Package ‘ggthemes’

May 7, 2018

Version 3.5.0
Title Extra Themes, Scales and Geoms for 'ggplot2'
Depends R (>= 3.0.0),
Imports assertthat, colorspace, ggplot2 (>= 2.2.0), graphics, grid,
 methods, scales
Suggests spelling, dplyr, extrafont, knitr, lintr, maps, mapproj,
 pander, purrr, rmarkdown, testthat, tibble, tidyr
VignetteBuilder knitr
Description Some extra themes, geoms, and scales for 'ggplot2'.
 Provides 'ggplot2' themes and scales that replicate the look of plots
 by Edward Tufte, Stephen Few, 'Fivethirtyeight', 'The Economist', 'Stata',
 'Excel', and 'The Wall Street Journal', among others.
 Provides 'geoms' for Tufte's box plot and range frame.
License GPL-2
URL http://github.com/jrnold/ggthemes
BugReports http://github.com/jrnold/ggthemes
Collate 'banking.R' 'base.R' 'calc.R' 'canva.R' 'colorblind.R'
 'economist.R' 'excel.R' 'few.R' 'ggthemes-data.R'
 'ggthemes-package.R' 'fivethirtyeight.R' 'gdocs.R'
 'geom-rangeframe.R' 'geom-tufteboxplot.R' 'hc.R' 'igray.R'
 'pander.R' 'ptol.R' 'scale-tufte.R' 'shapes.R' 'show.R'
 'solarized.R' 'stat-fivenum.R' 'stata.R' 'tableau.R'
 'theme-foundation.R' 'theme-map.R' 'theme-solid.R' 'tufte.R'
 'utils.R' 'wsj.R'
RoxygenNote 6.0.1
LazyData true
Language en-US
NeedsCompilation no
Author Jeffrey B. Arnold [aut, cre],
 Gergely Daroczi [ctb],
 Bo Werth [ctb],
Brian Weitzner [ctb],
Joshua Kunst [ctb],
Baptise Auguie [ctb],
Bob Rudis [ctb],
Hadley Wickham [ctb, cph] (Code from the ggplot2 package.),
Justin Talbot [ctb] (Code from the labeling package),
Joshua London [ctb]

Maintainer Jeffrey B. Arnold <jeffrey.arnold@gmail.com>

Repository CRAN

Date/Publication 2018-05-07 08:48:25 UTC

R topics documented:

bank_slopes .. 4
calc_pal .. 6
calc_shape_pal .. 6
canva_pal .. 7
canva_palettes .. 7
circlefill_shape_pal .. 8
cleveland_shape_pal .. 9
colorblind_pal ... 10
economist_pal ... 11
excel_pal ... 12
extended_range_breaks .. 12
few_pal .. 14
fivethirtyeight_pal ... 15
gdocs_pal .. 15
geom_rangeframe ... 16
geom_tufteboxplot .. 17
ggthemes .. 19
ggthemes_data .. 19
hc_pal .. 20
palette_pander .. 20
ptol_pal .. 21
scale_color_pander .. 22
scale_colour_canva ... 22
scale_colour_economist ... 23
scale_colour_few .. 23
scale_colour_fivethirtyeight ... 24
scale_colour_gradient2_tableau 25
scale_colour_gradient_tableau 26
scale_colour_hc .. 27
scale_colour_ptol ... 28
scale_colour_stata .. 28
scale_colour_tableau ... 29
scale_colour_wsj .. 30
scale_fill_calc .. 30
R topics documented:

scale_fill_excel .. 31
scale_fill_gdocs .. 31
scale_fill_solarized .. 32
scale_linetype_stata .. 33
scale_shape_calc .. 33
scale_shape_circlefill .. 34
scale_shape_cleveland .. 34
scale_shape_stata .. 35
scale_shape_tableau .. 36
scale_shape_tremmel ... 36
show_linetypes ... 37
show_shapes .. 38
smart_digits .. 38
solarized_pal .. 39
stata_linetype_pal ... 40
stata_pal .. 40
stata_shape_pal .. 41
stat_fivenumber .. 41
tableau_color_pal .. 42
tableau_div_gradient_pal 43
tableau_seq_gradient_pal 44
tableau_shape_pal .. 45
theme_base .. 45
theme_calc .. 46
theme_economist .. 47
theme_excel ... 48
theme_few .. 49
theme_fivethirtyeight .. 50
theme.Foundation .. 51
theme_gdocs ... 51
theme_hc .. 52
theme_igray ... 53
theme_map .. 54
theme_pander ... 54
theme_par .. 56
theme_solarized .. 57
theme_solid .. 58
theme_stata ... 58
theme_tufte .. 59
theme_wsj .. 60
tremmel_shape_pal ... 61
wsj_pal ... 62

Index 64
bank_slopes

Bank Slopes to 45 degrees

Description

Calculate the optimal aspect ratio of a line graph by banking the slopes to 45 degrees as suggested by W.S. Cleveland. This maximizes the ability to visually differentiate differences in slope. This function will calculate the optimal aspect ratio for a line plot using any of the methods described in Herr and Argwala (2006). In their review of the methods they suggest using median absolute slope banking (‘ms’), which produces aspect ratios which are generally the median of the various methods provided here.

Usage

```r
bank_slopes(x, y, cull = FALSE, weight = NULL, method = c("ms", "as", "ao", "gor", "lor"), ...)```

**Arguments**

- `x`: x values
- `y`: y values
- `cull`: logical. Remove all slopes of 0 or Inf.
- `weight`: No longer used, but kept for backwards compatibility.
- `method`: One of ‘ms’ (Median Absolute Slope) or ‘as’ (Average Absolute Slope). Other options are no longer supported, and will use ‘ms’ instead with a warning.
- `...`: No longer used, but kept for backwards compatibility.

**Value**

numeric The aspect ratio (x, y).

**Methods**

As written, all of these methods calculate the aspect ratio (x / y), but `bank_slopes` will return (y / x) to be compatible with `link[ggplot2]{coord_fixed}`.

**Median Absolute Slopes Banking**

Let the aspect ratio be \( \alpha = \frac{w}{h} \) then the median absolute slope banking is the \( \alpha \) such that,

\[
\text{median} \left| \frac{s_i}{\alpha} \right| = 1
\]

Let \( R_z = z_{\text{max}} - z_{\text{min}} \) for \( z = x, y \), and \( M = \text{median} \| s_i \| \). Then,

\[
\alpha = M \frac{R_x}{R_y}
\]
Average Absolute Slope Banking

Let the aspect ratio be $\alpha = \frac{w}{h}$. then the mean absolute slope banking is the $\alpha$ such that,

$$\text{mean} \left| \frac{S_i}{\alpha} \right| = 1$$

Heer and Agrawala (2006) and Cleveland discuss several other methods including average (weighted) orientation, and global and local orientation resolution. These are no longer implemented in this function. In general, either the median or average absolute slopes will produce reasonable results without requiring optimization.

References


See Also

banking

Examples

```r
library("ggplot2")

Use the classic sunspot data from Cleveland's original paper
x <- seq_along(sunspot.year)
y <- as.numeric(sunspot.year)
Without banking
m <- ggplot(data.frame(x = x, y = y), aes(x = x, y = y)) +
 geom_line()

Using the default method, Median Absolute Slope
ratio <- bank_slopes(x, y)
m + coord_fixed(ratio = ratio)
Using culling
Average Absolute Slope
bank_slopes(x, y, method = "as")
```
**calc_pal**

*Calc color palette (discrete)*

**Description**

Color palettes from LibreOffice Calc. This palette has 12 values.

**Usage**

```r
calc_pal()
```

**See Also**

Other colour calc: `scale_fill_calc`

**Examples**

```r
library("scales")
show_col(calc_pal()(12))
```

---

**calc_shape_pal**

*Calc shape palette (discrete)*

**Description**

Shape palette based on the shapes used in LibreOffice Calc.

**Usage**

```r
calc_shape_pal()
```

**See Also**

Other shapes calc: `scale_shape_calc`

**Examples**

```r
library("ggplot2")
show_shapes(calc_shape_pal()(15))
```
canva_pal

**canva_pal**

*Canva.com color palettes*

**Description**

150+ color palettes from canva.com. See canva_palettes.

**Usage**

```r
canva_pal(palette = "Fresh and bright")
```

**Arguments**

- **palette**
  
  Palette name. See the names of canva_palettes for valid names.

**Value**

A function that takes a single value, the number of colors to use.

**Examples**

