Package ‘growthrate’

February 20, 2015

Type Package

Version 1.3

Date 2014-08-13

Title Bayesian reconstruction of growth velocity

Author Sara Lopez-Pintado and Ian W. McKeague

Maintainer Ian W. McKeague <im2131@columbia.edu>

Description A nonparametric empirical Bayes method for recovering gradients (or growth velocities) from observations of smooth functions (e.g., growth curves) at isolated time points.

Depends Matrix, clime, mvtnorm

License GPL-3 | file LICENSE

NeedsCompilation no

Repository CRAN

Date/Publication 2014-08-13 18:59:22

R topics documented:

- growthrate-package
- cv.growth
- diffquo
- growth
- height_data
- Khat
- new.growth
- posterioridistribcurve
- posteriorobs
- priormeanobs

Index 10
growthrate-package

Recovery of gradients from sparsely observed functional data

Description

A nonparametric empirical Bayes method for recovering gradients (or growth velocities) from observations of smooth functions (e.g., growth curves) at isolated time points.

References

cv.growth

cross validation error

Description

Computes the cross validation error resulting from the removal of the data at a given interior observation time as a function of the infinitesimal standard deviation \(\sigma \) on a grid of \(k \) equispaced values in the interval \([a, b]\).

Usage

cv.growth(data, tobs, d, k, a, b, r)

Arguments

data
Input matrix of size \(N \) (subjects) times \(n \) (observation times). Each column contains the heights (of all subjects) at a given observation time, each row contains the heights (at the observation times) for a given subject.

tobs
Row vector of \(n \) observation times (in increasing order, same for each subject).

d
Number of points on the fine time-grid (between the first and last observation times in tobs) at which the posterior means and covariances are computed.

k
Number of points on the grid for \(\sigma \).

a
Minimum value for \(\sigma \) (positive).

b
Maximum value for \(\sigma \) (strictly larger than \(a \)).

r
Index of the interior observation time in tobs removed in the cross-validation.

Details

The data for the \(r \)th observation time (for a given \(1 < r < n \)) are removed and the mean squared error of the reconstructed data at that time point computed over the grid for \(\sigma \).
Value

- **sigmavec**: K-vector of sigma-values considered in the cross validation.
- **CVer**: Cross validation error at each value of sigma in sigmavec.

Author(s)

Sara Lopez-Pintado and Ian W. McKeague

Maintainer: Ian W. McKeague <im2131@columbia.edu>

References

Examples

```r
## Not run:
## example using the height data provided in the package
## there are 7 observation times (age in years):
## WARNING: cv.growth is time-consuming. This example uses only part of the data.
data(height_data);
ht = height_data[1:100,];
tobs=c(0,1/3,2/3,1,3,4,7);
cvg=cvNgrowth(ht, tobs, 100, 21, 1, 5, 2);

## Plot of the cross validation error as a function of sigma:
plot(cvg$sigmavec, cvg$cver, xlab="Sigma", ylab="Cross validation error");

## Value of sigma that minimizes the cross validation error:
sigmaopt=cvg$sigmavec[which(cvg$cver==min(cvg$cver))];

## End(Not run)
```

diffquo

converts height data into difference quotients

Description

Internal function. Calculates the crude one-sided difference quotients and the second-order difference quotients based on the height data and the observed time points.

Usage

diffquo(data, tobs)
Arguments

data As in growth.
tobs As in growth.

Value

Yi An N times (n-1) matrix with rows given by the values of the one-sided difference quotients \(y_i, i = 1 \ldots, n - 1 \) for the N subjects.

Xtilde An n by N matrix with columns given by the values of the second-order difference quotients \(y \) for the N subjects.

Description
Computes the mean function and covariance kernel (over a fine grid of equispaced time points) of the posterior growth velocity for each subject, based on growth data (e.g., heights) at fixed observation times.

