Package ‘gld’

December 5, 2016

Version 2.4.1
Date 2016-11-30
Title Estimation and Use of the Generalised (Tukey) Lambda Distribution

Suggests
Imports stats, graphics, e1071, lmom
Author Robert King <Robert.King@newcastle.edu.au>,
 Benjamin Dean <Benjamin.Dean@uon.edu.au>, Sigbert Klinke
Maintainer Robert King <Robert.King@newcastle.edu.au>
Description The generalised lambda distribution, or Tukey lambda distribution, provides a wide variety of shapes with one functional form.
This package provides random numbers, quantiles, probabilities, densities and density quantiles for four different parameterisations of the distribution.
It provides the density function, distribution function, and Quantile-Quantile plots.
It implements a variety of estimation methods for the distribution, including diagnostic plots.
Estimation methods include the starship (all 4 parameterisations) and a number of methods for only the FKML parameterisation.
These include maximum likelihood, maximum product of spacings, Titterington's method, Moments, L-Moments, Trimmed L-Moments and Distributional Least Absolutes.

License GPL (>= 2)

R topics documented:

 fit.fkml .. 2
 fit.fkml.moments.val 5
 fit.gpd .. 7
 GeneralisedLambdaDistribution 9
fit.fkml

Estimate parameters of the FKML parameterisation of the generalised lambda distribution

Description

Estimates parameters of the FKML parameterisation of the Generalised λ Distribution. Five estimation methods are available; Numerical Maximum Likelihood, Maximum Product of Spacings, Titterington’s Method, the Starship (also available in the starship function, which uses the same underlying code as this for the fkml parameterisation), and Trimmed L-Moments.

Usage

```r
fit.fkml(x, method = "ML", t1 = 0, t2 = 0,
    l3.grid = c(-0.9, -0.5, -0.1, 0, 0.1, 0.2, 0.4, 0.8, 1, 1.5),
    l4.grid = l3.grid, record.cpu.time = TRUE, optim.method = "Nelder-Mead",
    inverse.eps = .Machine$double.eps, optim.control=list(maxit=10000),
    optim.penalty=1e20, return.data=FALSE)
```

Arguments

- **x**: Data to be fitted, as a vector
- **t1**: Number of observations to be trimmed from the left in the conceptual sample, \(t_1 \) (A non-negative integer, only used by TL-moment estimation, see details section)
- **t2**: Number of observations to be trimmed from the right in the conceptual sample, \(t_2 \) (A non-negative integer, only used by TL-moment estimation, see details section). These two arguments are restricted by \(t_1 + t_2 < n \), where \(n \) is the sample size
13.grid A vector of values to form the grid of values of λ_3 used to find a starting point for the optimisation.

14.grid A vector of values to form the grid of values of λ_4 used to find a starting point for the optimisation.

record.cpu.time Boolean — should the CPU time used in fitting be recorded in the fitted model object?

optim.method Optimisation method, use any of the options available under method of optim.

inverse.eps Accuracy of calculation for the numerical determination of $F(x)$, defaults to Machine\cdotdouble\cdoteps.

optim.control List of options for the optimisation step. See optim for details.

optim.penalty The penalty to be added to the objective function if parameter values are proposed outside the allowed region

return.data Logical: Should the function return the data (from the argument data)?

Details

Maximum Likelihood Estimation of the generalised lambda distribution (gld) proceeds by calculating the density of the data for candidate values of the parameters. Because the gld is defined by its quantile function, the method first numerically obtains $F(x)$ by inverting $Q(u)$, then obtains the density for that observation.

Maximum Product of Spacings estimation (sometimes referred to as Maximum Spacing Estimation, or Maximum Spacings Product) finds the parameter values that maximise the product of the spacings (the difference between successive depths, $F_\theta(x_\text{(i+1)}) - F_\theta(x_\text{(i)})$, where $F_\theta(x)$ is the distribution function for the candidate values of the parameters). See Dean (2013) and Cheng & Amin (1981) for details.

Titterington (1985) remarked that MPS effectively added an “extra observation”; there are N data points in the original sample, but N + 1 spacings in the expression maximised in MPS. Instead of using spacings between transformed data points, so method Tm uses spacings between transformed, adjacently-averaged, data points. The spacings are given by $D_i = F_\theta(z_\text{(i)}) - F_\theta(z_\text{(i-1)})$, where $\alpha_1 = z_0 < z_1 < \ldots < z_n = \alpha_2$ and $z_i = (x_\text{(i)} + x_\text{(i+1)})/2$ for $i = 1, 2, \ldots n-1$ (where α_1 and α_2 are the lower and upper bounds on the support of the distribution). This reduces the number of spacings to n and achieves concordance with the original sample size. See Titterington (1985) and Dean (2013) for details.

The starship is built on the fact that the $g\lambda d$ is a transformation of the uniform distribution. Thus the inverse of this transformation is the distribution function for the gld. The starship method applies different values of the parameters of the distribution to the distribution function, calculates the depths q corresponding to the data and chooses the parameters that make these calculated depths closest (as measured by the Anderson-Darling statistic) to a uniform distribution. See King & MacGillivray (1999) for details.

TL-Moment estimation chooses the values of the parameters that minimise the difference between the sample Trimmed L-Moments of the data and the Trimmed L-Moments of the fitted distribution. TL-Moments are based on inflating the conceptual sample size used in the definition of L-Moments. The t_1 and t_2 arguments to the function define the extent of trimming of the conceptual sample. Thus, the default values of $t_1=0$ and $t_2=0$ reduce the TL-Moment method to L-Moment estimation.
fit.fkml

t1 and t2 give the number of observations to be trimmed (from the left and right respectively) from the conceptual sample of size \(n + t_1 + t_2 \). These two arguments should be non-negative integers, and \(t_1 + t_2 < n \), where \(n \) is the sample size. See Elamir and Seheult (2003) for more on TL-Moments in general, Asquith, (2007) for TL-Moments of the RS parameterisation of the gld and Dean (2013) for more details on TL-Moment estimation of the gld.

The method of distributional least absolutes (DLA) minimises the sum of absolute deviations between the order statistics and their medians (based on the candidate parameters). See Dean (2013) for more information.

Value

fit.fkml returns an object of class "starship" (regardless of the estimation method used).
print prints the estimated values of the parameters, while summary.starship prints these by default, but can also provide details of the estimation process (from the components grid.results, data and optim detailed below).

