

### Details

The data comprise of information about play configuration and the players on ice (including goalies) for every goal from 2002-03 to 2012-14 NHL seasons. Collected using A. C. Thomas’s nlhscrapr package. See the Chicago hockey analytics project at github.com/mataddy/hockey.

### Value

- **goal**: Info about each goal scored, including `homegoal` – an indicator for the home team scoring.
- **player**: Sparse Matrix with entries for who was on the ice for each goal: +1 for a home team player, -1 for an away team player, zero otherwise.
- **team**: Sparse Matrix with indicators for each team*season interaction: +1 for home team, -1 for away team.
- **config**: Special teams info. For example, S5v4 is a 5 on 4 powerplay, +1 if it is for the home-team and -1 for the away team.
Author(s)

Matt Taddy, <mataddy@gmail.com>

References


See Also

gamlr

Examples

```r
design
data(hockey)
x <- cbind(config,team,player)
y <- goal$homegoal

fit the plus-minus regression model
(non-player effects are unpenalized)
fit <- gamlr(x, y, gamma=10, lambda.min.ratio=0.1,
 free=1:(ncol(config)+ncol(team)),
 standardize=FALSE, family="binomial")
plot(fit)

look at estimated player [career] effects
B <- coef(fit)[colnames(player),]
sum(B!=0) # number of measurable effects (AICc selection)
B[order(-B)[1:10]] # 10 biggest

convert to 2013-2014 season partial plus-minus
now <- goal$season=="20132014"
ppm <- colSums(player[now,names(B)]*c(-1,1)[y[now]+1]) # traditional plus minus
ng <- colSums(abs(player[now,names(B)])) # total number of goals
The individual effect on probability that a
t # given goal is for vs against that player's team
p <- 1/(1+exp(-t))
multiply ng*p - ng*(1-p) to get expected plus-minus
ppm <- ng*(2*p-1)

organize the data together and print top 20
effect <- data.frame(b=round(B,3),ppm=round(ppm,3),pm=pm)
effect <- effect[order(-effect$ppm),]
print(effect[1:20])
```
Index

AICc, 2

coefficients of cv.gamlr (cv.gamlr), 3
coeff.gamlr (gamlr), 5
cv.gamlr, 3

gamlr, 5

hockey, 8

logLik.gamlr (gamlr), 5

plot coefficients of cv.gamlr (cv.gamlr), 3
plot.gamlr (gamlr), 5
predict coefficients of cv.gamlr (cv.gamlr), 3
predict.gamlr (gamlr), 5