```r
require("scales")
show_col(canva_pal("Fresh and bright")(4))
show_col(canva_pal("Cool blues")(4))
show_col(canva_pal("Modern and crisp")(4))
```

---

canva_palettes

**150 Color Palettes from Canva**

**Description**

150 four-color palettes by the canva.com design school. These palettes were derived from photos and "impactful websites". They were then adapted to Tableau and Excel palettes by the sources below.

**Usage**

```r
canva_palettes
```

**Format**

A named list of character vector. The names are the palette names. The values of the character vectors are hex colors, e.g. "#f98866".

**Source**

References


Examples

```r
require("ggplot2")
require("purrr")
require("tibble")
canva_df <- map2_df(canva_palettes, names(canva_palettes),
 ~ tibble(colors = .x, .id = seq_along(colors), palette = .y))
ggplot(canva_df, aes(y = palette, x = .id, fill = colors)) +
 geom_raster() +
 scale_fill_identity(guide = FALSE) +
 theme_minimal() +
 theme(panel.grid = element_blank(),
 axis.text.x = element_blank()) +
 labs(x = "", y = ")
```

```
circlefill_shape_pal Filled Circle Shape palette (discrete)
```

Description

Shape palette with circles varying by amount of fill. This uses the set of 3 circle fill values in Lewandowsky and Spence (1989): solid, hollow, half-filled, with two additional fill amounts: three-quarters, and one-quarter.

Usage

```r
circlefill_shape_pal()
```

Details

This palette supports up to five values.

References

cleveland_shape_pal

See Also
Other shapes: cleveland_shape_pal, scale_shape_circlefill, scale_shape_cleveland, scale_shape_tremmel, tremmel_shape_pal

Examples

library("ggplot2")

(ggplot(mtcars, aes(x = mpg, y = hp, shape = factor(cyl)))
 + geom_point() + scale_shape_tremmel())

---

cleveland_shape_pal  Shape palette from Cleveland "Elements of Graphing Data" (discrete).

Description
Shape palettes for overlapping and non-overlapping points.

Usage

cleveland_shape_pal(overlap = TRUE)

Arguments

overlap  logical Use the scale for overlapping points?

Note
In the Elements of Graphing Data, W.S. Cleveland suggests two shape palettes for scatter plots: one for overlapping data and another for non-overlapping data. The symbols for overlapping data relies on pattern discrimination, while the symbols for non-overlapping data vary the amount of fill. This palette attempts to create these palettes. However, I found that these were hard to replicate. Using the R shapes and unicode fonts: the symbols can vary in size, they are dependent of the fonts used, and there does not exist a unicode symbol for a circle with a vertical line. If someone can improve this palette, please let me know.

Following Tremmel (1995), I replace the circle with a vertical line with an encircled plus sign.
The palette cleveland_shape_pal supports up to five values.

References


See Also

Other shapes: circlefill_shape_pal, scale_shape_circlefill, scale_shape_cleveland, scale_shape_tremmel, tremmel_shape_pal

Examples

### (discrete).

```r
library("ggplot2")
p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
 facet_wrap(~am) +
 theme_bw()
 # overlapping symbol palette
p + scale_shape_cleveland()
 # non-overlapping symbol palette
p + scale_shape_cleveland(overlap = FALSE)
```

---

**colorblind_pal**  
*Colorblind Color Palette (Discrete) and Scales*

Description

An eight-color colorblind safe qualitative discrete palette.

Usage

```r
colorblind_pal()

scale_colour_colorblind(...)

scale_color_colorblind(...)

scale_fill_colorblind(...)
```

Arguments

...  
Other arguments passed on to `discrete_scale` to control name, limits, breaks, labels and so forth.

References

Chang, W. "Cookbook for R"

[http://jfly.iam.u-tokyo.ac.jp/color](http://jfly.iam.u-tokyo.ac.jp/color)
See Also

The `dichromat` package, `dichromat_pal`, and `scale_color_tableau` for other colorblind palettes.

Examples

```r
library("ggplot2")
library("scales")

show_col(colorblind_pal)(8)
p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,
 colour = factor(gear))) + facet_wrap(~am)
p + theme_igray() + scale_colour_colorblind()
```

---

**economist_pal**  
_Economist color palette (discrete)_

Description

The hues in the palette are blues, grays, and greens. Red is not included in these palettes and should be used to indicate important data.

Usage

```
economist_pal(stata = FALSE, fill = TRUE)
```

Arguments

- `stata`  
  Use the palette in the Stata economist scheme.

- `fill`  
  Use the fill palette.

See Also

Other colour economist: `scale_colour_economist`

Examples

```r
library("scales")

show_col(economist_pal)(6)
fill palette
show_col(economist_pal(fill = TRUE)(6))
RGB values from Stata's economist scheme
show_col(economist_pal(stata = TRUE)(16))
```
**excel_pal**  
*Excel color palette (discrete)*

**Description**

Color palettes from Excel, both current and the pre-2007 ugly palettes.

**Usage**

```r
eancel_pal(palette = "line")
```

**Arguments**

- `palette` One of 'old', 'fill', or 'new'.

**Details**

The color palettes are

- **line** Excel 2003 default color palette. seven colors.
- **fill** Excel 2003 bar chart color palette. seven colors.
- **new** Color palette from newer Excel versions. 10 colors.

**See Also**

Other colour excel: `scale_fill_excel`

**Examples**

```r
library("scales")

show_col(excel_pal)(8)
show_col(excel_pal("fill")(8))
show_col(excel_pal("new")(10))
```

**extended_range_breaks_**

*Pretty axis breaks inclusive of extreme values*

**Description**

This function returns pretty axis breaks that always include the extreme values of the data. This works by calling the extended Wilkinson algorithm (Talbot et. al, 2010), constrained to solutions interior to the data range. Then, the minimum and maximum labels are moved to the minimum and maximum of the data range.
**Usage**

```r
extended_range_breaks_(dmin, dmax, n = 5, Q = c(1, 5, 2, 2.5, 4, 3), w = c(0.25, 0.2, 0.5, 0.05))
extended_range_breaks(n = 5, ...)
```

**Arguments**

- `dmin`: minimum of the data range
- `dmax`: maximum of the data range
- `n`: desired number of breaks
- `Q`: set of nice numbers
- `w`: weights applied to the four optimization components (simplicity, coverage, density, and legibility)
- `...`: other arguments passed to `extended_range_breaks_`

**Details**

`extended_range_breaks` implements the algorithm and returns the break values. `scales_extended_range_breaks` uses the conventions of the `scales` package, and returns a function.

**Value**

For `extended_range_breaks`, the vector of axis label locations. For `scales_extended_range_breaks`, a function which takes a single argument, a vector of data, and returns the vector of axis label locations.

A function which returns breaks given a vector.

**Author(s)**

Justin Talbot <jtalbot@stanford.edu>, Jeffrey B. Arnold, Baptiste Auguie

**References**

Color Palettes from Few’s "Practical Rules for Using Color in Charts"

Description

Qualitative color palettes from Stephen Few,

Usage

```r
few_pal(palette = "medium")
```

Arguments

- **palette**: One of c("medium", "dark", "light").

Details

Use the light palette for filled areas, such as bar charts. The medium palette should be used for points and lines. The dark palette should be used for either highlighting specific points, or if the lines and points are small or thin. All these palettes contain nine colors.

References


"Practical Rules for Using Color in Charts".

See Also

Other colour few: `scale_colour_few`

Examples

```r
library("scales")
show_col(few_pal()7)
show_col(few_pal("dark")7)
show_col(few_pal("light")7)
```
fivethirtyeight_pal  

**Description**

The standard three-color fivethirtyeight.com palette for line plots is blue, red, and green.

**Usage**

fivethirtyeight_pal()

**See Also**

Other colour fivethirtyeight: scale_colour_fivethirtyeight

**Examples**

library("scales")

show_col(fivethirtyeight_pal()(3))

---

gdocs_pal  

**Description**

Color palettes from Google Docs. This palette includes 20 colors.

**Usage**

gdocs_pal()

**See Also**

Other colour gdocs: scale_fill_gdocs

**Examples**

library("scales")

show_col(gdocs_pal()(20))
Description

Axis lines which extend to the maximum and minimum of the plotted data.

Usage