The value of fit.fkml is a list containing the following components:

- lambda: A vector of length 4, giving the estimated parameters, in order, \(\lambda_1 \) - location parameter \(\lambda_2 \) - scale parameter \(\lambda_3 \) - first shape parameter \(\lambda_4 \) - second shape parameter
- grid.results: output from the grid search
- optim: output from the optim search, optim for details
- cpu: A vector showing the computing time used, returned if record.cpu.time is TRUE
- data: The data, if return.data is TRUE

Author(s)

Robert King, <robert.king@newcastle.edu.au>, http://tolstoy.newcastle.edu.au/~rking/
Ben Dean, University of Newcastle <benjamin.dean@uon.edu.au>

References

See Also

starship GeneralisedLambdaDistribution

Examples

eample.data <- rgl(200,c(3,1,.4,-0.1),param="fkml")
eample.fit <- fit.fkml(eample.data,"MSP",return.data=TRUE)
print(eample.fit)
summary(eample.fit)
plot(eample.fit,one.page=FALSE)

fit.fkml.moments.val
Method of moments estimation for the FKML type of the generalised lambda distribution using given moment values

Description

Estimates parameters of the generalised lambda distribution (FKML type) using the Method of Moments on the basis of moment values (mean, variance, skewness ratio and kurtosis ratio (note, not the excess kurtosis)).

Usage

```r
fit.fkml.moments.val(moments=c(mean=0, variance=1, skewness=0, kurtosis=3), optim.method="Nelder-Mead", optim.control= list(), starting.point = c(0,0))
```

Arguments

- **moments**: A vector of length 4, consisting of the mean, variance and moment ratios for skewness and kurtosis
- **optim.method**: Optimisation method for `optim` to use, defaults to Nelder-Mead
- **optim.control**: argument control, passed to `optim`.
- **starting.point**: a vector of length 2, giving the starting value for \(\lambda_3 \) and \(\lambda_4 \).

Details

Estimates parameters of the generalised lambda distribution (FKML type) using Method of Moments on the basis of moment values (mean, variance, skewness ratio and kurtosis ratio). Note this is the fourth central moment divided by the second central moment, without subtracting 3. `fit.fkml.moments` (to come in version 2.4 of the gld package) will estimate using the method of moments for a dataset, including calculating the sample moments. This function uses `optim` to find the parameters that minimise the sum of squared differences between the skewness and kurtosis sample ratios and their counterpart expressions for those ratios on the basis of the parameters \(\lambda_3 \) and \(\lambda_4 \). On the basis of these estimates (and the mean and variance), this function then estimates \(\lambda_2 \) and then \(\lambda_1 \).
Note that the first 4 moments don’t uniquely identify members of the generalised \(\lambda \) distribution. Typically, for a set of moments that correspond to a unimodal gld, there is another set of parameters that give a distribution with the same first 4 moments. This other distribution has a truncated appearance (that is it is on finite support and the density is non-zero at the end points). See the examples below.

Value

A vector containing the parameters of the FKML type generalised lambda; \(\lambda_1 \) - location parameter \(\lambda_2 \) - scale parameter \(\lambda_3 \) - first shape parameter \(\lambda_4 \) - second shape parameter (See \texttt{gld} for more details)

Author(s)

Robert King, <robert.king@newcastle.edu.au>, \texttt{http://tolstoy.newcastle.edu.au/~rking/}

Sigbert Klinke

Paul van Staden

References

http://tolstoy.newcastle.edu.au/~rking/gld/

See Also

\texttt{gld.moments}

Examples

```r
# Approximation to the standard normal distribution
norm.approx <- fit.fkml.moments.val(c(0,1,0,3))
norm.approx

# Another distribution with the same moments
another <- fit.fkml.moments.val(c(0,1,0,3),start=c(2,2))

# Compared
plotgld(norm.approx,ylim=c(0,0.75),main="Approximation of the standard normal")
plotgld(another,add=TRUE,col=2)
```
fit.gpd

Estimate parameters of the GPD type generalised lambda distribution

Description

Estimates parameters of the GPD type generalised \(\lambda \) Distribution. Currently, only estimation via method of L moments is implemented.

The Method of L-Moments estimates for the GPD type are the only estimates for any generalised lambda distribution type with closed form expressions.

Usage

fit.gpd(x, method = "LM", na.rm = TRUE, record.cpu.time = FALSE, return.data = FALSE)
fit.gpd.lmom(data, na.rm = TRUE)
fit.gpd.lmom.given(lmoms, n = NULL)

Arguments

- \(x \) Data to be fitted, as a vector
- \(\text{method} \) A character string, to select the estimation method. Only Method of L-Moments "LM" is implemented.
- \(\text{na.rm} \) Logical: Should missing values be removed?
- \(\text{record.cpu.time} \) Logical: should the CPU time used in fitting be recorded in the fitted model object?
- \(\text{return.data} \) Logical: Should the function return the data (from the argument \(x \))?
- \(\text{data} \) Data to be fitted, as a vector
- \(\text{lmoms} \) A numeric vector containing two L-moments and two L-moment ratios, in the order \(l_1, l_2, t_3, t_4 \).
- \(n \) the sample size, defaults to NULL

Details

The method of L-Moments equates sample L-Moments with expressions for the L-Moments of the GPD type GLD. Closed form expressions exist to give these estimates.

For many values there are two possible estimates for the same L Moment values, one in each of two regions of the GPD GLD parameter space, denoted region A and region B in van Staden (2013). More details on these regions can be found on page 154 of van Staden (2013).

If the 4th L-Moment ratio, \(t_4 \) is less than the minimum value that \(t_4 \) can obtain for the GPD generalised lambda distribution:

\[
 t_4^{(\min)} = \frac{12 - 5\sqrt{6}}{12 + 5\sqrt{6}} \approx -0.0102051
\]

there is no possible estimate (from either region A or B), and this function returns NA for the estimates.
Value

These function return an object of class "GldFitMultiple". It is a list, containing these components (optional components noted here);

- `estA` The estimate in region A. This will be NA if there is no estimate in region A
- `estB` The estimate in region B. This will be NA if there is no estimate in region B
- `warn` (only if `estA` and `estB` are both NA), the reason there are no estimates. If this is the case, the function also issues a warning.
- `cpu` A vector showing the computing time used, returned if `record.cpu.time` is TRUE (only for `fit.gpd`).
- `data` The data, if `return.data` is TRUE (only for `fit.gpd`).
- `param` The character "gpd", indicating the GPD type of the generalised lambda distribution.

