Package ‘hapsim’

June 7, 2017

Title Haplotype Data Simulation
Version 0.31
Date 2017-06-05
Author Giovanni Montana
Maintainer Apostolos Dimitromanolakis <apostolis@live.ca>

Description Package for haplotype-based genotype simulations. Haplotypes are generated such that their allele frequencies and linkage disequilibrium coefficients match those estimated from an input data set.

Depends MASS
License GPL (>= 2)
Repository CRAN

R topics documented:

ACEdata ... 2
allelefreqs 2
divlocus .. 3
haplodata .. 4
haplofreqs 5
haplosim .. 6
ldplot ... 8
mergemats 9

Index 10
ACEdata

ACE data set

Description

ACE (angiotensin I converting enzyme) data set

Usage

data(ACEdata)

Format

A data set with 22 haplotypes and 52 SNPs.

References

allelefreqs

Estimates allele frequencies

Description

Estimates allele frequencies from a binary matrix

Usage

allelefreqs(dat)

Arguments

dat
A binary matrix, rows are haplotypes and columns are binary markers

Value

A list containing:

- freqs
 Vector of allele "0" frequencies
- all.polym
 If TRUE, all loci are polymorphic
- non.polym
 Vector of non-polymorphic loci, if any

Author(s)

Giovanni Montana
divlocus

References

Examples

```r
data(ACEdata)
x <- allelefreqs(ACEdata)
hist(x$freqs)
```

<table>
<thead>
<tr>
<th>divlocus</th>
<th>Diversity score</th>
</tr>
</thead>
</table>

Description

Compute a measure of genetic diversity at each locus

Usage

`divlocus(dat)`

Arguments

dat A binary matrix, rows are haplotypes and columns are binary markers

Details

This function implements a measure of diversity for a locus j as in Clayton (2002). If z_{ij} represents the allele j of haplotype i, for $i = 1, ..., N$ and assuming that alleles are coded as 0 and 1, the diversity measure can be written as

$$D_j = 2 \times N \left(\sum_{i=1}^{N} z_{ij}^2 - \left(\sum_{i=1}^{N} z_{ij} \right)^2 \right)$$

Value

A vector containing the diversity measure for all markers

Author(s)

Giovanni Montana

References

Examples

```r
data(ACEdata)
divlocus(ACEdata)
```

Description

Creates an haplotype data object needed for simulating haplotypes with `haplosim`. This object also contains some summary statistics about the real data.

Usage

```r
haplodata(dat)
```

Arguments

- `dat` A binary matrix, rows are haplotypes and columns are binary markers

Value

A list containing:

- `freqs` Allele frequencies
- `cor` Correlation matrix (LD coefficients)
- `div` Locus-specific diversity measure
- `cov` Covariance matrix for the normal distribution

Author(s)

Giovanni Montana

References

See Also

See also `haplosim`
haplofreqs

Examples

data(ACEdata)

creates the haplotype object
x <- haplodata(ACEdata)

simulates 100 random haplotypes
y <- haplosim(100, x)

<table>
<thead>
<tr>
<th>haplofreqs</th>
<th>Haplotype frequencies</th>
</tr>
</thead>
</table>

Description

Compute haplotype frequencies

Usage

haplofreqs(dat, firstl, lastl)

Arguments

- dat: A binary matrix, rows are haplotypes and columns are binary markers
- firstl: Position of the first locus
- lastl: Position of the last locus

Value

A vector of haplotype frequencies

Author(s)

Giovanni Montana

References

Examples

data(ACEdata)
freqs <- haplofreqs(ACEdata, 17, 22)
haplosim

Haplotype data simulator

Description

Generates a random sample of haplotypes, given a haplotype object created from a data set

Usage

```r
haplosim(n, hap, which.snp = NULL, seed = NULL, force.polym = TRUE, summary = TRUE)
```