```r
geom_range_frame(mapping = NULL, data = NULL, stat = "identity",
position = "identity", ..., sides = "bl", na.rm = FALSE,
show.legend = NA, inherit.aes = TRUE)
```

Arguments

- `mapping` Set of aesthetic mappings created by `aes` or `aes_*`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.
- `data` The data to be displayed in this layer. There are three options:
  - If `null`, the default, the data is inherited from the plot data as specified in the call to `ggplot`.
  - A `data.frame`, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify` for which variables will be created.
  - A function will be called with a single argument, the plot data. The return value must be a `data.frame` and will be used as the layer data.
- `stat` The statistical transformation to use on the data for this layer, as a string.
- `position` Position adjustment, either as a string, or the result of a call to a position adjustment function.
- `...` other arguments passed on to `layer`. These are often aesthetics, used to set an aesthetic to a fixed value, like `color = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.
- `sides` A string that controls which sides of the plot the frames appear on. It can be set to a string containing any of `"trbl"`, for top, right, bottom, and left.
- `na.rm` If `FALSE`, the default, missing values are removed with a warning. If `TRUE`, missing values are silently removed.
- `show.legend` logical. Should this layer be included in the legends? `NA`, the default, includes if any aesthetics are mapped. `FALSE` never includes, and `TRUE` always includes.
- `inherit.aes` If `FALSE`, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. `borders`. 
**geom_tufteboxplot**

**Aesthetics**

- colour
- size
- linetype
- alpha

**References**


**See Also**

Other geom tufte: `geom_tufteboxplot`

**Examples**

```r
library("ggplot2")

ggplot(mtcars, aes(x = wt, y = mpg)) +
 geom_point() +
 geom_rangeframe() +
 theme_tufte()
```

---

**Description**

Edward Tufte’s revisions of the box plot as described in *The Visual Display of Quantitative Information*.

**Usage**

```r
geom_tufteboxplot(mapping = NULL, data = NULL, stat = "fivenumber",
 position = "dodge", outlier.colour = "black", outlier.shape = 19,
 outlier.size = 1.5, outlier.stroke = 0.5, voffset = 0.01,
 hoffset = 0.005, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE,
 median.type = "point", whisker.type = "line", ...)
```

**Arguments**

- `mapping` Set of aesthetic mappings created by `aes` or `aes_`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.
data
The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.
A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data.

stat
The statistical transformation to use on the data for this layer, as a string.

position
Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

outlier.colour
colour for outlying points

outlier.shape
shape of outlying points

outlier.size
size of outlying points

outlier.stroke
stroke for outlying points

voffset
controls the size of the gap in the line representing the median when median.type = 'line'.
This is a fraction of the range of y.

hoffset
controls how much the interquartile line is offset from the whiskers when median.type = 'line'.
This is a fraction of the range of x.

na.rm
If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend
logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes
If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders.

median.type
If 'point', then the median is represented by a point, and the interquartile range
by a gap in the line. If median.type='line', then the interquartile range is
represented by a line, possibly offset, and the median by a gap in the line.

whisker.type
If 'line', then whiskers are represented by lines. If 'point', then whiskers are
represented by points at ymin and ymax.

... other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red" or size = 3. They may also be
parameters to the paired geom/stat.

Aesthetics

• x [required]
• y [required]
• colour
• size
• linetype
• shape
• fill
• alpha
References


See Also

geom_boxplot
Other geom tufte: geom_rangeframe

Examples

library("ggplot2")

p <- ggplot(mtcars, aes(factor(cyl), mpg))
## with a point for the median and lines for whiskers
p + geom_tufteboxplot()
## with a line for the interquartile range and points for whiskers
p + geom_tufteboxplot(median.type = "line", whisker.type = "point", hoffset = 0)
## with a wide line for the interquartile range and lines for whiskers
p + geom_tufteboxplot(median.type = "line", hoffset = 0, width = 3)
## with an offset line for the interquartile range and lines for whiskers
p + geom_tufteboxplot(median.type = "line")

Description

This package contains extra themes, scales, and geoms, and functions for and related to ggplot2.

Details

In addition to the help pages, see the README page on github for examples.

Palette data for the gthemes package

Data used by the palettes in the gthemes package.
Format

A list.

hc_pal  

*Highcharts JS color palette (discrete)*

Description

The Highcharts JS uses many different color palettes in its plots. This collects a few of them.

Usage

```r
hc_pal(palette = "default")
```

Arguments

- **palette** character The color palette to use. This must be a name in `ggthemes_data$hc$palettes`.

Details

The "darkunica" palette has 11 colors, and the "default" palette has 10 colors.

---

palette_pander  

*Color palette from the pander package*

Description

The *pander* ships with a default colorblind and printer-friendly color palette borrowed from [http://jfly.iam.u-tokyo.ac.jp/color/](http://jfly.iam.u-tokyo.ac.jp/color/).

Usage

```r
palette_pander(n, random_order = FALSE)
```

Arguments

- **n** number of colors. This palette supports up to eight colors.
- **random_order** if the palette should be reordered randomly before rendering each plot to get colorful images

See Also

Other colour pander: `scale_color_pander`
Examples

```r
Not run:
palette_pander(TRUE)

End(Not run)
```

### Description

Qualitative color palettes from Paul Tol, "Colour Schemes".

### Usage

```r
ptol_pal()
```

### Details

Incorporation of the palette into an R package was originally inspired by Peter Carl’s [Paul Tol 21 Gun Salute](https://tradeblotter.wordpress.com/2013/02/28/the-paul-tol-21-color-salute/)

### References


### See Also

Other colour ptol: `scale_colour_ptol`

### Examples

```r
library("scales")

show_col(ptol_pal()(6))
show_col(ptol_pal()(4))
show_col(ptol_pal()(12))
```
scale_color_pander  Color scale from the pander package

Description
The pander ships with a default colorblind and printer-friendly color palette borrowed from http://jfly.iam.u-tokyo.ac.jp/color/.

Usage

scale_color_pander(...)
scale_colour_pander(...)  
scale_fill_pander(...)

Arguments

... Other arguments passed on to discrete_scale to control name, limits, breaks, labels and so forth.

See Also

theme_pander
Other colour pander: palette_pander

scale_colour_canva  Discrete color scale using canva.com color palettes

Description
Color scale for canva.com color palettes described in canva_palettes.

Usage

scale_colour_canva(..., palette = "Fresh and bright")
scale_color_canva(..., palette = "Fresh and bright")
scale_fill_canva(..., palette = "Fresh and bright")

Arguments

... Arguments passed to discrete_scale.
palette Palette name. See the names of canva_palettes for valid names.
scale_colour_economist

Economist color scales

Description
Color scales using the colors in the Economist graphics.

Usage
scale_colour_economist(stata = FALSE, 

scale_color_economist(stata = FALSE, 

scale_fill_economist(stata = FALSE, 

Arguments

stata Use the palette in the Stata economist scheme.

... Other arguments passed on to discrete_scale to control name, limits, breaks, labels and so forth.

See Also

theme_economist for examples.

Other colour economist: economist_pal

scale_colour_few Color scales from Few’s "Practical Rules for Using Color in Charts"

Description
See few_pal.

Usage
scale_colour_few(palette = "medium", ...) 

scale_color_few(palette = "medium", ...) 

scale_fill_few(palette = "light", ...)
Arguments

    palette One of c("medium", "dark", "light").

    Other arguments passed on to discrete_scale to control name, limits, breaks, labels and so forth.

See Also

    Other colour few: few_pal

--

scale_colour_fivethirtyeight

    fivethirtyeight.com color scales

Description

Color scales using the colors in the fivethirtyeight graphics.

Usage

    scale_colour_fivethirtyeight(...)  
    scale_color_fivethirtyeight(...)  
    scale_fill_fivethirtyeight(...)  

Arguments

    Other arguments passed on to discrete_scale to control name, limits, breaks, labels and so forth.

See Also

    theme_fivethirtyeight for examples.

    Other colour fivethirtyeight: fivethirtyeight_pal
scale_colour_gradient2_tableau

Tableau diverging colour scales (continuous)

Description
Tableau diverging colour scales (continuous)

Usage

```r
scale_colour_gradient2_tableau(palette = "Red-Blue", ..., space = "rgb",
na.value = "grey50", guide = "colourbar")
```

```r
scale_fill_gradient2_tableau(palette = "Red-Blue", ..., space = "rgb",
na.value = "grey50", guide = "colourbar")
```

```r
scale_color_gradient2_tableau(palette = "Red-Blue", ..., space = "rgb",
na.value = "grey50", guide = "colourbar")
```

Arguments

- `palette`  
  Palette name. See `ggthemes_data$tableau$divergent`.

- `...`  
  Other arguments passed on to `discrete_scale` to control name, limits, breaks, labels and so forth.

- `space`  
  Colour space in which to calculate gradient.

- `na.value`  
  Colour to use for missing values

- `guide`  
  Type of legend. Use 'colourbar' for continuous colour bar, or 'legend' for discrete colour legend.

See Also

Other colour tableau: `scale_colour_gradient_tableau`, `scale_colour_tableau`, `tableau_color_pal`, `tableau_div_gradient_pal`, `tableau_seq_gradient_pal`

Examples