Each of the estimate elements (if they are not NA) are a vector of length 4, giving the estimated parameters, in order;

- α - location parameter
- β - scale parameter
- δ - skewness parameter
- λ - kurtosis parameter

Author(s)

Robert King, <robert.king@newcastle.edu.au>, http://tolstoy.newcastle.edu.au/~rking/

Paul van Staden

References

See Also

`GeneralisedLambdaDistribution`

Examples

`fit.gpd.lmom.given(c(1,3,.6,.8))`
Description

Density, density quantile, distribution function, quantile function and random generation for the generalised lambda distribution (also known as the asymmetric lambda, or Tukey lambda). Provides for four different parameterisations, the \texttt{fmkl} (recommended), the \texttt{rs}, the \texttt{gpd} and a five parameter version of the FMKL, the \texttt{fm5}.

Usage

\begin{verbatim}
dgl(x, lambda1 = 0, lambda2 = NULL, lambda3 = NULL, lambda4 = NULL, param = "fmkl", lambda5 = NULL, inverse.eps = .Machine$double.eps, max.iterations = 500)
dqgl(p, lambda1, lambda2 = NULL, lambda3 = NULL, lambda4 = NULL, param = "fmkl", lambda5 = NULL)
pgl(q, lambda1 = 0, lambda2 = NULL, lambda3 = NULL, lambda4 = NULL, param = "fmkl", lambda5 = NULL, inverse.eps = .Machine$double.eps, max.iterations = 500)
qgl(p, lambda1, lambda2 = NULL, lambda3 = NULL, lambda4 = NULL, param = "fmkl", lambda5 = NULL)
rgl(n, lambda1=0, lambda2 = NULL, lambda3 = NULL, lambda4 = NULL, param = "fmkl", lambda5 = NULL)
\end{verbatim}

Arguments

- \texttt{x}, \texttt{q} vector of quantiles.
- \texttt{p} vector of probabilities.
- \texttt{n} number of observations.
- \texttt{lambda1} This can be either a single numeric value or a vector. If it is a vector, it must be of length 4 for parameterisations \texttt{fmkl}, \texttt{rs} and \texttt{gpd} and of length 5 for parameterisation \texttt{fm5}. If it is a vector, it gives all the parameters of the generalised lambda distribution (see below for details) and the other \texttt{lambda} arguments must be left as NULL.
 - If it is a a single value, it is λ_1, the location parameter of the distribution (α for the gpd parameterisation). The other parameters are given by the following arguments
 - \texttt{lambda2} λ_2 - scale parameter (β for gpd)
 - \texttt{lambda3} λ_3 - first shape parameter (δ, a skewness parameter for gpd)
 - \texttt{lambda4} λ_4 - second shape parameter (λ, a tail-shape parameter for gpd)

Note that the numbering of the λ parameters for the \texttt{fmkl} parameterisation is different to that used by Freimer, Mudholkar, Kollia and Lin. Note also that in the gpd parameterisation, the four parameters are labelled $\alpha, \beta, \delta, \lambda$.

Generalised Lambda Distribution

lambda5 \(\lambda_5 \) - a skewing parameter, in the fm5 parameterisation

param choose parameterisation (see below for details) fmkl uses Freimer, Mudholkar, Kollia and Lin (1988) (default). rs uses Ramberg and Schmeiser (1974) gpd uses GPD parameterisation, see van Staden and Loots (2009) fm5 uses the 5 parameter version of the FMKL parameterisation (paper to appear)

inverse.eps Accuracy of calculation for the numerical determination of \(F(x) \), defaults to \(\text{Machine}$\text{double.eps} \). You may wish to make this a larger number to speed things up for large samples.

max.iterations Maximum number of iterations in the numerical determination of \(F(x) \), defaults to 500

Details

The generalised lambda distribution, also known as the asymmetric lambda, or Tukey lambda distribution, is a distribution with a wide range of shapes. The distribution is defined by its quantile function \(Q(u) \), the inverse of the distribution function. The gld package implements three parameterisations of the distribution. The default parameterisation (the FMKL) is that due to Freimer Mudholkar, Kollia and Lin (1988) (see references below), with a quantile function:

\[
Q(u) = \lambda_1 + \frac{u^{\lambda_3} - 1}{\lambda_3} - \frac{(1-u)^{\lambda_4} - 1}{\lambda_4} \lambda_2
\]

for \(\lambda_2 > 0 \).

A second parameterisation, the RS, chosen by setting \text{param}="rs" is that due to Ramberg and Schmeiser (1974), with the quantile function:

\[
Q(u) = \lambda_1 + \frac{u^{\lambda_3} - (1-u)^{\lambda_4}}{\lambda_2}
\]

This parameterisation has a complex series of rules determining which values of the parameters produce valid statistical distributions. See \text{gl.check.lambda} for details.

Another parameterisation, the GPD, chosen by setting \text{param}="gpd" is due to van Staden and Loots (2009), with a quantile function:

\[
Q(u) = \alpha + \beta((1-\delta) \frac{(u^{\lambda_3} - 1)}{\lambda} - \delta \frac{(1-u)^{\lambda_4} - 1}{\lambda})
\]

for \(\beta > 0 \) and \(-1 \leq \delta \leq 1\). (where the parameters appear in the \text{par} argument to the function in the order \(\alpha, \beta, \delta, \lambda \)). This parameterisation has simpler L-moments than other parameterisations and \(\delta \) is a skewness parameter and \(\lambda \) is a tailweight parameter.

Another parameterisation, the FM5, chosen by setting \text{param}="fm5" adds an additional skewing parameter to the FMKL parameterisation. This uses the same approach as that used by Gilchrist (2000) for the RS parameterisation. The quantile function is

\[
F^{-1}(u) = \lambda_1 + \frac{(1-\lambda_5)(u^{\lambda_3} - 1)}{\lambda_3} - \frac{(1+\lambda_5)((1-u)^{\lambda_4} - 1)}{\lambda_4} \lambda_2
\]

for \(\lambda_2 > 0 \) and \(-1 \leq \lambda_5 \leq 1\).
The distribution is defined by its quantile function and its distribution and density functions do not exist in closed form. Accordingly, the results from \texttt{pgl} and \texttt{dgl} are the result of numerical solutions to the quantile function, using the Newton-Raphson method. Since the density quantile function, $f(F^{-1}(u))$, does exist, an additional function, \texttt{dgl}, computes this.