Usage

growth(data, tobs, sigma, d)

Arguments

data Input matrix of size N (subjects) times n (observation times). Each column contains the heights (of all subjects) at a given observation time, each row contains the heights (at the observation times) for a given subject.
tobs Row vector of n observation times (in increasing order, same for each subject).
sigma A positive scalar representing the infinitessimal standard deviation of the tied-down Brownian motion in the prior. Can be selected by cross-validation.
d Number of time points on the fine grid.

Details
The Bayesian reconstruction implemented here uses a prior growth velocity model that is specified by a general multivariate normal distribution at the n fixed observation times, and a tied-down Brownian motion (having infinitessimal standard deviation specified by sigma) between the observation times.

The prior mean and prior precision matrix at the observation times are estimated using the data on N subjects. Clime (constrained L1 minimization) provides the estimate of the prior precision matrix, with the clime constraint parameter lambda selected by 5-fold cross validation using the likelihood loss function.
Value

- **muhatcurve**: Posterior means of the growth velocities (for each subject) on the fine grid \(t_{grid} \). An \(N \times d \) matrix.

- **Khat**: Posterior covariance kernel of the growth velocities on the fine grid \(t_{grid} \). A \(d \times d \) matrix (the same for every subject).

- **tgrid**: The fine grid of \(d \) equispaced-time points (between the first and last observation times in \(tobs \)) at which the posterior means and covariances are computed.

Author(s)

Sara Lopez-Pintado and Ian W. McKeague

Maintainer: Ian W. McKeague <im2131@columbia.edu>

References

Examples

```r
## Not run:
## example using the height data provided in the package
## there are 7 observation times (age in years):
data(height_data);
tobs=c(0,1/3,2/3,1,3,4,7);
d=200;
sigma=1;
g=growth(height_data,tobs,sigma,d);

## Plot of the posterior mean and credible interval for a specific individual
indiv=1;
## posterior standard deviation (same for all subjects):
postsd=sqrt(diag(gKhat));
plot(g$tgrid,g$muhatcurve[indiv,],type='l',
xlab="Age (years)",ylab="Growth velocity (cms/year)"");
lines(g$tgrid,g$muhatcurve[indiv,]);
lines(g$tgrid,g$muhatcurve[indiv,]+2*postsd,lty=2);
lines(g$tgrid,g$muhatcurve[indiv,]-2*postsd,lty=2);

## Plot of a draw from the posterior growth velocity for a specific individual:
draw=rmvnorm(n=1, mean=g$muhatcurve[indiv,], sigma=g$khat, method="chol");
plot(g$tgrid,draw,type='l',xlab="Age (years)",ylab="Growth velocity (cms/year)"");

## End(Not run)
```
Description

The heights of 532 girls at birth, four, eight, and twelve months, and three, four, and seven years of age.

Usage

```
data(height_data)
```

Format

A matrix with 532 observations on 7 variables (height at each age).

References

Examples

```
data(height_data)
```

Khatf

posterior covariance kernel

Description

Internal function. Finds the posterior covariance kernel on the fine grid tgrid (same for every subject); see Section 2 of the referenced article for further details.

Usage

```
Khatf(tgrid, tobs, sigma, Sigmahat)
```

Arguments

- `tgrid`: The fine grid of d equispaced-time points (between the first and last observation times in `tobs`) at which the posterior means and covariances are computed.
- `tobs`: Row vector of n observation times (in increasing order, same for each subject).
- `sigma`: Infinitessimal standard deviation of the tied-down Brownian motion in the prior.
- `Sigmahat`: Posterior covariance at the observation times `tobs` (same for every subject).
new.growth

new.growth

recovery of growth velocity for a new subject

Description

Computes the posterior mean and covariance kernel for a new subject having data at observation times `newtobs` different from `tobs` (apart from the first and the last). `growth` needs to be run first.

Usage

```
new.growth(newdata, newtobs, sigma, d, muhatcurve, Khat, tgrid)
```

Arguments

- **newdata**: Row vector of p heights for the new subject.
- **newtobs**: Row vector of p observation times for the new subject (in increasing order; must include the first and last time points in `tobs`).
- **sigma**: Infinitessimal standard deviation of the Brownian motion prior (same as in `growth`).
- **d**: Number of time points on the fine grid.
- **muhatcurve**: Output from `growth`.
- **Khat**: Output from `growth`.
- **tgrid**: The fine grid (output from `growth`).