```r
library("ggplot2")

df <- data.frame(
 x = runif(100),
 y = runif(100),
 z1 = rnorm(100),
 z2 = abs(rnorm(100))
)
p <- ggplot(df, aes(x, y)) + geom_point(aes(colour = z2))
p + scale_colour_gradient2_tableau()
```
p + scale_colour_gradient2_tableau("Orange-Blue")
p + scale_colour_gradient2_tableau("Temperature")

scale_colour_gradient_tableau

Tableau sequential colour scale (continuous)

Description

Tableau sequential colour scale (continuous)

Usage

scale_colour_gradient_tableau(palette = "Red", ..., space = "Lab",
na.value = "grey50", guide = "colourbar")

scale_fill_gradient_tableau(palette = "Red", ..., space = "Lab",
na.value = "grey50", guide = "colourbar")

scale_color_gradient_tableau(palette = "Red", ..., space = "Lab",
na.value = "grey50", guide = "colourbar")

scale_color_continuous_tableau(palette = "Red", ..., space = "Lab",
na.value = "grey50", guide = "colourbar")

scale_fill_continuous_tableau(palette = "Red", ..., space = "Lab",
na.value = "grey50", guide = "colourbar")

Arguments

palette          Palette name. See ggthemes_data$tableau$sequential.
...              Other arguments passed on to discrete_scale to control name, limits, breaks, labels and so forth.
space            Colour space in which to calculate gradient.
na.value          Colour to use for missing values
guide            Type of legend. Use 'colourbar' for continuous colour bar, or 'legend' for discrete colour legend.

See Also

Other colour tableau: scale_colour_gradient2_tableau, scale_colour_tableau, tableau_color_pal,
                      tableau_div_gradient_pal, tableau_seq_gradient_pal
scale_colour_hc

Examples

library("ggplot2")

df <- data.frame(
  x = runif(100),
  y = runif(100),
  z1 = rnorm(100),
  z2 = abs(rnorm(100))
)

p <- ggplot(df, aes(x, y)) +
  geom_point(aes(colour = z2)) +
  theme_igray()

p + scale_colour_gradient_tableau("Red")
p + scale_colour_gradient_tableau("Blue")
p + scale_colour_gradient_tableau("Green")

scale_colour_hc Highcharts color and fill scales

Description

Colour and fill scales which use the palettes in hc_pal and are meant for use with theme_hc.

Usage

scale_colour_hc(palette = "default", ...)
scale_color_hc(palette = "default", ...)
scale_fill_hc(palette = "default", ...)

Arguments

palette character The color palette to use. This must be a name in gghthemes_data$hc$palettes.
... Other arguments passed on to discrete_scale to control name, limits, breaks, labels and so forth.
scale_colour_ptol  

Color Scales from Paul Tol’s "Colour Schemes"

Description
See ptol_pal. These palettes support up to 12 values.

Usage
scale_colour_ptol(...) 
scale_color_ptol(...) 
scale_fill_ptol(...) 

Arguments
... Other arguments passed on to discrete_scale to control name, limits, breaks, labels and so forth.

See Also
Other colour ptol: ptol_pal

scale_colour_stata  

Stata color scales

Description
See stata_pal for details.

Usage
scale_colour_stata(scheme = "s2color", ...) 
scale_fill_stata(scheme = "s2color", ...) 
scale_color_stata(scheme = "s2color", ...) 

Arguments
scheme character. One of "s2color", "s1rcolor", "s1color", or "mono".
... Other arguments passed on to discrete_scale to control name, limits, breaks, labels and so forth.
scale_colour_tableau  

Tableau color scales.

Description

See `tableau_color_pal` for details.

Usage

```r
scale_colour_tableau(palette = "tableau10", ...)

scale_fill_tableau(palette = "tableau10", ...)

scale_color_tableau(palette = "tableau10", ...)
```

Arguments

- `palette`  
  Palette name.
- `...`  
  Other arguments passed on to `discrete_scale` to control name, limits, breaks, labels and so forth.

See Also

- `tableau_color_pal` for references.

Other colour tableau: `scale_colour_gradient2_tableau, scale_colour_gradient_tableau, tableau_color_pal, tableau_div_gradient_pal, tableau_seq_gradient_pal`

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am)
	p + scale_colour_tableau()
	p + scale_colour_tableau("tableau10")
	p + scale_colour_tableau("tableau10medium")
	p + scale_colour_tableau("tableau10light")
	p + scale_colour_tableau("colorblind10")
	p + scale_colour_tableau("trafficlight")
	p + scale_colour_tableau("purplegray12")
	p + scale_colour_tableau("bluered12")
	p + scale_colour_tableau("greenorange12")
	p + scale_colour_tableau("cyclic")
```
scale_colour_wsj  Wall Street Journal color and fill scales

Description
Colour and fill scales which use the palettes in \texttt{wsj_pal} and are meant for use with \texttt{theme_wsj}.

Usage
scale_colour_wsj(palette = "colors6", ...)
scale_color_wsj(palette = "colors6", ...)
scale_fill_wsj(palette = "colors6", ...)

Arguments
- \texttt{palette} character The color palette to use. This must be a name in \texttt{ggthemes_data$wsj$palettes}.
- \texttt{...} Other arguments passed on to \texttt{discrete_scale} to control name, limits, breaks, labels and so forth.

See Also
Other colour wsj: \texttt{wsj_pal}

scale_fill_calc  LibreOffice Calc color scales

Description
Color scales from LibreOffice Calc.

Usage
scale_fill_calc(...)
scale_colour_calc(...)
scale_color_calc(...)

Arguments
- \texttt{...} Other arguments passed on to \texttt{discrete_scale} to control name, limits, breaks, labels and so forth.
See Also

See theme_calc for examples.
Other colour calc: calc_pal

scale_fill_excel  Excel color scales

Description

Color scales from both old and new Excel.

Usage

scale_fill_excel(palette = "fill", ...)

scale_colour_excel(palette = "line", ...)

scale_color_excel(palette = "line", ...)

Arguments

palette  One of 'old', 'fill', or 'new'.
...
Other arguments passed on to discrete_scale to control name, limits, breaks, labels and so forth.

See Also

See theme_excel for examples.
Other colour excel: excel_pal

scale_fill_gdocs  Google Docs color scales

Description

Color scales from Google Docs.

Usage

scale_fill_gdocs(...)

scale_colour_gdocs(...)

scale_color_gdocs(...)

Arguments

... Other arguments passed on to `discrete_scale` to control name, limits, breaks, labels and so forth.

See Also

See `theme_gdocs` for examples.

Other colour gdocs: `gdocs_pal`

---

**scale_fill_solarized**  
*Solarized color scales*

Description

See `solarized_pal` for details.

Usage

```
scale_fill_solarized(acc) = "blue", ...)
scale_colour_solarized(acc) = "blue", ...)
scale_color_solarized(acc) = "blue", ...)
```

Arguments

- `accent` character Starting color.
- ... Other arguments passed on to `discrete_scale` to control name, limits, breaks, labels and so forth.

See Also

Other solarized colour: `solarized_pal`

Examples

```
library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am)

p + theme_solarized() + scale_colour_solarized()
```
scale_linetype_stata  \hspace{1em} \textit{Stata linetype palette (discrete)}

\begin{description}
\item[Description] See \texttt{stata_linetype_pal} for details.
\item[Usage] \texttt{scale_linetype_stata(...)}
\item[Arguments] ... common discrete scale parameters: name, breaks, labels, na.value, limits and guide. See \texttt{discrete_scale} for more details.
\item[See Also] Other linetype stata: \texttt{stata_linetype_pal}
\item[Examples]\begin{verbatim}
require("dplyr")
require("tidyr")
require("ggplot2")

rescale01 <- function(x) {
  (x - min(x)) / diff(range(x))
}

gather(economics, variable, value, -date) %>%
  group_by(variable) %>%
  mutate(value = rescale01(value)) %>%
  ggplot(aes(x = date, y = value, linetype = variable)) +
  geom_line() +
  scale_linetype_stata()
\end{verbatim}
\end{description}

scale_shape_calc  \hspace{1em} \textit{Calc shape scale}

\begin{description}
\item[Description] See \texttt{calc_shape_pal} for details.
\item[Usage] \texttt{scale_shape_calc(...)}
\end{description}
Arguments
... common discrete scale parameters: name, breaks, labels, na.value, limits and guide. See discrete_scale for more details

See Also
theme_calc for examples.
Other shapes calc: calc_shape_pal

scale_shape_circlefill

Filled Circle Shape palette (discrete)

Description
Filled Circle Shape palette (discrete)

Usage
scale_shape_circlefill(...)

