Package ‘gclus’

February 19, 2015

Version 1.3.1
Author Catherine Hurley
Date 2012-06-25
Maintainer Catherine Hurley <catherine.hurley@nuim.ie>
Title Clustering Graphics
Description Orders panels in scatterplot matrices and parallel
coordinate displays by some merit index. Package contains
various indices of merit, ordering functions, and enhanced
versions of pairs and parcoord which color panels according to
their merit level.
Depends R (>= 2.10), cluster
License GPL (>= 2)
Repository CRAN
Date/Publication 2012-06-25 16:50:15
NeedsCompilation no

R topics documented:

ac ... 2
bank ... 3
body ... 4
colpairs ... 5
cpairs ... 6
cparcoord ... 8
diameter ... 9
dmat.color ... 10
order.clusters ... 12
order.single ... 14
ozone ... 16
partition.crit ... 16
pclen ... 18
plotcolors ... 19
Description

Computes clustering coefficients from cluster, where \(x \) and \(y \) give the object coordinates.

Usage

\[
\text{ac}(x, y, \ldots) \\
\text{sil}(x, y, \text{groups}, \ldots)
\]

Arguments

- \(x \) is a numeric vector.
- \(y \) is a numeric vector.
- \(\text{groups} \) is a vector of group memberships, used by \text{sil} only.
- \(\ldots \) are passed to \text{agnes} in \text{ac} and to \text{dist} in \text{sil}.

Details

\text{ac} - Computes clustering coefficient from \text{agnes}\{cluster\}.
\text{sil} - Computes the silhouette coefficient from from package \text{cluster}.

Value

The clustering coefficient is returned.

Author(s)

Catherine B. Hurley

References

See Also

\text{agnes}, \text{silhouette}, \text{dist}.
bank

Examples
x <- runif(20)
y <- runif(20)
g <- rep(c("a","b"),10)
ac(x,y)
sil(x,y,g)

bank Swiss bank notes data

Description
Data from "Multivariate Statistics A practical approach", by Bernhard Flury and Hans Riedwyl, Chapman and Hall, 1988, Tables 1.1 and 1.2 pp. 5-8. Six measurements made on 100 genuine Swiss banknotes and 100 counterfeit ones.

Usage
data(bank)

Format
This data frame contains the following columns:

Status: 0 = genuine, 1 = counterfeit
Length: Length of bill, mm
Left: Width of left edge, mm
Right: Width of right edge, mm
Bottom: Bottom margin width, mm
Top: Top margin width, mm
Diagonal: Length of image diagonal, mm

Source
Description

This dataset contains 21 body dimension measurements as well as age, weight, height, and gender on 507 individuals. The 247 men and 260 women were primarily individuals in their twenties and thirties, with a scattering of older men and women, all exercising several hours a week.

Measurements were initially taken by Grete Heinz and Louis J. Peterson at San Jose State University and at the U.S. Naval Postgraduate School in Monterey, California. Later, measurements were taken at dozens of California health and fitness clubs by technicians under the supervision of one of these authors.

Usage

data(body)

Format

This data frame contains the following columns:

- **Biacrom**: Biacromial diameter (cm)
- **Biiliac**: Biiliac diameter, or "pelvic breadth" (cm)
- **Bitro**: Bitrochanteric diameter (cm)
- **ChestDp**: Chest depth between spine and sternum at nipple level, mid-expiration (cm)
- **ChestD**: Chest diameter at nipple level, mid-expiration (cm)
- **ElbowD**: Elbow diameter, sum of two elbows (cm)
- **WristD**: Wrist diameter, sum of two wrists (cm)
- **KneeD**: Knee diameter, sum of two knees (cm)
- **AnkleD**: Ankle diameter, sum of two ankles (cm)
- **ShoulderG**: Shoulder girth over deltoid muscles (cm)
- **ChestG**: Chest girth, nipple line in males and just above breast tissue in females, mid-expiration (cm)
- **WaistG**: Waist girth, narrowest part of torso below the rib cage, average of contracted and relaxed position (cm)
- **AbdG**: Navel (or "Abdominal") girth at umbilicus and iliac crest, iliac crest as a landmark (cm)
- **HipG**: Hip girth at level of bitrochanteric diameter (cm)
- **ThighG**: Thigh girth below gluteal fold, average of right and left girths (cm)
- **BicepG**: Bicep girth, flexed, average of right and left girths (cm)
- **ForearmG**: Forearm girth, extended, palm up, average of right and left girths (cm)
- **KneeG**: Knee girth over patella, slightly flexed position, average of right and left girths (cm)
ColPairs

