Package ‘gnmf’

July 11, 2016

Type Package
Title Generalized Non-negative Matrix Factorization Based on Renyi Divergence
Version 0.7.1
Date 2014-01-23
Author Jose M. Maisog, Guoli Wang, Karthik Devarajan
Maintainer Jose M. Maisog <bravas02@gmail.com>
Description This package performs generalized non-negative matrix factorization based on Renyi divergence.
License GPL-2
LazyLoad yes

URL http://devarajan.fccc.edu
Repository CRAN
Repository/R-Forge/Project gnmf
Repository/R-Forge/Revision 6
Repository/R-Forge/DateTimeStamp 2014-01-24 01:40:27
Date/Publication 2016-07-11 18:46:46
Depends R (>= 2.10)
NeedsCompilation yes

R topics documented:

 gnmf-package ... 2
 gnmf ... 2
 V ... 4

Index 5
gnmf-package

Generalized non-negative matrix factorization based on Renyi Divergence

Description

Generalized non-negative matrix factorization based on Renyi Divergence

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>gnmf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.4</td>
</tr>
<tr>
<td>Date:</td>
<td>2012-6-3</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Provides a function `gnmf` to perform non-negative matrix factorization.

Author(s)

Jose M. Maisog, Guoli Wang, Karthik Devarajan
Maintainer: Jose M. Maisog <bravas02@gmail.com>

References

http://devarajan.fccc.edu

Examples

```r
data(V)
```

gnmf

Generalized non-negative matrix factorization based on Renyi Divergence

Description

Performs generalized non-negative matrix factorization based on Renyi Divergence
Usage

gnmf(V, scheme, nsteps = 2000, repeats = 20, cltarget = "PATTERN", clscheme = "Binary", reffile = "", scaling = "F", normalizing = "F", alphas = 1, runtype = "simulation", cstepsize = 20, idealization = 1)

Arguments

V Input data matrix
scheme KL, Renyi, or ED
nsteps Update steps, default 2000
repeats Repeats, default 20
ranks The number of components into which matrix V is to be factored, default 2 (a scalar)
cltarget Clustering target, default 'PATTERN' (H matrix) either PATTERN or ALTERNATE
clscheme Clustering scheme, default 'Binary', could be 'PearsonHC'
reffile Default none
scaling Boolean, default F
normalizing Boolean, H matrix normalization, default 'F'
alphas Renyi parameter, default 1.0 (a scalar), ignored if scheme is not Renyi
runtype simulation (default) or evaluation or whole
cstepsize Convergence test step size, default 20
idealization Default 1

Value

H List of pattern matrices, one for each repetition
W List of amplitude matrices, one for each repetition

Note

Further notes...

Author(s)

Jose M. Maisog, Guoli Wang, Karthik Devarajan

References

http://devarajan.fccc.edu
Examples

Load sample data.
data(V)

Compute NMF with 20 repeats.
result <- gnmf(V, scheme="KL")

Extract H and W from the result.
H and W are lists, each containing the result of 20 repeats.
H <- result$H
W <- result$W

Get the H and W matrices of the first repeat.
H1 <- H[[1]]
W1 <- W[[1]]

Example 50 x 10 matrix

Description

Sample data for illustrating the use of GNMF.

Examples

data(V)
Index

*Topic Clustering
 gnmf, 2

*Topic Multivariate Techniques
 gnmf, 2

*Topic datasets
 V, 4

*Topic package
 gnmf-package, 2

 gnmf, 2
 gnmf-package, 2

 V, 4