Arguments
... common discrete scale parameters: name, breaks, labels, na.value, limits and guide. See discrete_scale for more details

See Also
circlefill_shape_pal for a description of the palette.
Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_cleveland, scale_shape_tremmel, tremmel_shape_pal

scale_shape_cleveland
Shape scales from Cleveland "Elements of Graphing Data"

Description
Shape scales from Cleveland "Elements of Graphing Data"

Usage
scale_shape_cleveland(overlap = TRUE, ...)

scale_shape_cleveland
scale_shape_stata

Arguments

overlap logical Use the scale for overlapping points?

... common discrete scale parameters: name, breaks, labels, na.value, limits and guide. See discrete_scale for more details

References


See Also
cleveland_shape_pal for a description of the palette.

Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_circlefill, scale_shape_tremmel, tremmel_shape_pal

scale_shape_stata Stata shape scale

Description

See stata_shape_pal for details.

Usage

scale_shape_stata(...)
scale_shape_tableau

Tableau shape scales

Description

See tableau_shape_pal for details.

Usage

scale_shape_tableau(palette = "default", ...)

Arguments

- palette
  - Palette name. See ggthemes_data$tableau$shapes.
- ...
  - common discrete scale parameters: name, breaks, labels, na.value, limits and guide. See discrete_scale for more details

See Also

Other shape tableau: tableau_shape_pal

Examples

library("ggplot2")

p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
  facet_wrap(~am)

p + scale_shape_tableau()

scale_shape_tremmel

Shape scales from Tremmel (1995)

Description

Shape scales from Tremmel (1995)

Usage

scale_shape_tremmel(overlap = FALSE, n3alt = TRUE, ...)

Arguments

- overlap
  - use an empty circle instead of a solid circle when n == 2.
- n3alt
  - If TRUE then use a solid circle, plus sign and empty triangle, else use a solid circle, empty circle, and empty triangle.
- ...
  - common discrete scale parameters: name, breaks, labels, na.value, limits and guide. See discrete_scale for more details
See Also
tremmel_shape_pal for a description of the palette.
Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_circlefill, scale_shape_cleveland, tremmel_shape_pal

Examples

library("ggplot2")

(ggplot(mtcars, aes(x = mpg, y = hp, shape = factor(cyl)))
 + geom_point() + scale_shape_tremmel())
(ggplot(mtcars, aes(x = mpg, y = hp, shape = factor(cyl)))
 + geom_point() + scale_shape_tremmel(n3alt = FALSE))
(ggplot(mtcars, aes(x = mpg, y = hp, shape = factor(am)))
 + geom_point() + scale_shape_tremmel())
(ggplot(mtcars, aes(x = mpg, y = hp, shape = factor(am)))
 + geom_point() + scale_shape_tremmel(overlap = TRUE))

show_linetypes   Show linetypes

Description
A quick and dirty way to show linetypes.

Usage

show_linetypes(linetypes, labels = TRUE)

Arguments

linetypes   A character vector of linetypes. See par.
labels       Label each line with its linetype (lt) value.

See Also

show_col, show_linetypes

Examples

library("scales")

show_linetypes(linetype_pal()(3))
show_linetypes(linetype_pal()(3), labels = TRUE)
**show.shapes**  
*Show shapes*

**Description**
A quick and dirty way to show shapes.

**Usage**
show.shapes(shapes, labels = TRUE)

**Arguments**

- **shapes**
  A numeric or character vector of shapes. See `par`.

- **labels**
  Include the plotting character value of the symbol.

**See Also**
`show.col`, `show.linetypes`

**Examples**
```r
library("scales")

show.shapes(shape_pal()(5))
show.shapes(shape_pal()(3), labels = TRUE)
```

**smart_digits**  
*Format numbers with automatic number of digits*

**Description**
Format numbers with automatic number of digits

**Usage**
smart_digits(x, ...)
smart_digits_format(x, ...)

**Arguments**

- **x**
  A numeric vector to format

- **...**
  Parameters passed to `format`
solarized_pal

Value

smart_digits returns a character vector. smart_digits_format returns a function with a single argument x, a numeric vector, that returns a character vector.

Author(s)

Josh O’Brien, Baptiste Auguie, Jeffrey B. Arnold

References


---

solarized_pal Solarized color palette (discrete)

Description

Qualitative color palate based on the Ethan Schoonover’s Solarized palette, http://ethanschoonover.com/solarized. This palette supports up to seven values.

Usage

solarized_pal(accent = "blue")

Arguments

accent character Starting color.

Note

For a given starting color and number of colors in the palette, the other colors are the combination of colors that maximizes the total Euclidean distance between colors in L*a*b space.

See Also

Other solarized colour: scale_fill_solarized

Examples

library("scales")

show_col(solarized_pal()[](2))
show_col(solarized_pal()[](3))
show_col(solarized_pal("red")[](4))
stata_linetype_pal  Stata linetype palette (discrete)

Description
Linetype palette based on the linepattern scheme in Stata. This palette supports up to 15 values.

Usage
stata_linetype_pal()

See Also
scale_linetype_stata
Other linetype stata: scale_linetype_stata

stata_pal  Stata color palettes (discrete)

Description

Usage
stata_pal(scheme = "s2color")

Arguments
scheme  character. One of "s2color", "s1rcolor", "s1color", or "mono".

Details
All these palettes support up to 15 values.

Examples
library("scales")

show_col(stata_pal("s2color")(15))
show_col(stata_pal("s1rcolor")(15))
show_col(stata_pal("s1color")(15))
show_col(stata_pal("mono")(15))
stata_shape_pal  

Stata shape palette (discrete)

Description
Shape palette based on the symbol palette in Stata used in scheme s2mono. This palette supports up to 10 values.

Usage
stata_shape_pal()

See Also
See scale_shape_stata for examples.

stat_fivenumber  

Calculate components of a five-number summary

Description
The five number summary of a sample is the minimum, first quartile, median, third quartile, and maximum.

Usage
stat_fivenumber(mapping = NULL, data = NULL, geom = "boxplot", qs = c(0, 0.25, 0.5, 0.75, 1), na.rm = FALSE, position = "identity", show.legend = NA, inherit.aes = TRUE, ...)

Arguments

mapping  
Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data  
The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot.
A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify for which variables will be created.
A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data.

geom  
The geometric object to use display the data
qs
Quantiles to use for the five number summary.
na.rm
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values.
position
Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend
logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes
If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders.
...
other arguments passed on to layer. These are often aesthetics, used to set an aesthetic to a fixed value, like color = "red" or size = 3. They may also be parameters to the paired geom/stat.

Value
A data frame with additional columns:
width
width of boxplot
min
minimum
lower
lower hinge, 25% quantile
middle
median, 50% quantile
upper
upper hinge, 75% quantile
max
maximum

See Also
stat_boxplot

Description
Color palettes used in Tableau.

Usage
tableau_color_pal(palette = "tableau10")

Arguments
palette
Palette name.
The number in some palette names indicates the maximum number of values supported, e.g. `tableau20` supports up to 20 values. "trafficlight" supports up to nine values, and "cyclic" supports up to 20 values.

References

http://vis.stanford.edu/color-names/analyzer/


See Also

Other colour tableau: `scale_colour_gradient2_tableau`, `scale_colour_gradient_tableau`, `scale_colour_tableau`, `tableau_div_gradient_pal`, `tableau_seq_gradient_pal`

Examples

library("scales")

show_col(tableau_color_pal("tableau20")(20))
show_col(tableau_color_pal("tableau10")(10))
show_col(tableau_color_pal("tableau1medium")(10))
show_col(tableau_color_pal("tableau1light")(10))
show_col(tableau_color_pal("colorblind10")(10))
show_col(tableau_color_pal("trafficlight")(10))
show_col(tableau_color_pal("purplegray12")(12))
show_col(tableau_color_pal("bluered12")(12))
show_col(tableau_color_pal("greenorange12")(12))
show_col(tableau_color_pal("cyclic")(20))

---

tableau_div_gradient_pal

Tableau diverging colour gradient palettes (continuous)

Description

Tableau diverging colour gradient palettes (continuous)

Usage

tableau_div_gradient_pal(palette = "Red-Blue", space = "Lab")
Arguments

- **palette**: Palette name. See `ggthemes_data$tableau$divergent`.
- **space**: Colour space in which to calculate gradient.

