Package ‘hbmem’

February 20, 2015

Type Package
Title Hierarchical Bayesian Analysis of Recognition Memory
Version 0.3
Date 2010-03-15
Author Michael S. Pratte
Maintainer Mike <prattems@gmail.com>
Depends R (>= 1.8.0), methods
Description Contains functions for fitting hierarchical versions of EVSD, UVSD, DPSD, DPSD with d’ restricted to be positive, and our gamma signal detection model to recognition memory confidence-ratings data.
License LGPL (>= 2.0)
LazyLoad yes
URL http://pcl.missouri.edu
Repository CRAN
Date/Publication 2012-12-20 09:21:57
NeedsCompilation yes

R topics documented:

hbmem-package .. 2
dpsd-class ... 4
dpsdProbs .. 5
dpsdRNSample .. 6
dpsdRNSim .. 7
dpsdSample ... 8
dpsdSim ... 11
dpsdSim-class ... 12
gammaLikeSample ... 13
gammaProbs ... 15
gammaSample ... 16
hbmem-package

gammaSim ... 18
normalSim ... 19
prm09 ... 21
rtgamma ... 22
rtnorm ... 22
sampleGamma ... 23
sampleNorm ... 26
sampleNormb .. 29
sampleNormR .. 31
samplePosNorm ... 34
sampleSig2 ... 37
sampleSig2b .. 38
uvsd-class ... 40
uvsdLogLike .. 41
uvsdProbs ... 42
uvsdSample ... 43
uvsdSim ... 46
uvsdSim-class .. 47

Index 48

hbmem-package Hierarchical Models of Recognition Memory

Description

Contains functions for fitting hierarchical versions of EVSD, UVSD, DPSD, and our gamma signal
detection model to recognition memory confidence-ratings data.

Details

Package: hbmem
Type: Package
Version: 0.3
Date: 2012-12-20
License: LGPL
LazyLoad: yes

Author(s)

Michael S. Pratte <prattems@gmail.com>

References

Morey, Pratte, and Rouder (2008); Pratte, Rouder, and Morey (2009); Pratte and Rouder (2012).
See Also

'uvsdSample' to fit hierarchical UVSD model, 'uvsdSim' to simulate data from the hierarchical UVSD model, 'dpsdSample' to fit the hierarchical DPSD model, 'dpsdSim' to simulate data from the hierarchical DPSD model, 'dpsdPosSim' and 'dpsdPosSample' for the DPSD model with positive sensitivity, and datasets from our publications.

Examples

In this example data are simulated from EVSD
They are then fit by both UVSD and DPSD

library(hbmem)
sim=uvsdSim(s2aS2=0,s2bS2=0) #Simulate data from hierarchical EVSD
dat=as.data.frame(cbind(sim@subj,sim@item,sim@Scond,sim@cond,sim@lag,sim@resp))
colnames(dat)=c("sub","item","Scond","cond","lag","resp")

M=10 #Set way low for speed
keep=2:M
#For real analysis we run 105000 iterations
#with the first 5000 serving as burnin, and
#only keep every 10th iteration for analysis,
#i.e., thinning the chains to mitigate autocorrelation.
evsd=uvsdSample(dat,M=M,keep=keep,equalVar=TRUE) #Fit EVSD
uvsd=uvsdSample(dat,M=M,keep=keep,freeSig2=TRUE) #Fit UVSD w/1 Sigma2
dpsd=dpsdSample(dat,M=M,keep=keep) #Fit DPSD

#Look at available information
slotNames(uvsd)
slotNames(dpsd)

#Compare DIC; smaller is better
evsd@DIC
uvsd@DIC
dpsd@DIC

#Effective parameters. Because there are no
#real effects on studied-item variance, the
#hierarchical models are drastically shrinking these
#effect parameters to zero, so that they do not
#count as full parameters.
evsd@p0
uvsd@p0
dpsd@p0

#PLOTS FROM UVSD FIT
par(mfrow=c(3,2),pch=19,pty='s')
#Make sure chains look OK
matplot(uvsd@blockN[,uvsd@muN],t='l',xlab="Iteration",ylab="Mu-N")
abline(h=sim@muN,col="blue")
matplot(uvsd@blockS[,uvsd@muS],t='l',xlab="Iteration",ylab="Mu-S")
abline(h=sim@muS,col="blue")
#Estimates of Alpha as function of true values
plot(uvsvd@estN[uvsvd@alphan]-sim@alphan,xlab="True Alpha-N",ylab="Est. Alpha-N");abline(0,1,col="blue")
plot(uvsvd@estS[uvsvd@alphas]-sim@alphas,xlab="True Alpha-S",ylab="Est. Alpha-S");abline(0,1,col="blue")