CalfG: Calf maximum girth, average of right and left girths (cm)

AnkleG: Ankle minimum girth, average of right and left girths (cm)

WristG: Wrist minimum girth, average of right and left girths (cm)

Age: in years

Weight: in kg

Height: in cm

Gender: 1 - male, 0 - female

Source

References

The data file is taken from http://www.amstat.org/publications/jse/datasets/body.dat

This information file is based on http://www.amstat.org/publications/jse/datasets/body.txt

Description

Given an n x p matrix \(m \) and a function \(f \), returns the p x p matrix got by applying \(f \) to all pairs of columns of \(m \).

Usage

\[
\text{colpairs}(m, f, \text{diag} = 0, \text{na.omit} = \text{FALSE}, \ldots)
\]

Arguments

- **m** - a matrix
- **f** - a function of two vectors, which returns a single result.
- **diag** - if supplied, this value is placed on the diagonal of the result.
- **na.omit** - If TRUE, rows with missing values are omitted for each pair of columns.
- **...** - arguments are passed to \(f \).

Value

a matrix matrix got by applying \(f \) to all pairs of columns of \(m \).
Author(s)

Catherine B. Hurley

See Also

gave, partition.crit, order.single, order.endlink

Examples

data(state)
state.m <- colpairs(state$x77,
function(x,y) cor.test(x,y,"two.sided","kendall")$estimate, diag=1)
state.col <- dmat.color(state.m)
This is equivalent to state.m <- cor(state.x77,method="kendall")

layout(matrix(1:2,nrow=1,ncol=2))
cparcoord(state.x77, panel.color= state.col)
Get rid of the panels with lots of line crossings (yellow) by reorderings
cparcoord(state.x77, order.endlink(state.m), state.col)
layout(matrix(1,1))

m is a homogeneity measure of each pairwise variable plot
m <- colpairs(scale(state$x77), gave)
oc<- order.single(m)
pcols = dmat.color(m)
Color panels by level of m and reorder variables so that
pairs with high m are near the diagonal.
cpairs(state.x77,order=o, panel.colors=pcols)

In this case panels showing either of Area or Population
exhibit the most clumpiness because these variables
are skewed.

cpairs

Enhanced scatterplot matrix

Description

This function draws a scatterplot matrix of data. Variables may be reordered and panels colored in the display.

Usage

cpairs(data, order = NULL, panel.colors = NULL, border.color = "grey70", show.points = TRUE, ...)
Arguments

data a numeric matrix
order the order of variables. Default is the order in data.
panel.colors a matrix of panel colors. If supplied, dimensions should match those of the pairs plot. Diagonal entries are ignored.
border.color used for panel border.
show.points If FALSE, no points are drawn.
... graphical parameters passed to pairs.default.

Author(s)

Catherine B. Hurley

References

Hurley, Catherine B. “Clustering Visualisations of Multidimensional Data”, to appear in JCGS.

See Also

pairs, cparcoord, dmat.color, colpairs, order.single.

Examples

data(USJudgeRatings)
judge.cor <- cor(USJudgeRatings)
judge.color <- dmat.color(judge.cor)
Colors variables by their correlation.
cpairs(USJudgeRatings,panel.colors=judge.color,pch=".",gap=.5)
judge.o <- order.single(judge.cor)
Reorder variables so that those with highest correlation
are close to the diagonal.
cpairs(USJudgeRatings,judge.o,judge.color,pch=".",gap=.5)

Specify your own color scheme
judge.color <- dmat.color(judge.cor, breaks=c(-1,0,.5,.9,1), colors = cm.colors(4))

data(bank)
m is a homogeneity measure of each pairwise variable plot
m <- -colpairs(scale(bank[, -1]), partition.crit, gfun=gave, groups=bank[,1])

Color panels by level of m and reorder variables so that
pairs with high m are near the diagonal. Panels shown
in pink have the highest amount of group homogeneity, as measured by
gave.
cpairs(bank[, -1], order=order.single(m), panel.colors=dmat.color(m),
gap=.3,col=c("purple","black")[bank[, "Status"]+1],
pch=c(5,3)[bank[, "Status"]+1])
cparcoord

Enhanced parallel coordinate plot

Description

This function draws a parallel coordinate plot of data. Variables may be reordered and panels colored in the display. It is a modified version of `parcoord` \{MASS\}.