See Also

Other colour tableau: `scale_colour_gradient2_tableau`, `scale_colour_gradient_tableau`, `scale_colour_tableau`, `tableau_color_pal`, `tableau_seq_gradient_pal`

Examples

```r
x <- seq(-1, 1, length = 100)
r <- sqrt(outer(x^2, x^2, "+"))
image(r,
 col = tableau_div_gradient_pal()$seq(0, 1, length = 12))
image(r,
 col = tableau_div_gradient_pal("Orange-Blue")$seq(0, 1, length = 12))
image(r,
 col = tableau_div_gradient_pal("Temperature")$seq(0, 1, length = 12))
```

deprecated: `tableau_seq_gradient_pal`

Tableau sequential colour gradient palettes (continuous)

Description

Tableau sequential colour gradient palettes (continuous)

Usage

```r
tableau_seq_gradient_pal(palette = "Red", space = "Lab")
```

Arguments

- **palette**: Palette name. See `ggthemes_data$tableau$sequential`.
- **space**: Colour space in which to calculate gradient.

See Also

Other colour tableau: `scale_colour_gradient2_tableau`, `scale_colour_gradient_tableau`, `scale_colour_tableau`, `tableau_color_pal`, `tableau_div_gradient_pal`
**tableau_shape_pal**

**Examples**

```r
library("scales")

x <- seq(0, 1, length = 25)
show_col(tableau_seq_gradient_pal("Red")(x))
show_col(tableau_seq_gradient_pal("Blue")(x))
show_col(tableau_seq_gradient_pal("Purple Sequential")(x))
```

---

**Description**

Shape palettes used by Tableau.

**Usage**

```r
tableau_shape_pal(palette = "default")
```

**Arguments**

- `palette` Palette name. See `ggthemes_data$tableau$shapes`.

**See Also**

Other shape tableau: `scale_shape_tableau`

**Examples**

```r
show_shapes(tableau_shape_pal()(5))
```

---

**theme_base**

**Theme Base**

**Description**

Theme similar to the default settings of the ‘base’ R graphics.

**Usage**

```r
theme_base(base_size = 16, base_family = "")
```

**Arguments**

- `base_size` base font size
- `base_family` base font family
See Also

Other themes: theme_foundation, theme_igray, theme_par, theme_solid

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,
 colour = factor(gear))) + facet_wrap(~am)

p + theme_base()
```

---

### theme_calc

<table>
<thead>
<tr>
<th>Theme Calc</th>
</tr>
</thead>
</table>

**Description**

Theme similar to the default settings of LibreOffice Calc charts.

**Usage**

```r
theme_calc(base_size = 10, base_family = "sans")
```

**Arguments**

- `base_size` base font size
- `base_family` base font family

**Examples**

```r
library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am) + theme_calc()

p + scale_color_calc()

q <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
 facet_wrap(~am) +
 theme_calc()

q + scale_shape_calc()
```
Description

Style plots similar to those in The Economist.

Usage

theme_economist(base_size = 10, base_family = "sans", horizontal = TRUE, dkpanel = FALSE, stata = FALSE)

theme_economist_white(base_size = 11, base_family = "sans", gray_bg = TRUE, horizontal = TRUE)

Arguments

base_size  base font size
base_family base font family
horizontal logical. Horizontal axis lines?
dkpanel logical. Darker background for panel region?
stata logical. Use RGB values from Stata's economist scheme.
gray_bg logical. If TRUE, use gray background, else use white background.

Details

theme_economist implements the standard bluish-gray background theme in the print The Economist and economist.com. theme_economist_white implements a variant with a while panel and light gray (or white) background used by The Economist blog Graphic Detail. The Economist uses "ITC Officina Sans" as its font for graphs. If you have access to this font, you can use it with the extrafont package. "Verdana" is a good substitute.

Value

An object of class theme.

References

- The Economist

See Also

themeEconomist.theme for an Economist theme for lattice plots.
Examples

library("ggplot2")

p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,
    colour = factor(gear))) +
    facet_wrap(~am) +
    # Economist puts scales on the right-hand side
    scale_y_continuous(position = "right")

## Standard
p + theme_economist() + scale_colour_economist()

## Stata colors
p + theme_economist(stata = TRUE) + scale_colour_economist(stata = TRUE)

## Darker plot region
p + theme_economist(dkpanel = TRUE) + scale_colour_economist(stata = TRUE)

# Change axis lines to vertical
p + theme_economist(horizontal = FALSE) +
    scale_colour_economist() +
    coord_flip()

## White panel/light gray background
p + theme_economist_white() +
    scale_colour_economist()

## All white variant
p + theme_economist_white(gray_bg = FALSE) +
    scale_colour_economist()

## Not run:

## The Economist uses ITC Officina Sans
library(extrafont)
p + theme_economist(base_family="ITC Officina Sans") +
    scale_colour_economist()

## Verdana is a widely available substitute
p + theme_economist(base_family="Verdana") +
    scale_colour_economist()

## End(Not run)
Description

Theme to replicate the ugly monstrosity that was the old gray-background Excel chart. Please never use this.

Usage

```
theme_excel(base_size = 12, base_family = "", horizontal = TRUE)
```

Arguments

- `base_size` base font size
- `base_family` base font family
- `horizontal` logical. Horizontal axis lines?

Value

An object of class `theme`.

Examples

```
library("ggplot2")

Old line color
p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am)
p + theme_excel() + scale_colour_excel()

Old fill color palette
ggplot(mpg, aes(x = class, fill = drv)) +
geom_bar() +
scale_fill_excel("fill") +
theme_excel()
```

---

**theme_few**

*Theme based on Few’s "Practical Rules for Using Color in Charts"*

Description

Theme based on the rules and examples from Stephen Few’s *Show Me the Numbers* and "Practical Rules for Using Color in Charts".

Usage

```
theme_few(base_size = 12, base_family = "")
```
Arguments

base_size  base font size
base_family base font family

References


Examples

library("ggplot2")

p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,
                                        colour = factor(gear))) + facet_wrap(~am)

p + theme_few() + scale_colour_few()

p + theme_few() + scale_colour_few("light")

p + theme_few() + scale_colour_few("dark")

theme_fivethirtyeight  Theme inspired by fivethirtyeight.com plots

Description

Theme inspired by the plots on http://fivethirtyeight.com.

Usage

theme_fivethirtyeight(base_size = 12, base_family = "sans")

Arguments

base_size  base font size
base_family base font family

Examples

library("ggplot2")

p <- ggplot(mtcars, aes(x = wt, y = mpg, colour = factor(gear))) +
    geom_point() +
    facet_wrap(~am) +
    geom_smooth(method = "lm", se = FALSE) +
    scale_color_fivethirtyeight() +
    theme_fivethirtyeight()

p
theme_foundation  

*Foundation Theme*

**Description**

This theme is designed to be a foundation from which to build new themes, and not meant to be used directly. `theme_foundation` is a complete theme with only minimal number of elements defined. It is easier to create new themes by extending this one rather than `theme_gray` or `theme_bw`, because those themes define elements deep in the hierarchy.

**Usage**

```r
tHEME_Foundation(base_size = 12, base_family = "")
```

**Arguments**

- `base_size`: base font size
- `base_family`: base font family

**Details**

This theme takes `theme_gray` and sets all colour and fill values to NULL, except for the top-level elements (line, rect, and title), which have `colour = "black"` and `fill = "white"`. This leaves the spacing and-non colour defaults of the default ggplot2 themes in place.

**See Also**

Other themes: `theme_base`, `theme_igray`, `theme_par`, `theme_solid`

theme_gdocs  

*Theme with Google Docs Chart defaults*

**Description**

Theme similar to the default look of charts in Google Docs.

**Usage**

```r
theme_gdocs(base_size = 12, base_family = "sans")
```

**Arguments**

- `base_size`: base font size
- `base_family`: base font family
Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am)
p + theme_gdocs() + scale_color_gdocs()
```

```
theme_hc

Highcharts JS theme
```

Description

Theme based on the plots in Highcharts JS.

Usage

```
theme_hc(base_size = 12, base_family = "sans", bgcolor = "default")
```

Arguments

- `base_size` base font size
- `base_family` base font family
- `bgcolor` The background color of plot. One of 'default', 'darkunica', the names of values in ggthemes_data$hc$bg.

References

- [http://www.highcharts.com/demo/line-basic](http://www.highcharts.com/demo/line-basic)

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,
 colour = factor(gear))) + facet_wrap(~am)
p + theme_hc() + scale_colour_hc()
p + theme_hc(bgcolor = "darkunica") + scale_colour_hc("darkunica")
```
theme_igray

Inverse gray theme

Description

Theme with white panel and gray background.

Usage

```r
theme_igray(base_size = 12, base_family = "")
```

Arguments

- `base_size` base font size
- `base_family` base font family

Details

This theme inverts the colors in the `theme_gray`, a white panel and a light gray area around it. This keeps a white background for the color scales like `theme_bw`. But by using a gray background, the plot is closer to the typographical color of the document, which is the motivation for using a gray panel in `theme_gray`. This is similar to the style of plots in Stata and Tableau.

See Also

`theme_gray, theme_bw`

Other themes: `theme_base, theme_foundation, theme_par, theme_solid`

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am)

p + theme_igray()
```
### theme_map

**Clean theme for maps**

**Description**

A clean theme that is good for displaying maps from `geom_map`.