#Estimates of Beta as function of true values
plot(uvsvd@estN[uvsvd@betaln]-sim@betaln,xlab="True Beta-N",ylab="Est. Beta-N");abline(0,1,col="blue")
plot(uvsvd@estS[uvsvd@betas]-sim@betas,xlab="True Beta-S",ylab="Est. Beta-S");abline(0,1,col="blue")

##Look at Sigma2 and Recollection from UVSD and DPSD##
par(mfrow=c(2,3),pch=19,pty='s')
plot(sqrt(exp(uvsvd@blockS2[,uvsvd@muS])),
t='l',ylab="Sigma",main="Grand Mean")
abline(h=1,col="blue")
hist(uvsvd@blockS2[,uvsvd@s2alphan],main="Participant Effect")
hist(uvsvd@blockS2[,uvsvd@s2betan],main="Item Effect")

plot(pnorm(dpsd@blockR[,dpsd@muR]),
t='l',ylab="P(Recollection)",main="Grand Mean")
abline(h=0,col="blue")
hist(dpsd@blockR[,dpsd@s2alphan],main="Participant Effect")
hist(dpsd@blockR[,dpsd@s2betan],main="Item Effect")

#See what DPSD does with EVSD effects
par(mfrow=c(2,3))
plot(dpsd@estN[dpsd@alphan]-sim@alphan,xlab="DPSD Alpha-N");abline(0,1,col="blue")
plot(dpsd@estS[dpsd@alphas]-sim@alphas,xlab="DPSD Alpha-S");abline(0,1,col="blue")
plot(dpsd@estR[dpsd@alphas]-sim@alphan,xlab="DPSD Alpha-R");abline(0,1,col="blue")
plot(dpsd@estN[dpsd@betaln]-sim@betaln,xlab="DPSD Beta-N");abline(0,1,col="blue")
plot(dpsd@estS[dpsd@betas]-sim@betas,xlab="DPSD Beta-S");abline(0,1,col="blue")
plot(dpsd@estR[dpsd@betas]-sim@betan,xlab="DPSD Beta-R");abline(0,1,col="blue")

dpsd-class

Class "dpsd"~~~

Description

Holds all information returned from posterior simulations of dual-process models
description

Returns the probability of making confidence ratings given parameters of DPSD.

Usage

dpsdProbs(r,d,crit)
Arguments

- **r**: Probability of recollection.
- **d**: Mean of the signal-detection distribution. In the common parameterization of the model, this would be zero for new-item trials, and d’ for studied-item trials. In the PRM09 parameterization, these are dn and ds for new and studied-item trials, respectively.
- **crit**: Criteria (not including -Inf or Inf).

Details

For new-item trials, simply set r=0.

Value

The function returns the probability of making each response for the parameters given.

Author(s)

Michael S. Pratte

References

See Pratte, Rouder, & Morey (2009)

See Also

hbmem

Examples

```r
#Low r
dpsdProbs(.2,1,c(-1,-.5,.0,.5,1))  #studied
dpsdProbs(0,-1,c(-1,-.5,.0,.5,1))  #new

#High r
dpsdProbs(.6,1,c(-1,-.5,.0,.5,1))  #studied
dpsdProbs(0,-1,c(-1,-.5,.0,.5,1))  #new
```

dpsdRNSample
Fit DPSD model with R restricted to be function of N

Description

This is a dual process model in which the person and item effects on probability of recollection are linear functions of those effects for the new-item distribution.
Usage
dpsdRNSample(dat, M = 5000, keep = (M/10):M, getDIC = TRUE, jump = 0.001)

Arguments
dat Data frame that must include variables Scond, cond, sub, item, lag, resp. Scond indexes studied/new, whereas cond indexes conditions nested within the studied or new conditions. Indexes for Scond, cond, sub, item, and respone must start at zero and have no gaps (i.e., no skipped subject numbers). Lags must be zero-centered.
M Number of MCMC iterations.
keep Which MCMC iterations should be included in estimates and returned. Use keep to both get ride of burn-in, and thin chains if necessary
getDIC Logical. Should the function compute DIC value? This takes a while if M is large.
jump The criteria and decorrelating steps utilize Matropolis-Hastings sampling routines, which require tuning. All MCMC functions should self-tune during the burnin period (iterations before keep), and they will alert you to the success of tuning. If acceptance rates are too low, "jump" should be decreased, if they are too hight, "jump" should be increased. Alternatively, or in addition to adjusting "jump", simply increase the burnin period which will allow the function more time to self-tune.