Usage

cparcoord(data, order = NULL, panel.colors = NULL, col = 1, lty = 1, horizontal = FALSE, mar = NULL, ...)

Arguments

data a numeric matrix
order the order of variables. Default is the order in data.
panel.colors either a vector or a matrix of panel colors. If a vector is supplied, the ith color is used for the ith panel. If a matrix, dimensions should match those of the variables. Diagonal entries are ignored.
col a vector of colours, recycled as necessary for each observation.
lty a vector of line types, recycled as necessary for each observation.
horizontal If TRUE, orientation is horizontal.
mar margin parameters, passed to \texttt{par}.
... graphics parameters which are passed to \texttt{matplot}.

Details

If \texttt{panel.colors} is a matrix and \texttt{order} is supplied, \texttt{panel.colors} is reordered.

Author(s)

Catherine B. Hurley

References

See Also

cpairs, parcoord, dmat.color, colpairs, order.endlink.
Examples

```r
data(state)
state.m <- colpairs(state.x77,
                   function(x,y) cor.test(x,y,"two.sided","kendall")$estimate, diag=1)
# OR, Works only in R1.8, state.m <- cor(state.x77,method="kendall")

state.col <- dmat.color(state.m)
cparcoord(state.x77, panel.color= state.col)
# Get rid of the panels with lots of line crossings (yellow) by reordering:  
cparcoord(state.x77, order.endlink(state.m), state.col)

# To get rid of the panels with lots of long line segments:  
# use a different panel merit measure- pclen:
mins <- apply(state.x77,2,min)
ranges <- apply(state.x77,2,max) - mins
state.m <- -colpairs(scale(state.x77,mins,ranges), pclen)
cparcoord(state.x77, order.endlink(state.m), dmat.color(state.m))
```

diameter

Cluster heterogeneity of 2-d data

Description

Computes measures of cluster heterogeneity of 2-d data, where `x` and `y` give the object coordinates.

Usage

```r
diameter(x, y, ...)  
star(x, y, ...)  
km2(x,y)  
gtot(x,y, ...)  
gave(x,y, ...)
```

Arguments

- `x` is a numeric vector.
- `y` is a numeric vector.
- `...` are passed to `dist`.
Details

diameter computes the cluster diameter- the maximum distance between objects.
star computes the cluster star distance- the smallest total distance from one object to another.
km2 computes the kmeans distance.
gtot computes the sum of all inter-object distances.
gave computes the per-object average of all inter-object distances.

Value

The cluster measure is returned.

Author(s)

Catherine B. Hurley

References

See Also

colpairs, cpairs, order.single

Examples

x <- runif(20)
y <- runif(20)
diameter(x,y)
Arguments

- **m**: a dissimilarity matrix or the result of `dist`
- **colors**: a vector of colors. The default is `default.dmat.color`.
- **byrank**: boolean, default `TRUE` if `breaks` has length > 1. If `byrank` is `TRUE` and `breaks` is an integer, then there are `breaks` equal-sized categories.
- **breaks**: the number of break points.

Details

`breaks` are passed to the function `cut`. If `byrank` is `TRUE`, values in `m` are ranked before they are categorized. If `byrank` is `TRUE` and `breaks` is an integer, then there are `breaks` equal-sized categories.

Value

Returns a matrix of colors. The matrix is symmetric, with NAs on the diagonal.

Author(s)

Catherine B. Hurley

See Also

- `cut`, `cpairs`, `cparcoord`

Examples

```r
data(longley)
longley.cor <- cor(longley)
# A matrix with equal (or nearly equal) number of entries of each color.
longley.color <- dmat.color(longley.cor)

# Plot the colors
plotcolors(longley.color, dlabels=rownames(longley.color))

# Try different color schemes

# A matrix where each color represents an equal-length interval.
longley.color <- dmat.color(longley.cor, byrank=FALSE)
# Specify colors and breaks
longley.color <- dmat.color(longley.cor, breaks=c(-1,0,5,8,1), cm.colors(4))

# Could also reorder variables prior to plotting:
longley.o <- order.single(longley.cor)
longley.color <- longley.color[,longley.o]

# The colors can be used in a scatterplot matrix or parallel coordinate display:
```
order.clusters

Description

Reorders objects so that similar (or high-merit) object pairs are adjacent. The clusters argument specifies (possibly ordered) groups, and objects within a group are kept together.