The functions \texttt{qdgl.fmkl}, \texttt{qdgl.rs}, \texttt{qdgl.fm5}, \texttt{qgl.fmkl}, \texttt{qgl.rs} and \texttt{qgl.fm5} from versions 1.5 and earlier of the \texttt{gld} package have been renamed (and hidden) to \texttt{qdgl.fmkl}, \texttt{qdgl.rs}, \texttt{..qdgl.fm5}, \texttt{qgl.fmkl}, \texttt{qgl.rs} and \texttt{qgl.fm5} respectively. See the code for more details.

Value

\texttt{dgl} gives the density (based on the quantile density and a numerical solution to $F^{-1}(u) = x$),

\texttt{qdgl} gives the quantile density,

\texttt{pgl} gives the distribution function (based on a numerical solution to $F^{-1}(u) = x$),

\texttt{qgl} gives the quantile function, and

\texttt{rgl} generates random deviates.

Author(s)

Robert King, <robert.king@newcastle.edu.au>, \url{http://tolstoy.newcastle.edu.au/~rking/}

References

Examples

\texttt{qgl(seq(0,1,0.02),0,1,0.123,-4.3)}

\texttt{pgl(seq(-2,2,0.2),0,1,-.1,-.2,param="fmkl")}
gl.check.lambda

Function to check the validity of parameters of the generalized lambda distribution

Description

Checks the validity of parameters of the generalized lambda. The tests are simple for the FMKL and FM5 parameterisations, and much more complex for the RS parameterisation.

Usage

gl.check.lambda(lambdasL lambdaR = NULLL lambdaS = NULLL lambdaT = nullL param = BfkmlBL lambdaU = nullL vect = false)

Arguments

lambdas This can be either a single numeric value or a vector.
If it is a vector, it must be of length 4 for parameterisations fmk1 or rs and of length 5 for parameterisation fm5. If it is a vector, it gives all the parameters of the generalised lambda distribution (see below for details) and the other lambda arguments must be left as NULL.
If it is a a single value, it is λ₁, the location parameter of the distribution and the other parameters are given by the following arguments

Note that the numbering of the λ parameters for the fmk1 parameterisation is different to that used by Freimer, Mudholkar, Kollia and Lin.

lambda2 λ₂ - scale parameter
lambda3 λ₃ - first shape parameter
lambda4 λ₄ - second shape parameter
lambda5 λ₅ - a skewing parameter, in the fm5 parameterisation
vect A logical, set this to TRUE if the parameters are given in the vector form (it turns off checking of the format of lambdas and the other lambda arguments

Details

See GeneralisedLambdaDistribution for details on the generalised lambda distribution. This function determines the validity of parameters of the distribution.

The FMKL parameterisation gives a valid statistical distribution for any real values of λ₁, λ₃,λ₄ and any positive real values of λ₂.

The FM5 parameterisation gives statistical distribution for any real values of λ₁, λ₃, λ₄, any positive real values of λ₂ and values of λ₅ that satisfy −1 ≤ λ₅ ≤ 1.
For the RS parameterisation, the combinations of parameters value that give valid distributions are the following (the region numbers in the table correspond to the labelling of the regions in Ramberg and Schmeiser (1974) and Karian, Dudewicz and McDonald (1996)).
<table>
<thead>
<tr>
<th>region</th>
<th>λ_1</th>
<th>λ_2</th>
<th>λ_3</th>
<th>λ_4</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>all</td>
<td>< 0</td>
<td>< -1</td>
<td>> 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>all</td>
<td>< 0</td>
<td>> 1</td>
<td>< -1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>all</td>
<td>> 0</td>
<td>≥ 0</td>
<td>≥ 0</td>
<td>one of λ_3 and λ_4 must be non-zero</td>
</tr>
<tr>
<td>4</td>
<td>all</td>
<td>< 0</td>
<td>≤ 0</td>
<td>≤ 0</td>
<td>one of λ_3 and λ_4 must be non-zero</td>
</tr>
<tr>
<td>5</td>
<td>all</td>
<td>< 0</td>
<td>> -1 and < 0</td>
<td>> 1</td>
<td>equation 1 below must also be satisfied</td>
</tr>
<tr>
<td>6</td>
<td>all</td>
<td>< 0</td>
<td>> 1</td>
<td>> -1 and < 0</td>
<td>equation 2 below must also be satisfied</td>
</tr>
</tbody>
</table>

Equation 1

$$\frac{(1 - \lambda_3)^{1-\lambda_3} (\lambda_4 - 1)^{\lambda_4-1}}{(\lambda_4 - \lambda_3)^{\lambda_4-\lambda_3}} < -\frac{\lambda_3}{\lambda_4}$$

Equation 2

$$\frac{(1 - \lambda_4)^{1-\lambda_4} (\lambda_3 - 1)^{\lambda_3-1}}{(\lambda_3 - \lambda_4)^{\lambda_3-\lambda_4}} < -\frac{\lambda_4}{\lambda_3}$$

Value

This logical function takes on a value of TRUE if the parameter values given produce a valid statistical distribution and FALSE if they don’t

Note

The complex nature of the rules in this function for the RS parameterisation are the reason for the invention of the FMKL parameterisation and its status as the default parameterisation in the other generalized lambda functions.

Author(s)

Robert King, <robert.king@newcastle.edu.au>, http://tolstoy.newcastle.edu.au/~rking/|

References

http://tolstoy.newcastle.edu.au/~rking/gld/

See Also

The generalized lambda functions GeneralisedLambdaDistribution
Examples

```r
gl.check.lambda(c(0,1,23,4.5), vect=TRUE) ## TRUE
gl.check.lambda(c(0,-1,23,4.5), vect=TRUE) ## FALSE
gl.check.lambda(c(0,1,0.5,-0.5), param="rs", vect=TRUE) ## FALSE
gl.check.lambda(c(0,2,1,3.4,1.2), param="fm5", vect=TRUE) ## FALSE
```

Description

qdgl: This calculates the density quantile function of the GLD, so it has been renamed dqgl.