References
Pratte and Rouder (2010)

dpsdRNSim

Function dpsdRNSim

Description
Simulate data from DPSD model with R a function of N

Usage
dpsdRNSim(NN = 2, NS = 1, I = 30, J = 200, K = 6, muN = c(-0.7, -0.5), s2aN = 0.2, s2bN = 0.2, muS = 0, s2bS = 0.2)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>Number of new-item conditions.</td>
</tr>
<tr>
<td>NS</td>
<td>Number of studied-item conditions.</td>
</tr>
<tr>
<td>I</td>
<td>Number of participants.</td>
</tr>
<tr>
<td>J</td>
<td>Number of items.</td>
</tr>
<tr>
<td>K</td>
<td>Number of confidence ratings</td>
</tr>
</tbody>
</table>
Function to fit hierarchical DPSD model to data.

Description

Runs MCMC estimation for the hierarchical DPSD model.

Usage

dpsdSample(dat, M = 5000, keep = (M/10):M, getDIC = TRUE, freeCrit = TRUE, hier = TRUE, jump = .01)

Arguments

dat Data frame that must include variables Scond, cond, sub, item, lag, resp. Scond indexes studied/new, whereas cond indexes conditions nested within the studied or new conditions. Indexes for Scond, cond, sub, item, and response must start at zero and have no gaps (i.e., no skipped subject numbers). Lags must be zero-centered.

M Number of MCMC iterations.

keep Which MCMC iterations should be included in estimates and returned. Use keep to both get ride of burn-in, and thin chains if necessary.

getDIC Logical. Should the function compute DIC value? This takes a while if M is large.

freeCrit Logical. If true then criteria are estimated separately for each participant. Should be set to false if analyzing only one participant (e.g., if averaging over subjects).
Hier

Logical. If true then the variances of effects (e.g., item effects) are estimated from the data, i.e., effects are treated as random. If false then these variances are fixed to 2.0 (.5 for recollection effects), thus treating these effects as fixed. This option is there to allow for comparison with more traditional approaches, and to see the effects of imposing hierarchical structure. It should always be set to TRUE in real analysis, and is not even guaranteed to work if set to false.

jump

The criteria and decorrelating steps utilize Metropolis-Hastings sampling routines, which require tuning. All MCMC functions should self-tune during the burnin period (iterations before keep), and they will alert you to the success of tuning. If acceptance rates are too low, "jump" should be decreased, if they are too high, "jump" should be increased. Alternatively, or in addition to adjusting "jump", simply increase the burnin period which will allow the function more time to self-tune.

Value

The function returns an internally defined "uvsd" structure that includes the following components:

- mu: Indexes which element of blocks contain mu
- alpha: Indexes which element of blocks contain participant effects, alpha
- beta: Indexes which element of blocks contain item effects, beta
- s2alpha: Indexes which element of blocks contain variance of participant effects (alpha).
- s2beta: Indexes which element of blocks contain variance of item effects (beta).
- theta: Indexes which element of blocks contain theta, the slope of the lag effect
- estN: Posterior means of block parameters for new-item means
- estS: Posterior means of block parameters for studied-item means
- estR: Posterior means of block for Recollection means.
- estCrit: Posterior means of criteria
- blockN: Each iteration for each parameter in the new-item mean block. Rows index iteration, columns index parameter.
- blockS: Same as blockN, but for the studied-item means
- blockR: Same as blockN, but for the recollection-parameter means.
- s.crit: Samples of each criteria.
- pD: Number of effective parameters used in DIC. Note that this should be smaller than the actual number of parameters, as constraint from the hierarchical structure decreases the number of effective parameters.
- DIC: DIC value. Smaller values indicate better fits. Note that DIC is notably biased toward complexity.
- M: Number of MCMC iterations run
- keep: MCMC iterations that were used for estimation and returned
- b0: Metropolis-Hastings acceptance rates for decorrelating steps. These should be between .2 and .6. If they are not, the M, keep, or jump arguments need to be adjusted.
- b0Crit: acceptance rates for criteria.
Author(s)

