Package ‘glasso’

February 19, 2015

Title Graphical lasso- estimation of Gaussian graphical models
Version 1.8
Author Jerome Friedman, Trevor Hastie and Rob Tibshirani
Description Graphical lasso
Maintainer Rob Tibshirani <tibs@stat.stanford.edu>
License GPL-2
URL http://www.stat.stanford.edu/~tibs/glasso
Repository CRAN
Date/Publication 2014-07-22 10:29:36
NeedsCompilation yes

R topics documented:

<table>
<thead>
<tr>
<th>glasso</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>glassopath</td>
<td>3</td>
</tr>
</tbody>
</table>

Index

| glasso | Graphical lasso | 6 |

Description

Estimates a sparse inverse covariance matrix using a lasso (L1) penalty

Usage

glasso(s, rho, zero=NULL, thr=1.0e-4, maxit=1e4, approx=FALSE, penalize.diagonal=TRUE, start=c("cold","warm"), w.init=NULL, wi.init=NULL, trace=FALSE)
Arguments

s Covariance matrix. A p by p matrix (symmetric)

rho (Non-negative) regularization parameter for lasso. rho=0 means no regularization. Can be a scalar (usual) or a symmetric p by p matrix, or a vector of length p. In the latter case, the penalty matrix has jkth element sqrt(rho[j]*rho[k]).

zero (Optional) indices of entries of inverse covariance to be constrained to be zero. The input should be a matrix with two columns, each row indicating the indices of elements to be constrained to be zero. The solution must be symmetric, so you need only specify one of (j,k) and (k,j). An entry in the zero matrix overrides any entry in the rho matrix for a given element.

thr Threshold for convergence. Default value is 1e-4. Iterations stop when average absolute parameter change is less than thr * ave(abs(offdiag(s)))

maxit Maximum number of iterations of outer loop. Default 10,000

approx Approximation flag: if true, computes Meinhausen-Buhlmann(2006) approximation

penalize.diagonal Should diagonal of inverse covariance be penalized? Default TRUE.

start Type of start. Cold start is default. Using Warm start, can provide starting values for w and wi

w.init Optional starting values for estimated covariance matrix (p by p). Only needed when start="warm" is specified

wi.init Optional starting values for estimated inverse covariance matrix (p by p) Only needed when start="warm" is specified

trace Flag for printing out information as iterations proceed. Default FALSE

Details

Estimates a sparse inverse covariance matrix using a lasso (L1) penalty, using the approach of Friedman, Hastie and Tibshirani (2007). The Meinhausen-Buhlmann (2006) approximation is also implemented. The algorithm can also be used to estimate a graph with missing edges, by specifying which edges to omit in the zero argument, and setting rho=0. Or both fixed zeroes for some elements and regularization on the other elements can be specified.

This version 1.7 uses a block diagonal screening rule to speed up computations considerably. Details are given in the paper "New insights and fast computations for the graphical lasso" by Daniela Witten, Jerry Friedman, and Noah Simon, to appear in "Journal of Computational and Graphical Statistics". The idea is as follows: it is possible to quickly check whether the solution to the graphical lasso problem will be block diagonal, for a given value of the tuning parameter. If so, then one can simply apply the graphical lasso algorithm to each block separately, leading to massive speed improvements.

Value

A list with components

w Estimated covariance matrix
glassopath

wi Estimated inverse covariance matrix
loglik Value of maximized log-likelihood + penalty
errflag Memory allocation error flag: 0 means no error; !=0 means memory allocation error - no output returned
approx Value of input argument approx
del Change in parameter value at convergence
niter Number of iterations of outer loop used by algorithm

References

Examples

```r
set.seed(100)
x<-matrix(rnorm(50*20),nrow=20)
s<- var(x)
a<-glasso(s, rho=.01)
aa<-glasso(s,rho=.02, w.init=a$w, wi.init=a$wi)

# example with structural zeros and no regularization,
# from Whittaker's Graphical models book page xxx.

s=c(10,1,5,4,10,2,6,10,3,10)
S=matrix(0,nrow=4,ncol=4)
S[rown(S)]<=col(S]=s
S=(S+t(S))
diag(S)<-10
zero<-matrix(c(1,3,2,4),ncol=2,byrow=TRUE)
a<-glasso(S,0,zero=zero)
```

glassopath
Compute the Graphical lasso along a path

Description

Estimates a sparse inverse covariance matrix using a lasso (L1) penalty, along a path of values for the regularization parameter
Usage

glassopath(s, rholist=NULL, thr=1.0e-4, maxit=1e4, approx=FALSE, penalize.diagonal=TRUE, w.init=NULL, wi.init=NULL, trace=1)

Arguments

s Covariance matrix: p by p matrix (symmetric)
rholist Vector of non-negative regularization parameters for the lasso. Should be increasing from smallest to largest; actual path is computed from largest to smallest value of rho). If NULL, 10 values in a (hopefully reasonable) range are used. Note that the same parameter rholist[j] is used for all entries of the inverse covariance matrix; different penalties for different entries are not allowed.
thr Threshold for convergence. Default value is 1e-4. Iterations stop when average absolute parameter change is less than thr * ave(abs(offdiag(s)))
maxit Maximum number of iterations of outer loop. Default 10,000
approx Approximation flag: if true, computes Meinhausen-Buhlmann(2006) approximation
penalize.diagonal Should diagonal of inverse covariance be penalized? Default TRUE.
w.init Optional starting values for estimated covariance matrix (p by p). Only needed when start="warm" is specified
wi.init Optional starting values for estimated inverse covariance matrix (p by p) Only needed when start="warm" is specified
trace Flag for printing out information as iterations proceed. trace=0 means no printing; trace=1 means outer level printing; trace=2 means full printing Default FALSE

Details

Estimates a sparse inverse covariance matrix using a lasso (L1) penalty, along a path of regularization parameters, using the approach of Friedman, Hastie and Tibshirani (2007). The Meinhausen-Buhlmann (2006) approximation is also implemented. The algorithm can also be used to estimate a graph with missing edges, by specifying which edges to omit in the zero argument, and setting rho=0. Or both fixed zeroes for some elements and regularization on the other elements can be specified.

This version 1.7 uses a block diagonal screening rule to speed up computations considerably. Details are given in the paper "New insights and fast computations for the graphical lasso" by Daniela Witten, Jerry Friedman, and Noah Simon, to appear in "Journal of Computational and Graphical Statistics". The idea is as follows: it is possible to quickly check whether the solution to the graphical lasso problem will be block diagonal, for a given value of the tuning parameter. If so, then one can simply apply the graphical lasso algorithm to each block separately, leading to massive speed improvements.
Value

A list with components

- **w**: Estimated covariance matrices, an array of dimension \((\text{nrow}(s), \text{ncol}(n), \text{length}(\text{rholist}))\)
- **wi**: Estimated inverse covariance matrix, an array of dimension \((\text{nrow}(s), \text{ncol}(n), \text{length}(\text{rholist}))\)
- **approx**: Value of input argument approx
- **rholist**: Values of regularization parameter used
- **errflag**: Values of error flag (0 means no memory allocation error)

References

Examples

```r
set.seed(100)

x<-matrix(rnorm(50*20),ncol=20)
s<- var(x)
a<-glassopath(s)
```
Index

*Topic graphs
 glasso, 1
 glassopath, 3

*Topic models
 glasso, 1
 glassopath, 3

*Topic multivariate
 glasso, 1
 glassopath, 3

glasso, 1
glassopath, 3