Cld.lmoments

Calculate L-Moments of the GPD type generalised lambda distribution for given parameter values

Usage

```r
gld.lmoments(pars, order=1:4, ratios=TRUE, type="GPD")
```

Arguments

pars
A vector of length 4, giving the parameters of the GPD type generalised lambda distribution, consisting of:

- \(\alpha \) location parameter
- \(\beta > 0 \) scale parameter
- \(0 \leq \delta \leq 1 \) skewness parameter
- \(\lambda \) kurtosis parameter

order
Integers to select the orders of L-moments to calculate. Currently this function only calculates for orders 1 to 4.

type
choose the type of generalised lambda distribution. Currently gld.lmoments only supports GPD which uses *van Staden and Loots* (2009) (default).

ratios
Logical. TRUE gives L-moment ratios for skewness and kurtosis (\(\tau_3 \) and \(\tau_4 \)) (and all higher orders), FALSE gives the requested L-moments instead.
Details

The GPD type generalised λ distribution was introduced by van Staden and Loots (2009). It has explicit parameters for skewness and kurtosis, and closed form estimates for L-moment estimates of the parameters.

In the limit, as the kurtosis parameter, λ, goes to zero, the distribution approaches the skew logistic distribution of van Staden and King (2013). See the sld package for this distribution.

Value

A vector containing the selected L-moments of the GPD type generalised lambda. If ratio is true, the vector contains L-Moment ratios for orders 3 and over, otherwise all values are L-Moments.

Author(s)

Robert King, <robert.king@newcastle.edu.au>, http://tolstoy.newcastle.edu.au/~rking/
Paul van Staden

References

Quantile based Skew logistic distribution
Generalised Lambda Distribution
http://tolstoy.newcastle.edu.au/~rking/gld/

See Also

sld package

Examples

gld.lmoments(c(0,1,0.5,0.23))
gld.lmoments(c(0,1,0,0.23))
gld.lmoments(c(0,1,0.5,0.7))
Calculate moments of the FKML type of the generalised lambda distribution for given parameter values

Description

Calculates the mean, variance, skewness ratio and kurtosis ratio of the generalised lambda distribution for given parameter values.

Usage

```r
gld.moments(par,type="fkml",ratios=TRUE)
```

Arguments

- **par**: A vector of length 4, giving the parameters of the generalised lambda distribution, consisting of: \(\lambda_1 \) location parameter, \(\lambda_2 \) - scale parameter, \(\lambda_3 \) - first shape parameter, \(\lambda_4 \) - second shape parameter.
- **type**: choose the type of generalised lambda distribution. Currently `gld.moments` only supports `fkml` which uses Freimer, Kollia, Mudholkar, and Lin (1988) (default).
- **ratios**: Logical. TRUE to give moment ratios for skewness and kurtosis, FALSE to give the third and fourth central moments instead.

Details

The FKML type of the generalised lambda distribution was introduced by Freimer et al (1988) who gave expressions for the moments. In the limit, as the shape parameters \(\lambda_3 \) and \(\lambda_4 \) go to zero, the distribution is defined using limit results. The moments in these limiting cases were given by van Staden (2013). This function calculates the first 4 moments.

See pages 96–97 of van Staden (2013) for the full expressions for these moments.

Value

A vector containing the first four moments of the FKML type generalized lambda. If `ratios` is true, the vector contains the mean, variance, skewness ratio and kurtosis ratio. If `ratios` is false, the vector contains the mean, variance, third central moment and fourth central moment.

Author(s)

Robert King, <robert.king@newcastle.edu.au>, `http://tolstoy.newcastle.edu.au/~rking/`
Sigbert Klinke
Paul van Staden
References

http://tolstoy.newcastle.edu.au/~rking/gld/

See Also

fit.fkml.moments.val

Examples

```r
  gld.moments(c(0,1/4.63551,0.1349124,0.1349124))
  gld.moments(c(0,1/8.13799,0,0))
  gld.moments(c(0,1,0,3))
```

plot.starship

Plots to compare a fitted generalised lambda distribution to data

Description

Plots to compare a Generalised Lambda Distribution fitted via the starship to data

Usage

```r
## S3 method for class 'starship'
plot(x, data = NULL, ask = FALSE, one.page = TRUE,
     breaks = "Sturges", plot.title = "default",...)
```

Arguments

- **x**

 An object of class starship.

- **data**

 Data to which the gls was fitted. Leave this as NULL if the return.data argument was TRUE in the starship call that created x.

- **ask**

 Ask for user input before next plot — passed to par(ask). Does not permanently change this setting. Ignored if one.page is TRUE
Put the two plots on one page using `par(mfrow=c(2,1))`. Does not permanently change this setting.

Control the number of histogram bins — passed to `hist`.

Main title for histogram and QQ — passed to `hist(main=)` and `qggl(main=)`. If you set this to "default", it will include the fitting method and gld type, for example “Starship fit of FMKL type GLD”.

... arguments passed to `plot` AND `hist`.

Details

`summary` Gives the details of the `starship.adaptivegrid` and optim steps.

Author(s)

References

See Also

`starship`.

Examples

```r
data <- rgl(100,0,1,2,2)
starship.result <- starship(data, optim.method="Nelder-Mead", initgrid=list(lcvect=(0:4)/10, ldvect=(0:4)/10), return.data=TRUE)
plot(starship.result)
```

Description

Produces plots of density and distribution function for the generalised lambda distribution. Although you could use `plot(function(x)dgl(x))` to do this, the fact that the density and quantiles of the generalised lambda are defined in terms of the depth, u, means that a separate function that uses the depths to produce the values to plot is more efficient.
Usage

```
plotgld(lambda1 = 0, lambda2 = NULL, lambda3 = NULL, lambda4 = NULL,
        param = "fmkl", lambda5 = NULL, add = NULL, truncate = 0,
        bnw = FALSE, col.or.type = 1, granularity = 10000, xlab = "x",
        ylab = NULL, quant.probs = seq(0,1,.25), new.plot = NULL, ...)
plotglc(lambda1 = 0, lambda2 = NULL, lambda3 = NULL, lambda4 = NULL,
        param = "fmkl", lambda5 = NULL, granularity = 10000, xlab = "x",
        ylab = "cumulative probability", add = FALSE, ...)
```

Arguments

- **lambda1**
 - This can be either a single numeric value or a vector.
 - If it is a vector, it must be of length 4 for parameterisations `fmkl` or `rs` and of length 5 for parameterisation `fmU`. If it is a vector, it gives all the parameters of the generalised lambda distribution (see below for details) and the other lambda arguments must be left as NULL.
 - If it is a single value, it is λ_1, the location parameter of the distribution and the other parameters are given by the following arguments.
 - *Note that the numbering of the λ parameters for the fmkl parameterisation is different to that used by Freimer, Mudholkar, Kollia and Lin.*

- **lambda2**
 - λ_2 - scale parameter

- **lambda3**
 - λ_3 - first shape parameter

- **lambda4**
 - λ_4 - second shape parameter

- **lambda5**
 - λ_5 - a skewing parameter, in the fm5 parameterisation

- **param**

- **add**
 - a logical value describing whether this should add to an existing plot (using `lines`) or produce a new plot (using `plot`). Defaults to FALSE (new plot) if both `add` and `new.plot` are NULL.