Usage

```r
order.clusters(merit, clusters, within.order = order.single, 
   between.order = order.single,...)
```

Arguments

- `merit` is either a symmetric matrix of merit or similarity score, or a `dist`.
- `clusters` specifies a partial grouping. It should either be a list whose ith element contains the indices of the objects in the ith cluster, or a vector of integers whose ith element gives the cluster membership of the ith object. Either representation may be used to specify grouping, the first is preferrable to specify adjacencies.
- `within.order` is a function used to order the objects within each cluster.
- `between.order` is a function used to order the clusters.
- `...` arguments are passed to `within.order`.

Details

`within.order` may be NULL, in which case objects within a cluster are assumed to be in order. Otherwise, `within.order` should be one of the ordering functions `order.single`, `order.endlink` or `order.hclust`.

`between.order` may be NULL, in which case cluster order is preserved. Otherwise, `between.order` should be one of the ordering functions that uses a partial ordering, `order.single` or `order.endlink`.

Value

A permutation of the objects represented by `merit` is returned.

Author(s)

Catherine B. Hurley
See Also

order.single, order.endlink, order.hclust.

Examples

data(state)
state.d <- dist(state.x77)

Order the states, keeping states in a division together.
state.o <- order.clusters(~state.d, as.numeric(state.division))
cmat <- dmat.color(as.matrix(state.d), rev(cm.colors(5)))

op <- par(mar=c(1,6,1,1))
rlables <- state.name[state.o]
plotcolors(cmat[state.o,state.o], rlabels=rlables)
par(op)

Alternatively, use kmeans to place the states into 6 clusters
state.km <- kmeans(state.d,6)$cluster

An ordering obtained from the kmeans clustering...
state.o <- unlist(memship2clus(state.km))

layout(matrix(1:2,nrow=1,ncol=2),widths=c(0.1,1))

op <- par(mar=c(1,1,1,2))
state.colors <- cbind(state.km,state.km)
plotcolors(state.colors[state.o,])

par(mar=c(1,6,1,1))
rlables <- state.name[state.o]
plotcolors(cmat[state.o,state.o], rlabels=rlables)

par(op)
layout(matrix(1,1))

In the ordering above, the ordering of clusters and the
ordering of objects within the clusters is arbitrary.
order.clusters gives an improved order but preserves the kmeans clusters.
state.o <- order.clusters(~state.d, state.km)

and replot
layout(matrix(1:2,nrow=1,ncol=2),widths=c(0.1,1))

op <- par(mar=c(1,1,1,2))
state.colors <- cbind(state.km,state.km)
plotcolors(state.colors[state.o,])
order.single

Description

Reorders objects so that similar (or high-merit) object pairs are adjacent. A permutation vector is returned.

Usage

order.single(merit, clusters=NULL)
order.endlink(merit, clusters=NULL)
order.hclust(merit, reorder=TRUE, ...)

Arguments

merit is either a symmetric matrix of merit or similarity score, or a dist.
clusters if non-null, specifies a partial ordering. It should be a list whose ith element contains the indices the objects in the ith ordered cluster.
reorder if TRUE, reorders the default ordering from \texttt{hclust}.
... arguments are passed to \texttt{hclust}.

Details

\texttt{order.single} performs a variation on single-link cluster analysis, devised by Gruvaeus and Wainer (1972). When two ordered clusters are merged, the new cluster is formed by placing the most similar endpoints of the joining clusters adjacent to each other. When applied to variables, the resulting order is useful for scatterplot matrices.

\texttt{order.endlink} is another variation on single-link cluster analysis, where the similarity between two ordered clusters is defined as the minimum distance between their endpoints. When two ordered clusters are merged, the new cluster is formed by placing the most similar endpoints of the joining clusters adjacent to each other. When applied to variables, the resulting order is useful for parallel coordinate displays.