Michael S. Pratte

References

See Pratte, Rouder, & Morey (2009)

See Also

hbmem

Examples

In this example we generate data from EVSD, then fit it with both hierarchical DPSD and DPSD assuming no participant or item effects.

```r
library(hbmem)
sim=dpsdSim(1=30,J=200)
dat=data.frame(cbind(sim@subj,sim@item,sim@cond,sim@Scond,sim@lag,sim@resp))
colnames(dat)=c("sub","item","cond","Scond","lag","resp")
dat$lag[dat$Scond==1]=dat$lag[dat$Scond==1]-mean(dat$lag[dat$Scond==1])

M=10 #Too low for real analysis!
keep=2:M
DPSD=dpsdSample(dat,M=M)

#Look at all parameters
par(mfrow=c(3,3),pch=19,pty='s')

matplot(DPSD$blockN[,DPSD$muN],t='l',
ylab="muN")
abline(h=sim$muN,col="blue")
plot(DPSD$estN[DPSD$alphaN]-sim$alphaN)
abline(0,1,col="blue")
plot(DPSD$estN[DPSD$betaN]-sim$betaN)
abline(0,1,col="blue")

matplot(DPSD$blockS[,DPSD$muS],t='l',
ylab="muS")
abline(h=sim$muS,col="blue")
plot(DPSD$estS[DPSD$alphaS]-sim$alphaS)
abline(0,1,col="blue")
plot(DPSD$estS[DPSD$betaS]-sim$betaS)
abline(0,1,col="blue")

matplot(pnorm(DPSD$blockR[,DPSD$muR]),t='l',
ylab="P(recollection)")
abline(h=pnorm(sim$muR),col="blue")
plot(DPSD$estR[DPSD$alphaR]-sim$alphaR)
abline(0,1,col="blue")
plot(DPSD$estR[DPSD$betaR]-sim$betaR)
abline(0,1,col="blue")
```

dpsdSim

Function dpsdSim

Description

Simulates data from a hierarchical DPSD model.

Usage

```r
dpsdSim(\text{NN}=2, \text{NS}=1, \text{I}=30, \text{J}=200, \text{K}=6, \text{muN}=c(-.7,-.5), \text{s2aN}=.2, \text{s2bN}=.2, 
\text{muS}=0, \text{s2aS}=.2, \text{s2bS}=.2, \text{muR}=qnorm(.25), \text{s2aR}=.2, \text{s2bR}=.2, 
\text{crit}=matrix(rep(c(-1.6,-.5,.5,1.6), each=I), ncol=(\text{K}-1)))
```

Arguments

- **NN** Number of new-item conditions.
- **NS** Number of studied-item conditions.
- **I** Number of participants.
- **J** Number of items.
- **K** Number of response options.
- **muN** Mean of new-item distribution. If there are more than one new-item conditions this is a vector of means with length equal to NN.
- **s2aN** Variance of participant effects on mean of new-item distribution.
- **s2bN** Variance of item effects on mean of new-item distribution.
- **muS** Mean of studied-item distribution. If there are more than new-item conditions this is a vector of means with length equal to NN one studied-item conditions this is a vector of means with length equal to NS.
- **s2aS** Variance of participant effects on mean of studied-item distribution.
- **s2bS** Variance of item effects on mean of studied-item distribution.
- **muR** Mean recollection, on probit space.
- **s2aR** Variance of participant effects recollection.
- **s2bR** Variance of item effects on recollection.
- **crit** Matrix of criteria (not including -Inf or Inf). Columns correspond to criteria, rows correspond to participants.

Value

The function returns an internally defined “dpsdSim” structure.

Author(s)

Michael S. Pratte
dpsdSim-class

References

See Pratte, Rouder, & Morey (2009)

See Also

hbmem

Examples

```r
library(hbmem)
# Data from hierarchical model
sim = dpsdSim()
slotNames(sim)
# Scond indicates studied/new
# Cond indicates which condition (e.g., deep/shallow)

table(sim@resp, sim@scond, sim@cond)

# Useful to make data.frame for passing to functions
dat = as.data.frame(cbind(sim@subj, sim@item, sim@scond, sim@cond, sim@lag, sim@resp))
colnames(dat) = c("sub", "item", "Scond", "cond", "lag", "resp")

table(dat$resp, dat$scond, dat$cond)
```

dpsdSim-class

Class "dpsdSim"

Description

Class "dpsdSim" to hold objects from DPSD simulations.