- **truncate**
 - for `plotgld`, a minimum density value at which the plot should be truncated.

- **bnw**
 - a logical value, true for a black and white plot, with different densities identified using line type (`lty`), false for a colour plot, with different densities identified using line colour (`col`)

- **col.or.type**
 - Colour or type of line to use

- **granularity**
 - Number of points to calculate quantiles and density at — see *details*

- **xlab**
 - X axis label

- **ylab**
 - Y axis label

- **quant.probs**
 - Quantiles of distribution to return (see *value* below). Set to NULL to suppress this return entirely.

- **new.plot**
 - a logical value describing whether this should produce a new plot (using `plot`), or add to an existing plot (using `lines`). Ignored if `add` is set.

- **...**
 - arguments that get passed to `plot` if this is a new plot
Details

The generalised lambda distribution is defined in terms of its quantile function. The density of the distribution is available explicitly as a function of depths, \(u \), but not explicitly available as a function of \(x \). This function calculates quantiles and depths as a function of depths to produce a density plot \texttt{plotgld} or cumulative probability plot \texttt{plotglc}.

The plot can be truncated, either by restricting the values using \texttt{xlim} — see \texttt{par} for details, or by the \texttt{truncate} argument, which specifies a minimum density. This is recommended for graphs of densities where the tail is very long.

Value

A number of quantiles from the distribution, the default being the minimum, maximum and quartiles.

Author(s)

Robert King, <robert.king@newcastle.edu.au>, http://tolstoy.newcastle.edu.au/~rking/

References

http://tolstoy.newcastle.edu.au/~rking/gld/

See Also

\texttt{GeneralisedLambdaDistribution}

Examples

\begin{verbatim}
plotgld(0,1.4640474,..1349,..1349,main="Approximation to Standard Normal",
 sub="But you can see this isn't on infinite support")

plotgld(1.42857143,1,7,3,main="The whale")
plotglc(1.42857143,1,7,3)
plotgld(0,-1.5,-0.3,param="rs")
plotgld(0,-1.5,-0.3,param="rs",xlim=c(1,2))
A bizarre shape from the RS parameterisation
plotgld(0,1,5,-0.3,param="fmkl")
plotgld(10/3,1,3,-1,truncate=1e-3)

plotgld(0,1,.0742,.0742,col.or.type=2,param="rs",
 main="All distributions have the same moments",
 sub="The full range of all distributions is shown")
plotgld(0,1,.026,6.026,col.or.type=3,new.plot=FALSE,param="rs")
\end{verbatim}
print.starship

 Print (or summarise) the results of a starship estimation

Description

Print (or summarise) the results of a starship estimation of the parameters of the Generalised Lambda Distribution

Usage

 ## S3 method for class 'starship'
 summary(object, ...)

 ## S3 method for class 'starship'
 print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x An object of class starship.
object An object of class starship.
digits minimal number of significant digits, see print.default.
... arguments passed to print

Details

summary Gives the details of the starship.adaptivegrid and optim steps.

Author(s)

References

plotgld(0.1, 3.5, 0.297, col.or.type=4, new.plot=FALSE, param="rs")
legend(0.25, 3.5, lty=1, col=c(2, 3, 4), legend=c("(0, 1, 0.0742, 0.0742)",
"(0, 1, 6.026, 6.026)", "(0, 1, 35.498, 2.297)"), cex=0.9)
An illustration of problems with moments as a method of characterising shape

http://tolstoy.newcastle.edu.au/~rking/gld/

See Also

`starship, starship.adaptivegrid, starship.obj`

Examples

```r
data <- rgl(100, 0, 1, 2, 2)
starship.result <- starship(data, optim.method="Nelder-Mead", initgrid=list(lcvect=(0:4)/10, ldvect=(0:4)/10))
print(starship.result)
summary(starship.result, estimation.details=TRUE)
```

qdgl-deprecated

Deprecated function for density quantile function of gld. See qdgl instead

Description

See qdgl help instead.

Usage

```r
qdgl(p, lambda1, lambda2 = NULL, lambda3 = NULL, lambda4 = NULL, param = "fkml", lambda5 = NULL)
```

Arguments

- `p` See qdgl help instead.
- `lambda1` See qdgl help instead.
- `lambda2` See qdgl help instead.
- `lambda3` See qdgl help instead.
- `lambda4` See qdgl help instead.
- `param` See qdgl help instead.
- `lambda5` See qdgl help instead.

Value

See qdgl help instead.
Description

`qqgl` produces a Quantile-Quantile plot of data against the generalised lambda distribution, or a Q-Q plot to compare two sets of parameter values for the generalised lambda distribution. It does for the generalised lambda distribution what `qqnorm` does for the normal.

Usage

```r
qqgl(y = NULL, lambda1 = 0, lambda2 = NULL, lambda3 = NULL, lambda4 = NULL,
    lambda5 = NULL, abline = TRUE, lambda.pars1 = NULL, lambda.pars2 = NULL,
    param = "fkml", param2 = "fkml", points.for.2.param.sets = 4000, ...)
```

Arguments

- **y** The data sample
- **lambda1** This can be either a single numeric value or a vector. If it is a vector, it must be of length 4 for parameterisations fmkl or rs and of length 5 for parameterisation fm5. If it is a vector, it gives all the parameters of the generalised lambda distribution (see below for details) and the other `lambda` arguments must be left as NULL.

 Alternatively, leave `lambda1` as the default value of 0 and use the `lambda.pars1` argument instead.

 If it is a a single value, it is \(\lambda_1 \), the location parameter of the distribution and the other parameters are given by the following arguments.

 Note that the numbering of the \(\lambda \) parameters for the fmkl parameterisation is different to that used by Freimer, Mudholkar, Kollia and Lin.