\texttt{order.hclust} returns the order of objects from \texttt{hclust} if \texttt{reorder} is FALSE. Otherwise, it reorders the objects using \texttt{hclust.reorder} so that when two ordered clusters are merged, the new cluster is formed by placing the most similar endpoints of the joining clusters adjacent to each other. \texttt{order.hclust(m, method="single")} is equivalent to \texttt{order.single} when \texttt{clusters} is NULL. The default method of \texttt{hclust} is "complete", see \texttt{hclust} for other possibilities.
order.single

Value

A permutation of the objects represented by merit is returned.

Author(s)

Catherine B. Hurley

References

See Also

cpairs, cparcoord, plotcolors, reorder.hclust, order.clusters, hclust.

Examples

data(state)
state.cor <- cor(state.x77)
order.single(state.cor)
order.endlink(state.cor)
order.hclust(state.cor, method="average")

Use for plotting...

cpairs(state.x77, panel.colors=dmat.color(state.cor), order.single(state.cor), pch=".", gap=.4)
cparcoord(state.x77, order.endlink(state.cor), panel.colors=dmat.color(state.cor))

Order the states instead of the variables...

state.d <- dist(state.x77)
state.o <- order.single(-state.d)

op <- par(mar=c(1,6,1,1))
cmat <- dmat.color(as.matrix(state.d), rev(cm.colors(5))
plotcolors(cmat[state.o,state.o], rlabels=state.name[state.o])
par(op)
Description
This is the Ozone data discussed in Breiman and Friedman (JASA, 1985, p. 580). These data are for 330 days in 1976. All measurements are in the area of Upland, CA, east of Los Angeles.

Usage
data(ozone)

Format
This data frame contains the following columns:

- **Ozone**: Ozone conc., ppm, at Sandbug AFB.
- **Temp**: Temperature F. (max?).
- **InvHt**: Inversion base height, feet
- **Pres**: Daggett pressure gradient (mm Hg)
- **Vis**: Visibility (miles)
- **Hgt**: Vandenburg 500 millibar height (m)
- **Hum**: Humidity, percent
- **InvTmp**: Inversion base temperature, degrees F.
- **Wind**: Wind speed, mph

Source

partition.crit

Combines the results of applying an index to each group of observations

Description
Applies the function `gfun` to each group of x and y values and combines the results using the function `cfun`

Usage
`partition.crit(x, y, groups, gfun = gave, cfun = sum, ...)`
Arguments

- `x` is a numeric vector.
- `y` is a numeric vector.
- `groups` is a vector of group memberships.
- `gfun` is applied to the `x` and `y` data in each group.
- `cfun` combines the values returned by `gfun`.
- ... arguments are passed to `gfun`.

Details

The function `gfun` is applied to each group of `x` and `y` values. The function `cfun` is applied to the vector or matrix of `gfun` results.

Value

The result of applying `cfun`.

Author(s)

Catherine B. Hurley

References

See Also

gave, colpairs, order.single

Examples

```r
x <- runif(20)
y <- runif(20)
g <- rep(c("a", "b"), 10)
partition.crit(x, y, g)

data(bank)
# m is a homogeneity measure of each pairwise variable plot
m <- ~colpairs(scale(bank[, -1]), partition.crit, gfun=gave, groups=bank[, 1])

# Color panels by level of m and reorder variables so that
# pairs with high m are near the diagonal. Panels shown
# in pink have the highest amount of group homogeneity, as measured by
# gave.
cpairs(bank[, -1], order=order.single(m), panel.colors=dmat.color(m),
gap=.3, col=c("purple", "black") [bank[, "Status"] + 1],
pch=c(5,3) [bank[, "Status"] + 1])
```
Try a different measure
m <- colpairs(scale(bank[, -1]), partition.crit, gfun = diameter, groups = bank[, 1])

cpairs(bank[, -1], order = order.single(m), panel.colors = dmat.color(m),
gap = .3, col = c("purple", "black")[bank[, "Status"] + 1],
pch = c(5, 3)[bank[, "Status"] + 1])

Result is the same, in this case.

pclen

Profile smoothness measures

Description

Computes measures of profile smoothness of 2-d data, where \(x\) and \(y\) give the object coordinates.

Usage

```r
pclen(x, y)
pcglen(x, y)
```

Arguments

- **\(x\)**: is a numeric vector.
- **\(y\)**: is a numeric vector.