Value

- **muhatcurve.new**: Posterior mean (on `tgrid`) for the new subject.
- **Khat.new**: Posterior covariance kernel (on `tgrid`) for the new subject.

Author(s)

Sara Lopez-Pintado and Ian W. McKeague

Maintainer: Ian W. McKeague <im2131@columbia.edu>

References

Examples

```r
## Not run:
## example using the height data provided in the package
## (after first running growth to obtain the output g):
## suppose a new subject has 5 observation times (including 0 and 7)
data(height_data);
tobs=c(0,1/3,2/3,1,3,4,7);
d=200;
sigma=1;
g=growth(height_data,tobs,sigma,d);
newtobs=c(0, 2, 3, 5, 7);
newdata=t(as.vector(c(50,70,87,100,115)));
ng=new.growth(newdata,newtobs,sigma,d,g$muhatcurve,g$Khat,g$tgrid);

## plot of the posterior mean growth velocity for the new subject:
plot(g$tgrid,ng$muhatcurvenew,xlab="Age (years)",ylab="Growth velocity (cms/year)")

## End(Not run)
```

posteriordistribcurve
posterior mean

Description

Internal function. Finds the posterior mean on the fine grid `tgrid` for every subject.

Usage

```r
posteriordistribcurve(muhatmatrix, Sigmahat, sigma, tobs, d, Yi)
```

Arguments

- **muhatmatrix**: Posterior mean at the observation times `tobs` obtained from `posteriorobs`.
- **Sigmahat**: Posterior covariance at the observation times `tobs` obtained from `posteriorobs`.
- **sigma**: Infinitessimal standard deviation of the tied-down Brownian motion in the prior.
- **tobs**: Row vector of `n` observation times (in increasing order, same for each subject).
- **d**: Number of time points on the fine grid.
- **Yi**: An `N` times `(n-1)` matrix with rows given by the values of `yi, i = 1 \ldots, n - 1` for the `N` subjects.
posteriorobs

posterior mean and covariance at observation times

Description

Internal function. Finds the posterior mean and covariance at the observation times \(t_{obs} \), for every subject; see Section 2 of the referenced article for further details.

Usage

```r
posteriorobs(Sigma0inv, sigma, muprior, Xtilda, tobs, YI)
```

Arguments

- `Sigma0inv`: Prior precision matrix at the observation times \(t_{obs} \).
- `sigma`: Infinitessimal standard deviation of the tied-down Brownian motion in the prior.
- `muprior`: Prior mean at the observation times \(t_{obs} \).
- `Xtilda`: An \(n \) by \(N \) matrix with columns given by the values of \(y \) for the \(N \) subjects.
- `tobs`: Row vector of \(n \) observation times (in increasing order, same for each subject).
- `YI`: An \(N \) times \((n-1)\) matrix with rows given by the values of \(y_i, i = 1\ldots,n - 1 \) for the \(N \) subjects.

Description

Internal function. Finds the sample mean of the \(n \)-vector \(y \) for use in specifying the prior mean \(\mu_0 \); see Section 2 of the referenced article for further details.

Usage

```r
priormeanobs(YI, tobs)
```

Arguments

- `YI`: The \(N \) times \((n-1)\) matrix with rows being the values of \(y_i, i = 1\ldots,n - 1 \) for the \(N \) subjects
- `tobs`: Row vector of \(n \) observation times (in increasing order, same for each subject).
Index

*Topic datasets
 height_data, 6

*Topic main program
 growth, 4
cv.growth, 2
diffquo, 3
growth, 4
growthrate-package, 2
height_data, 6
Khatf, 6
new.growth, 7
posteriordistribcurve, 8
posteriorobs, 9
priormeanobs, 9