 - **lambda2** \(\lambda_2 \) - scale parameter
 - **lambda3** \(\lambda_3 \) - first shape parameter
 - **lambda4** \(\lambda_4 \) - second shape parameter
 - **lambda5** \(\lambda_5 \) - a skewing parameter, in the fm5 parameterisation
 - **abline** A logical value, TRUE adds a line through the origian with a slope of 1 to the plot
 - **lambda.pars1** Parameters of the generalised lambda distribution (see `lambda1` to `lambda4` for details.
 - **lambda.pars2** Second set of parameters of the generalised lambda distribution (see `lambda1` to `lambda4` for details. Use `lambda.pars1` and `lambda.pars2` to produce a QQ plot comparing two generalised lambda distributions
qqgl

param2 parameterisation to use for the second set of parameter values
points.for.2.param.sets Number of quantiles to use in a Q-Q plot comparing two sets of parameter values
... graphical parameters, passed to qqplot

Details

See gld for more details on the Generalised Lambda Distribution. A Q-Q plot provides a way to visually assess the correspondence between a dataset and a particular distribution, or between two distributions.

Value

A list of the same form as that returned by qqline

x The x coordinates of the points that were/would be plotted, corresponding to a generalised lambda distribution with parameters $\lambda_1, \lambda_2, \lambda_3, \lambda_4$.

y The original y vector, i.e., the corresponding y coordinates, or a corresponding set of quantiles from a generalised lambda distribution with the second set of parameters

Author(s)

Robert King, <robert.king@newcastle.edu.au>, http://tolstoy.newcastle.edu.au/~rking/

References

http://tolstoy.newcastle.edu.au/~rking/gld/

See Also
gld, starship

Examples

qqgl(rgl(100, 0, 1, 0, -1), 0, 1, 0, -1)
qqgl(lambda1=c(0,1,0.01,0.01), lambda.pars2=c(0.01,0.01,0.01), param2="rs", pch=".")
starship

Carry out the “starship” estimation method for the generalised lambda distribution

Description

Estimates parameters of the generalised lambda distribution on the basis of data, using the starship method. The starship method is built on the fact that the generalised lambda distribution (gld) is a transformation of the uniform distribution. This method finds the parameters that transform the data closest to the uniform distribution. This function uses a grid-based search to find a suitable starting point (using starship.adaptivegrid) then uses optim to find the parameters that do this.

Usage

Arguments

data
 Data to be fitted, as a vector

optim.method
 Optimisation method for optim to use, defaults to Nelder-Mead

initgrid
 Grid of values of λ_3 and λ_4 to try, in starship.adaptivegrid. This should be a list with elements, lcvect, a vector of values for λ_3, ldvect, a vector of values for λ_4 and levect, a vector of values for λ_5 (levect is only required if param is fm5).
 If it is left as NULL, the default grid depends on the parameterisation. For fmkl, both lcvect and ldvect default to:

 -1.5 -1 -0.5 -0.1 0 0.1 0.2 0.4 0.8 1 1.5

(levect is NULL).
 For rs, both lcvect and ldvect default to:

 0.1 0.2 0.4 0.8 1 1.5

(levect is NULL). Note that this restricts the estimates to only part of the region of the λ_3, λ_4 plane.
 For gpd, the defaults are: δ:

 0.3 0.5 0.7

and λ:

 -1.5 -0.5 0 0.2 0.4 0.8 1.5 5
For fm5, both lcvect and ldvect default to:

\[-1.5 -1 -0.5 -0.1 0 0.1 0.2 0.4 0.8 1 1.5\]

and levect defaults to:

\[-0.5 0.25 0 0.25 0.5\]

inverse.eps

Accuracy of calculation for the numerical determination of \(F(x) \), defaults to .Machine$double.eps

param

optim.control

List of options for the optimisation step. See optim for details. If left as NULL, the parscale control is set to scale \(\lambda_1 \) and \(\lambda_2 \) by the absolute value of their starting points.

return.data

Logical: Should the function return the data (from the argument data)?

Details

The starship method is described in King & MacGillivray, 1999 (see references). It is built on the fact that the generalised lambda distribution (gld) is a transformation of the uniform distribution. Thus the inverse of this transformation is the distribution function for the gld. The starship method applies different values of the parameters of the distribution to the distribution function, calculates the depths \(q \) corresponding to the data and chooses the parameters that make the depths closest to a uniform distribution.

The closeness to the uniform is assessed by calculating the Anderson-Darling goodness-of-fit test on the transformed data against the uniform, for a sample of size \(\text{length(data)} \).

This is implemented in 2 stages in this function. First a grid search is carried out, over a small number of possible parameter values (see starship.adaptivegrid for details). Then the minimum from this search is given as a starting point for an optimisation of the Anderson-Darling value using optim, with method given by optim.method

See GeneralisedLambdaDistribution for details on parameterisations.

Value

starship returns an object of class "starship".

print prints the estimated values of the parameters, while summary.starship prints these by default, but can also provide details of the estimation process (from the components grid.results and optim detailed below).

An object of class "starship" is a list containing at least the following components:

lambda

A vector of length 4 (or 5, for the fm5 parameterisation), giving the estimated parameters, in order: \(\lambda_1 \) - location parameter \(\lambda_2 \) - scale parameter \(\lambda_3 \) - first shape parameter \(\lambda_4 \) - second shape parameter (See gld for details of the parameters in the fm5 parameterisation)
In the gpd parameterisation, the parameters are labelled: \(\alpha \) - location parameter
\(\beta \) - scale parameter
\(\delta \) - skewness parameter
\(\lambda \) - tailweight parameter

gridNresults output from the grid search - see starshipNadaptivegrid for details
optim output from the optim search - optim for details

Author(s)
Robert King, <robert.king@newcastle.edu.au>, http://tolstoy.newcastle.edu.au/~rking/
Darren Wraith

References
http://tolstoy.newcastle.edu.au/~rking/gld/

See Also
starshipNadaptivegrid, starshipNobj

Examples
```r
data <- rgl(100, 0, 1:2, 2)
starship(data, optimNmethod=\"Nelder-Mead\", initgrid=list(lcvect=(0:4)/10, ldvect=(0:4)/10))
```

starshipNadaptivegrid Carry out the “starship” estimation method for the generalised lambda distribution using a grid-based search

Description
Calculates estimates for the generalised lambda distribution on the basis of data, using the starship method. The starship method is built on the fact that the generalised lambda distribution (gld) is a transformation of the uniform distribution. This method finds the parameters that transform the data closest to the uniform distribution. This function uses a grid-based search.