Details

- **\(pclen\)** computes the total line length in a parallel coordinate plot of \(x\) and \(y\).
- **\(pcglen\)** computes the average (per object) line length in a parallel coordinate plot where all pairs of objects are connected.

 Usually, the data is standardized prior to using these functions.

Value

The panel measure is returned.

Author(s)

Catherine B. Hurley

References

plotcolors

See Also
cparcoord, colpairs, order.endlink.

Examples

```r
x <- runif(20)
y <- runif(20)
pclen(x,y)

data(state)
mins <- apply(state.x77,2,min)
ranges <- apply(state.x77,2,max) - mins
state.m <- colpairs(scale(state.x77,mins,ranges), pclen)
state.col <- dmat.color(state.m)
cparcoord(state.x77, panel.color= state.col)
# Get rid of the panels with long line segments (yellow) by reordering:
cparcoord(state.x77, order.endlink(state.m), state.col)
```
plotcolors

 cex point cex used when ptype="points".
 label.cex cex parameter used for labels.
 ... graphical parameters

Value

 imageinfo returns a list with components:

 x a vector of x coordinates.
 y a vector of y coordinates.
 z a matrix containing values to be plotted.
 col the colors to be used.

Author(s)

 Catherine B. Hurley

See Also

 plot, image

Examples

 plotcolors(matrix(1:20,nrow=4,ncol=5))
 plotcolors(matrix(1:20,nrow=4,ncol=5),ptype="points",cex=6)
 plotcolors(matrix(1:20,nrow=4,ncol=5),rlabels = c("a","b","c","d"))

 data(longley)
 longley.cor <- cor(longley)
 # A matrix with equal (or nearly equal) number of entries of each color.
 longley.color <- dmat.color(longley.cor)

 plotcolors(longley.color, dlabels=rownames(longley.color))

 # Could also reorder variables prior to plotting:
 longley.o <- order.single(longley.cor)
 longley.color <- longley.color[longley.o,longley.o]
 op <- par(mar=c(1,6,6,1))
 plotcolors(longley.color,rlabels=rownames(longley.color),clabels=rownames(longley.color))
 par(op)
reorder.hclust

Reorders object order of hclust, keeping objects within a cluster contiguous to each other.

Description

Reorders objects so that nearby object pairs are adjacent.

Usage

```r
## S3 method for class 'hclust'
reorder(x, dis, ...)
```

Arguments

- `x` is the result of `hclust`.
- `dis` is a distance matrix or `dist`.
- `...` additional arguments.

Details

In hierarchical cluster displays, a decision is needed at each merge to specify which subtree should go on the left and which on the right. This algorithm uses the order suggested by Gruvaeus and Wainer (1972). At a merge of clusters A and B, the new cluster is one of (A,B), (A',B), (A,B'),(A',B'), where A' denotes A in reverse order. The new cluster is chosen to minimize the distance between the object in A placed adjacent to an object from B.

Value

A permutation of the objects represented by `dis` is returned.

Author(s)

Catherine B. Hurley

References

See Also

`hclust`, `order.hclust`.
Examples

```r
data(europdist)
dis <- as.dist(europdist)
hc <- hclust(dis, "ave")

layout(matrix(1:2, nrow=2, ncol=1))
op <- par(mar=c(1,1,1,1))
plot(hc)
hc1 <- reorder.hclust(hc, dis)
plot(hc1)
par(op)
layout(matrix(1,1))

# Both dendrograms correspond to the same tree structure,
# but the second one shows that
# Paris is closer to Cherbourg than Munich, and
# Rome is closer to Gibraltar than to Barcelona.

# We can also compare both orderings with an
# image plot of the colors.
# The second ordering seems to place nearby cities
# closer to each other.

layout(matrix(1:2, nrow=2, ncol=1))
op <- par(mar=c(1,6,1,1))
cmat <- dmat.color(europdist, rev(cm.colors(5)))
plotcolors(cmat[hc$order, hc$order], rlabels=labels(europdist)[hc$order])
plotcolors(cmat[hc1$order, hc1$order], rlabels=labels(europdist)[hc1$order])
layout(matrix(1,1))
par(op)
```

vec2distrm

Various utility functions

Description

vec2distrm converts a vector to a distance matrix.
vec2dist converts a vector to a dist structure.
lower2upper.tri.inds is the same as lower.to.upper.tri.inds from package cluster. It computes an index vector for extracting or reordering a lower triangular matrix that is stored as a contiguous vectors.
vec2distm

diag.off returns a vector of off-diagonal elements of a matrix. off specifies the distance above the main (0) diagonal.

clus2memship converts a list whose ith element contains the indices of objects in the ith cluster into a vector whose ith element gives the cluster number of the ith object.

memship2clus converts a vector whose ith element gives the cluster number of the ith object into a list whose ith element contains the indices of objects in the ith cluster.