**Usage**

```r
theme_map(base_size = 9, base_family = "")
```

**Arguments**

- `base_size`: base font size
- `base_family`: base font family

**Examples**

```r
library("maps")
library("ggplot2")

us <- fortify(map_data("state"), region = "region")

gg <-
 (ggplot()
 + geom_map(data = us, map = us,
 aes(x = long, y = lat, map_id = region, group = group),
 fill = "white", color = "black", size = 0.25)
 + coord_map("albers", lat0 = 39, lat1 = 45)
 + theme_map()
)

```

---

### theme_pander

**A ggplot theme originated from the pander package**

**Description**

The `pander` ships with a default theme when the `unify plots` option is enabled via `panderOptions`, which is now also available outside of `pander` internals, like `evals`, `eval.msgs` or `Pandoc.brew`.

**Usage**

```r
theme_pander(base_size = 12, base_family = "sans", nomargin = TRUE,
 ff = NULL, fc = "black", fs = NULL, gM = TRUE, gm = TRUE,
 gc = "grey", gl = "dashed", boxes = FALSE, bc = "white",
 pc = "transparent", lp = "right", axis = 1)
```
Arguments

base_size  base font size
base_family base font family
nomargin suppress the white space around the plot (boolean)
ff  font family, like sans. Deprecated: use base_family instead.
fc  font color (name or hexa code)
fs  font size (integer). Deprecated: use base_size instead.
gM  major grid (boolean)
gm  minor grid (boolean)
gc  grid color (name or hexa code)
gl  grid line type (lty)
boxes to render a border around the plot or not
bc  background color (name or hexa code)
pc  panel background color (name or hexa code)
lp  legend position
axis  axis angle as defined in par(les)

Examples

require("ggplot2")
require("pander")

p <- ggplot(mtcars, aes(x = mpg, y = wt)) +
  geom_point() +
  theme_pander()
p + theme_pander()
panderOptions("graph.grid.color", "red")

p <- ggplot(mtcars, aes(x = mpg, y = wt, colour = factor(cyl))) +
  geom_point() +
  theme_pander() + scale_color_pander()

ggplot(mpg, aes(x = class, fill = drv)) +
  geom_bar() +
  scale_fill_pander() +
  theme_pander()
theme_par

Theme which takes its values from the current ‘base’ graphics parameter values in `par`.

Description


Usage

```r
theme_par(base_size = par()$ps, base_family = par()$family)
```

Arguments

- `base_size`: base font size
- `base_family`: base font family

Details

This theme does not translate the base graphics perfectly, so the graphs produced by it will not be identical to those produced by base graphics, most notably in the spacing of the margins.

See Also

Other themes: `theme_base`, `theme_foundation`, `theme_igray`, `theme_solid`

Examples

```r
library("ggplot2")
p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg, colour = factor(gear))) + facet_wrap(~am)
par(font = 2, col.lab = "red", fg = "blue")
p + theme_par()
```
theme_solarized

ggplot color themes based on the Solarized palette

Description


Usage

theme_solarized(base_size = 12, base_family = "", light = TRUE)

theme_solarized_2(base_size = 12, base_family = "", light = TRUE)

Arguments

- `base_size`: base font size
- `base_family`: base font family
- `light`: logical. Light or dark theme?

Details

Plots made with this theme integrate seamlessly with the Solarized Beamer color theme. [https://github.com/jrnold/beamercolorthemesolarized](https://github.com/jrnold/beamercolorthemesolarized). There are two variations: `theme_solarized` is similar to to `theme_bw`, while `theme_solarized_2` is similar to `theme_gray`.

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am)

p + theme_solarized() + scale_colour_solarized("blue")

Dark version
p + theme_solarized(light = FALSE) +
 scale_colour_solarized("blue")
```
### theme_solid

*Theme with nothing other than a background color*

**Description**

Theme that removes all non-geom elements (lines, text, etc). This theme is when only the geometric objects are desired.

**Usage**

```r
theme_solid(base_size = 12, base_family = "", fill = NA)
```

**Arguments**

- `base_size`: Base font size.
- `base_family`: Ignored, kept for consistency with `theme`.
- `fill`: Background color of the plot.

**See Also**

Other themes: `theme_base`, `theme_foundation`, `theme_igray`, `theme_par`

**Examples**

```r
library("ggplot2")

(ggplot(mtcars, aes(wt, mpg))
 + geom_point()
 + theme_solid(fill = "white"))
```

### theme_stata

*Themes based on Stata graph schemes*

**Description**

Themes based on Stata graph schemes

**Usage**

```r
theme_stata(base_size = 11, base_family = "sans", scheme = "s2color")
```

**Arguments**

- `base_size`: base font size
- `base_family`: base font family
- `scheme`: One of "s2color", "s2mono", "s1color", "s1rcolor", or "s1mono", "s2manual", "s1manual", or "sj"
**Note**

Stata graph schemes include the features of *ggplot2* into themes and scales. Stata graph themes also allow for defaults for specific graph types, a feature which *ggplot2* does not directly support.

**References**

http://www.stata.com/help.cgi?schemes

**Examples**

```r
library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am)
s2color
p + theme_stata() + scale_colour_stata("s2color")
s2mono
p + theme_stata(scheme = "s2mono") + scale_colour_stata("mono")
s1color
p + theme_stata(scheme = "s1color") + scale_colour_stata("s1color")
s1rcolor
p + theme_stata(scheme = "s1rcolor") + scale_colour_stata("s1rcolor")
s1mono
p + theme_stata(scheme = "s1mono") + scale_colour_stata("mono")
```

---

**theme_tufte**  
*Tufte Maximal Data, Minimal Ink Theme*

**Description**

Theme based on Chapter 6 'Data-Ink Maximization and Graphical Design' of Edward Tufte *The Visual Display of Quantitative Information*. No border, no axis lines, no grids. This theme works best in combination with *geom_rug* or *geom_rangeframe*.

**Usage**

```r
theme_tufte(base_size = 11, base_family = "serif", ticks = TRUE)
```

**Arguments**

- `base_size`  
  base font size
- `base_family`  
  base font family
- `ticks`  
  logical Show axis ticks?
Note

The default font family is set to 'serif' as he uses serif fonts for labels in 'The Visual Display of Quantitative Information'. The serif font used by Tufte in his books is a variant of Bembo, while the sans serif font is Gill Sans. If these fonts are installed on your system, then you can use them with the package extrafont.

References


Examples

```r
library("ggplot2")
with ticks and range frames
(ggplot(mtcars, aes(wt, mpg))
 + geom_point() + geom_rangeframe()
 + theme_tufte())
with geom_rug
(ggplot(mtcars, aes(wt, mpg))
 + geom_point() + geom_rug()
 + theme_tufte(ticks = FALSE))

Not run:

Using the Bembo serif family
library("extrafont")

(ggplot(mtcars, aes(wt, mpg))
 + geom_point() + geom_rangeframe()
 + theme_tufte(base_family = "BemboStd"))

Using the Gill Sans sans serif family
(ggplot(mtcars, aes(wt, mpg))
 + geom_point() + geom_rangeframe()
 + theme_tufte(base_family = "GillSans"))