Usage
```r
starship.adaptivegrid(data, initgrid, inverseNeps = 1e-08, param=\"FMKL\")
```
starship.adaptivegrid

Arguments

data Data to be fitted, as a vector
initgrid A list with elements, lcvec, a vector of values for \(\lambda_3\), ldvec, a vector of values for \(\lambda_4\) and lvec, a vector of values for \(\lambda_5\) (lvec is only required if param is fm5). The parameter values given in initgrid are not checked with gl.check.lambda.
inverse eps Accuracy of calculation for the numerical determination of \(F(x)\), defaults to \(10^{-8}\)

Details

The starship method is described in King \& MacGillivray, 1999 (see references). It is built on the fact that the generalised lambda distribution (gld) is a transformation of the uniform distribution. Thus the inverse of this transformation is the distribution function for the gld. The starship method applies different values of the parameters of the distribution to the distribution function, calculates the depths \(q\) corresponding to the data and chooses the parameters that make the depths closest to a uniform distribution.

The closeness to the uniform is assessed by calculating the Anderson-Darling goodness-of-fit test on the transformed data against the uniform, for a sample of size length(data).

This function carries out a grid-based search. This was the original method of King \& MacGillivray, 1999, but you are advised to instead use starship which uses a grid-based search together with an optimisation based search.

See GeneralisedLambdaDistribution for details on parameterisations.

Value

response The minimum “response value” — the result of the internal goodness-of-fit measure. This is the return value of starship.obj. See King \& MacGillivray, 1999 for more details
lambda A vector of length 4 giving the values of \(\lambda_1\) to \(\lambda_4\) that produce this minimum response, i.e. the estimates

Author(s)

Robert King, <robert.king@newcastle.edu.au>, http://tolstoy.newcastle.edu.au/~rking/
Darren Wraith

References

http://tolstoy.newcastle.edu.au/~rking/gld/

See Also

starship, starship.obj

Examples

data <- rgl(100,0,1,2,2)
starship.adaptivegrid(data,list(lcvec=(0:4)/10,ldvec=(0:4)/10))

starship.obj

Objective function that is minimised in starship estimation method

Description

The starship is a method for fitting the generalised lambda distribution. See starship for more details.

This function is the objective function minimised in the methods. It is a goodness of fit measure carried out on the depths of the data.

Usage

starship.obj(par, data, inverse.eps, param = "fmkl")

Arguments

- **par**: parameters of the generalised lambda distribution, a vector of length 4, giving \(\lambda_1 \) to \(\lambda_4 \). See GeneralisedLambdaDistribution for details on the definitions of these parameters.
- **data**: Data — a vector.
- **inverse.eps**: Accuracy of calculation for the numerical determination of \(F(x) \), defaults to \(10^{-8} \).
Details

The starship method is described in King & MacGillivray, 1999 (see references). It is built on the fact that the generalised lambda distribution (\texttt{gld}) is a transformation of the uniform distribution. Thus the inverse of this transformation is the distribution function for the gld. The starship method applies different values of the parameters of the distribution to the distribution function, calculates the depths q corresponding to the data and chooses the parameters that make the depths closest to a uniform distribution.

The closeness to the uniform is assessed by calculating the Anderson-Darling goodness-of-fit test on the transformed data against the uniform, for a sample of size length(data).

This function returns that objective function. It is provided as a separate function to allow users to carry out minimisations using \texttt{optim} or other methods. The recommended method is to use the \texttt{starship} function.

Value

The Anderson-Darling goodness of fit measure, computed on the transformed data, compared to a uniform distribution. \textit{Note that this is NOT the goodness-of-fit measure of the generalised lambda distribution with the given parameter values to the data.}

Author(s)

Robert King, <robert.king@newcastle.edu.au>, \url{http://tolstoy.newcastle.edu.au/~rking/}
Darren Wraith

References

\url{http://tolstoy.newcastle.edu.au/~rking/gld/}

See Also

\texttt{starship,starship.adaptivegrid}

Examples

```r
data <- rgl(100,0,1,2,2)
starship.obj(c(0,1,2,2),data,inverse.eps=1e-10,"fmkl")
```
Index

*Topic **aplot**
 plotgl, 19
 qgl, 24

*Topic **distribution**
 fit.fkm, 2
 fit.fkm.moments.val, 5
 fit.gpd, 7
 GeneralisedLambdaDistribution, 9
 gl.check.lambda, 10
 gld.lmoments, 15
 gld.moments, 17
 plot.starship, 18
 plotgl, 19
 print.starship, 22
 qgl, 24
 starship, 26
 starship.adaptivegrid, 28
 starship.obj, 30

*Topic **hplot**
 plotgl, 19
 qgl, 24
 class, 4, 8, 27

 dgl (GeneralisedLambdaDistribution), 9
 dqgl.15
 dqgl (GeneralisedLambdaDistribution), 9

 fit.fkm, 2
 fit.fkm.moments.val, 5, 18
 fit.gpd, 7

 GeneralisedLambdaDistribution, 5, 8, 9, 12, 14, 21, 27, 29, 30
 GeneralizedLambdaDistribution (GeneralisedLambdaDistribution), 9
 gl.check.lambda, 10, 12, 29
 gld, 3, 6, 25–29, 31
 gld (GeneralisedLambdaDistribution), 9

 gld.Deprecated, 15
 gld.lmoments, 15
 gld.moments, 6, 17
 hist, 19

 optim, 3–5, 26–28, 31

 par, 18, 19
 pgl (GeneralisedLambdaDistribution), 9
 plot, 19
 plot.starship, 18
 plotgl, 19
 plotglc (plotgl), 19
 plotgld (plotgl), 19
 print, 22
 print.default, 22
 print.starship, 22

 qdgl (qdgl-deprecated), 23
 qdgl-deprecated, 23
 qgl (GeneralisedLambdaDistribution), 9
 qgl, 19, 24
 qqline, 25
 qqnorm, 24
 qqplot, 25

 rgl (GeneralisedLambdaDistribution), 9

 starship, 2, 5, 18, 19, 22, 23, 25, 26, 29–31
 starship.adaptivegrid, 19, 22, 23, 26–28, 28, 31
 starship.obj, 23, 28, 30, 30
 summary.starship, 4, 27
 summary.starship(print.starship), 22

 warning, 8