Arguments

- `n` Number of haplotypes to generate
- `hap` Haplotype object created with `haplodata`
- `which.snp` A vector specifying which SNPs to include
- `seed` Seed for the random number generator
- `force.polym` if TRUE, all loci are polymorphic
- `summary` if TRUE, additional summary statistics are returned

Value

A list containing:

- `data` Simulated sample
- `freqs` Allele frequency vector
- `cor` Correlation matrix
- `div` Locus-specific diversity scores
- `mse.freqs` MSE of allele frequencies
- `mse.cor` MSE of correlations

Author(s)

Giovanni Montana

References

See Also

See also `haplodata`
Examples

Example 1
#

data(ACEdata)

create the haplotype object
x <- haplodata(ACEdata)

simulates a first sample of 100 haplotypes using all markers
y1 <- haplosim(100, x)

compares allele frequencies in real and simulated samples
plot(x$freqs, y1$freqs, title=paste("MSE:"y1$mse.freqs)); abline(a=0, b=1)

compares LD coefficients in real and simulated samples
ldplot(mergemats(x$cor, y1$cor), ld.type='r')

simulates a second sample of 1000 haplotypes using the first 20 markers only
y2 <- haplosim(1000, which.snp=seq(20), x)

Example 2
#

simulate a sample of 500 haplotypes based on the ACE data set
set.seed(100)
data(ACEdata)
n <- 500
x <- haplodata(ACEdata)
y <- haplosim(n, x)

compute the haplotype frequencies
an haplotype starts at markers 17 and ends at marker 22
freq1 <- haplofreqs(ACEdata, 17, 22)
freq2 <- haplofreqs(y$data, 17, 22)

extract the set of haplotypic configurations that are shared
by real and simulated data and their frequencies
commonhapls <- intersect(names(freq1),names(freq2))
cfreq1 <- freq1[commonhapls]
cfreq2 <- freq2[commonhapls]

compare real vs simulated haplotype frequencies
par(mar=c(10.1, 4.1, 4.1, 2.1), xpd=TRUE)
legend.text <- names(cfreq1)
bp <- barplot(cbind(cfreq1,cfreq2), main="Haplotype Frequencies",
 names=arg=c("Real","Simulated"), col=heat.colors(length(legend.text)))
legend(mean(range(bp)), -0.3, legend.text, xjust = 0.5,
 fill=heat.colors(length(legend.text)), horiz = TRUE)
ldplot

Description

Creates a linkage disequilibrium plot from a matrix of pair-wise LD coefficients

Usage

```r
ldplot(ld.mat, ld.type, color = heat.colors(50), title = NULL)
```

Arguments

- `ld.mat`: A square matrix of LD coefficients
- `ld.type`: A character value specifying what coefficients are used as input: either 'r' for correlation coefficients or 'd' for D/Dprime scores
- `color`: A range of colors to be used for drawing. Default is `heat.colors`
- `title`: Character string for the title of the plot

Author(s)

Giovanni Montana

References

Examples

```r
data(ACEdata)

# LD plot of ACEdata using r^2 coefficients
ldplot(cor(ACEdata), ld.type='r')
```
mergemats

Merges two LD matrices

Description

Merges two LD matrices. It can be used to compare the LD coefficients estimated in the real and simulated data sets.

Usage

```r
mergemats(mat1, mat2)
```

Arguments

- `mat1` First square matrix
- `mat2` Second square matrix of same dimensions

Value

The resulting matrix has upper triangular matrix from `mat1` and lower triangular matrix from `mat2`.

Author(s)

Giovanni Montana

References

Index

*Topic datasets
 ACEdata, 2
*Topic utilities
 allelefreqs, 2
 divlocus, 3
 haplodata, 4
 haplofreqs, 5
 haplosim, 6
 ldplot, 8
 mergemats, 9

ACEdata, 2
allelefreqs, 2

divlocus, 3

haplodata, 4, 6
haplofreqs, 5
haplosim, 4, 6

ldplot, 8

mergemats, 9