Usage

vec2distm(vec)
vec2dist(vec)
lower2upper.tri.ind.(n)
diag.off(m, off=1)
clus2memship(clusters)
memship2clus(memship)

Arguments

vec is a vector.
n is an integer > 1.
m is a matrix.
clusters is a list whose ith element contains the indices of the objects belonging to the ith cluster.
off is an integer specifying the distance above the main (0) diagonal.
memship is a vector whose ith element gives the cluster number of the ith object.

Author(s)

Catherine B. Hurley

See Also
dist, diag.

Examples

vec <- 1:15
vec2distm(vec)
vec2dist(vec)
diag.off(vec2distm(vec))
lower2upper.tri.ind.(5)
clus2memship(list(c(1,3,5),c(2,6),4))
memship2clus(c(1,3,4,2,1,4,2,3,2,3))
Description

Data from the machine learning repository. A chemical analysis of 178 Italian wines from three different cultivars yielded 13 measurements. This dataset is often used to test and compare the performance of various classification algorithms.

Usage

data(wine)

Format

This data frame contains the following columns:

- **Class**: There are 3 classes
- **Alcohol**: Alcohol
- **Malic**: Malic acid
- **Ash**: Ash
- **Alcalinity**: Alcalinity of ash
- **Magnesium**: Magnesium
- **Phenols**: Total phenols
- **Flavanoids**: Flavanoids
- **Nonflavanoid**: Nonflavanoid phenols
- **Proanthocyanins**: Proanthocyanins
- **Intensity**: Color intensity
- **Hue**: Hue
- **OD280**: OD280/OD315 of diluted wines
- **Proline**: Proline

Source

References

The database does not list the variable names. These were located at \http://www.radwin.org/michael/projects/learning/about-wine.html.
Index

*Topic *cluster
- ac, 2
- diameter, 9
- order.clusters, 12
- order.single, 14
- partition.crit, 16
- reorder.hclust, 21
- vec2distm, 22

*Topic *color
- cpairs, 6
- cparcoord, 8
- dmat.color, 10
- plotcolors, 19

*Topic *datasets
- bank, 3
- body, 4
- ozone, 16
- wine, 24

*Topic *hplot
- cpairs, 6
- cparcoord, 8
- pclen, 18
- plotcolors, 19

*Topic *multivariate
- colpairs, 5
- cpairs, 6
- cparcoord, 8
- dmat.color, 10
- order.clusters, 12
- order.single, 14
- partition.crit, 16
- pclen, 18
- reorder.hclust, 21
- clus2memship (vec2distm), 22
- colpairs, 5, 7, 8, 10, 17, 19
- cpairs, 6, 8, 10, 11, 15
- cparcoord, 7, 8, 11, 15, 19
- cut, 11
- default.dmat.color (dmat.color), 10
- diag, 23
- diag.off (vec2distm), 22
- diameter, 9
- dist, 2, 23
- dmat.color, 7, 8, 10
- gave, 6, 17
- gave (diameter), 9
- gtot (diameter), 9
- hclust, 14, 15, 21
- image, 20
- imageinfo (plotcolors), 19
- km2 (diameter), 9
- lower2upper.tri.ind (vec2distm), 22
- memship2clus (vec2distm), 22
- order.clusters, 12, 15
- order.endlink, 6, 8, 13, 19
- order.endlink (order.single), 14
- order.hclust, 13, 21
- order.hclust (order.single), 14
- order.single, 6, 7, 10, 13, 14, 17
- ozone, 16
- pairs, 7
- parcoord, 8
- partition.crit, 6, 16
- pcglen (pclen), 18
- pclen, 18

ac, 2
agnes, 2
bank, 3
body, 4
plot, 20
plotcolors, 15, 19
reorder.hclust, 15, 21
sil(ac), 2
silhouette, 2
star(diameter), 9
vec2dist(vec2dism), 22
vec2dism, 22
wine, 24