End(Not run)
```

theme_wsj

Wall Street Journal theme

Description

Theme based on the plots in *The Wall Street Journal*. 
tremmel_shape_pal

Usage

theme_wsj(base_size = 12, color = "brown", base_family = "sans",
           title_family = "mono")

Arguments

base_size  base font size
color      The background color of plot. One of 'brown', 'gray', 'green', 'blue'.
           the names of values in ggthemes_data$wsj$bg.
base_family base font family
title_family Plot title font family.

References

https://twitter.com/WSJGraphics
https://pinterest.com/WSJGraphics/WSJ-graphics/

Examples

library("ggplot2")

p <- ggplot(mtcars) +
    geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
    facet_wrap(~am) +
    ggtitle("Diamond Prices")

p + scale_colour_wsj("colors6", "") + theme_wsj()
# Use a gray background instead
p + scale_colour_wsj("colors6", "") + theme_wsj(color = "gray")

---

tremmel_shape_pal  Shape palette from Tremmel (1995) (discrete)

Description

Based on experiments Tremmel (1995) suggests the following shape palettes:

Usage

tremmel_shape_pal(overlap = FALSE, n3alt = TRUE)

Arguments

overlap     use an empty circle instead of a solid circle when n == 2.
n3alt       If TRUE then use a solid circle, plus sign and empty triangle, else use a solid circle, empty circle, and empty triangle.
Details

If two symbols, then use a solid circle and plus sign.

If three symbols, then use a solid circle, empty circle, and an empty triangle. However, that set of symbols does not satisfy the requirement that each symbol should differ from the other symbols in the same feature dimension. A set of three symbols that satisfies this is a circle (curvature), plus sign (number of terminators), triangle (line orientation).

This palette supports up to three values. If more than three groups of data, then separate the groups into different plots.

References


See Also

Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_circlefill, scale_shape_cleveland, scale_shape_tremmel

**wsj_pal**

Wall Street Journal color palette (discrete)

Description

The Wall Street Journal uses many different color palettes in its plots. This collects a few of them, but is by no means exhaustive. Collections of these plots can be found on the WSJ Graphics Twitter feed and Pinterest.

Usage

wsj_pal(palette = "colors6")

Arguments

palette character The color palette to use. This must be a name in ggthemes_data$wsj$palettes.

Palettes

The following palettes are defined,

- **rgby** Red/Green/Blue/Yellow theme. Examples: https://twitpic.com/b2e3v2. Up to four values.
- **green_black** Black-green 4-color scale for 'Very negative', 'Somewhat negative', 'somewhat positive', 'very positive'. Examples: https://twitpic.com/awbua0.
**dem_rep** Democrat/Republican/Uncertain blue/red/gray scale. Examples: https://twitpic.com/awbua0.

**colors6** Red, blue, gold, green, orange, and black palette. Examples: https://twitpic.com/9gfg5q.

**See Also**

Other colour wsj: `scale_colour_wsj`
Index

*Topic** datasets
  - canva_palettes, 7
  - geom_rangeframe, 16
  - geom_tufteboxplot, 17
  - ggthemes_data, 19
  - stat_fivenumber, 41
  - aes, 16, 17, 41
  - aes_, 16, 17, 41
  - bank_slopes, 4
  - banking, 5
  - borders, 16, 18, 42
  - calc_pal, 6, 31
  - calc_shape_pal, 6, 33, 34
  - canva_pal, 7
  - canva_palettes, 7, 7, 22
  - circlefill_shape_pal, 8, 10, 34, 35, 37, 62
  - cleveland_shape_pal, 9, 9, 34, 35, 37, 62
  - colorblind_pal, 10
  - dichromat_pal, 11
  - discrete_scale, 10, 22–36
  - economist_pal, 11, 23
  - excel_pal, 12, 31
  - extended_range_breaks
    - (extended_range_breaks_), 12
  - extended_range_breaks_, 12
  - few_pal, 14, 23, 24
  - fivethirtyeight_pal, 15, 24
  - format, 38
  - fortify, 16, 18, 41
  - gdocs_pal, 15, 32
  - geom_boxplot, 19
  - geom_map, 54
  - geom_rangeframe, 16, 19, 59
  - geom_rug, 59
  - geom_tufteboxplot, 17, 17
  -GeomRangeFrame (geom_rangeframe), 16
  -GeomTufteboxplot (geom_tufteboxplot), 17
  -ggplot, 16, 18, 41
  -ggthemes, 19
  -ggthemes-package (ggthemes), 19
  -ggthemes_data, 19
  -ggthemes_data$hc$palettes, 20, 27
  -ggthemes_data$wsj$palettes, 30, 62
  -hc_pal, 20, 27
  -layer, 16, 18, 42
  -palette_pander, 20, 22
  -par, 37, 38, 56
  -ptol_pal, 21, 28
  -scale_color_calc (scale_fill_calc), 30
  -scale_color_canva (scale_colour_canva), 22
  -scale_color_colorblind (colorblind_pal), 10
  -scale_color_continuous_tableau (scale_colour_gradient_tableau), 26
  -scale_color_economist (scale_colour_economist), 23
  -scale_color_excel (scale_fill_excel), 31
  -scale_color_few (scale_colour_few), 23
  -scale_color_fivethirtyeight (scale_colour_fivethirtyeight), 24
  -scale_color_gdocs (scale_fill_gdocs), 31
  -scale_color_gradient2_tableau (scale_colour_gradient2_tableau), 25
  -scale_color_gradient_tableau (scale_colour_gradient_tableau), 26

64
scale_color_hc (scale_colour_hc), 27
scale_color_pander, 20, 22
scale_color_ptol (scale_colour_ptol), 28
scale_color_solarized
  (scale_fill_solarized), 32
scale_color_stata (scale_colour_stata), 28
scale_color_tableau (scale_colour_tableau), 11
scale_color_tableau
  (scale_colour_tableau), 29
scale_color_wsj (scale_colour_wsj), 30
scale_colour_calc (scale_fill_calc), 30
scale_colour_canva, 22
scale_colour_colorblind
  (colorblind_pal), 10
scale_colour_economist, 11, 23
scale_colour_excel (scale_fill_excel), 31
scale_colour_few, 14, 23
scale_colour_fivethirtyeight, 15, 24
scale_colour_gdocs (scale_fill_gdocs), 31
scale_colour_gradient2_tableau, 25, 26, 29, 43, 44
scale_colour_gradient_tableau, 25, 26, 29, 43, 44
scale_colour_hc, 27
scale_colour_pander
  (scale_color_pander), 22
scale_colour_ptol, 21, 28
scale_colour_solarized
  (scale_fill_solarized), 32
scale_colour_stata, 28
scale_colour_tableau, 25, 26, 29, 43, 44
scale_colour_wsj, 30, 63
scale_fill_calc, 6, 30
scale_fill_canva (scale_colour_canva), 22
scale_fill_colorblind (colorblind_pal), 10
scale_fill_continuous_tableau
  (scale_colour_gradient_tableau), 26
scale_fill_economist
  (scale_colour_economist), 23
scale_fill_excel, 12, 31
scale_fill_few (scale_colour_few), 23
scale_fill_fivethirtyeight
  (scale_colour_fivethirtyeight), 24
scale_fill_gdocs, 15, 31
scale_fill_gradient2_tableau
  (scale_colour_gradient2_tableau), 25
scale_fill_gradient_tableau
  (scale_colour_gradient_tableau), 26
scale_fill_hc (scale_colour_hc), 27
scale_fill_pander (scale_color_pander), 22
scale_fill_ptol (scale_colour_ptol), 28
scale_fill_solarized, 32, 39
scale_fill_stata (scale_colour_stata), 28
scale_fill_tableau
  (scale_colour_tableau), 29
scale_fill_wsj (scale_colour_wsj), 30
scale_linetype_stata, 33, 40
scale_shape_calc, 6, 33
scale_shape_circlefill, 9, 10, 34, 35, 37, 62
scale_shape_cleveland, 9, 10, 34, 35, 37, 62
scale_shape_stata, 35, 41
scale_shape_tableau, 36, 45
scale_shape_tremmel, 9, 10, 34, 35, 36, 62
show_col, 37, 38
show_linetypes, 37, 38, 39
show_shapes, 38
smart_digits, 38
smart_digits_format (smart_digits), 38
solarized_pal, 32, 39
stat_boxplot, 42
stat_fivenumber, 41
stata_linetype_pal, 33, 40
stata_pal, 28, 40
stata_shape_pal, 35, 41
StatFivenumber (stat_fivenumber), 41
tableau_color_pal, 25, 26, 29, 42, 44
tableau_div_gradient_pal, 25, 26, 29, 43, 44
   tableau_seq_gradient_pal, 25, 26, 29, 43, 44
   tableau_shape_pal, 36, 45
theEconomist.theme, 47
theme, 47, 49
theme_base, 45, 51, 53, 56, 58
theme_bw, 53, 57
theme_calc, 31, 34, 46
theme_economist, 23, 47
theme_economist_white
  (theme_economist), 47
theme_excel, 31, 48
theme_few, 49
theme_fivethirtyeight, 24, 50
theme_foundation, 46, 51, 53, 56, 58
theme_gdocs, 32, 51
theme_gray, 53, 57
theme_hc, 27, 52
theme_igray, 46, 51, 53, 56, 58
theme_map, 54
theme_pander, 22, 54
theme_par, 46, 51, 53, 56, 58
theme_solarized, 57
theme_solarized_2 (theme_solarized), 57
theme_solid, 46, 51, 53, 56, 58
theme_stata, 58
theme_tufte, 59
theme_wsj, 30, 60
tremmel_shape_pal, 9, 10, 34, 35, 37, 61
wsj_pal, 30, 62