Slots

- `Scond`: Object of class "numeric" ~~
- `cond`: Object of class "numeric" ~~
- `subj`: Object of class "numeric" ~~
- `item`: Object of class "numeric" ~~
- `lag`: Object of class "numeric" ~~
- `resp`: Object of class "numeric" ~~
- `muN`: Object of class "numeric" ~~
- `muS`: Object of class "numeric" ~~
- `muR`: Object of class "numeric" ~~
- `alphaN`: Object of class "numeric" ~~
- `betaN`: Object of class "numeric" ~~
- `alphaS`: Object of class "numeric" ~~
gammaLikeSample

betaS: Object of class "numeric" ~~
alphaR: Object of class "numeric" ~~
betaR: Object of class "numeric" ~~

Function gammaLikeSample

Description

Runs MCMC for the hierarchical Gamma Likelihood model

Usage

```r
gammaLikeSample(dat, M = 10000, keep = (M/10):M, getDIC = TRUE, shape=2,jump=.005)
```

Arguments

- `dat` Data frame that must include variables cond, sub, item, lag, resp. Indexes for cond, sub, item, and response must start at zero and have no gaps (i.e., no skipped subject numbers). Lags must be zero-centered.
- `M` Number of MCMC iterations.
- `keep` Which MCMC iterations should be included in estimates and returned. Use keep to both get rid of burn-in, and thin chains if necessary.
- `getDIC` Logical. should the function compute DIC value? This takes a while if M is large.
- `shape` Fixed shape across both new and studied distributions.
- `jump` The criteria and decorrelating steps utilize Metropolis-Hastings sampling routines, which require tuning. All MCMC functions should self tune during the burnin period (iterations before keep), and they will alert you to the success of tuning. If acceptance rates are too low, "jump" should be decreased, if they are too high, "jump" should be increased. Alternatively, or in addition to adjusting "jump", simply increase the burnin period which will allow the function more time to self-tune.

Value

The function returns an internally defined "uvsd" S4 class that includes the following components

- `mu` Indexes which element of blocks contain grand means, mu
- `alpha` Indexes which element of blocks contain participant effects, alpha
- `beta` Indexes which element of blocks contain item effects, beta
- `s2alpha` Indexes which element of blocks contain variance of participant effects (alpha).
- `s2beta` Indexes which element of blocks contain variance of item effects (beta).
theta
estN
estS
estS2
estCrit
blockN
blockS
blockS2
s.crit
pD
DIC
M
keep
b0
b0S2
b0Crit

gammaLikeSample

Indexes which element of blocks contain theta, the slope of the lag effect
Posterior means of block parameters for new-item means
Posterior means of block parameters for studied-item means
Not used for gamma model.
Posterior means of criteria
Each iteration for each parameter in the new-item mean block. Rows index iteration, columns index parameter.
Same as blockN, but for the studied-item means
Not used for gamma model.
Samples of each criteria.
Number of effective parameters used in DIC. Note that this should be smaller than the actual number of parameters, as constraint from the hierarchical structure decreases the number of effective parameters.
DIC value. Smaller values indicate better fits. Note that DIC is notably biased toward complexity.
Number of MCMC iterations run
MCMC iterations that were used for estimation and returned
Metropolis-Hastings acceptance rates for new-item distribution parameters. These should be between .2 and .6. If they are not, the M, keep, or jump need to be adjusted.
Metropolis-Hastings acceptance rates for studied-item distribution parameters.
Metropolis-Hastings acceptance rates for criteria.

Author(s)
Michael S. Pratte

See Also
hbmem

Examples

This function is broken, so
no example that works.
make data from gamma model
if(l==0)
{
 library(hbmem)
 sim=gammaLikeSim(I=50,J=400,ms=1,sa=.5,saS=0,sa2S=0)
 dat=as.data.frame(cbind(sim@subj,sim@item,sim@cond,sim@Scond,sim@lag,sim@resp))
 colnames(dat)=c("sub","item","cond","Scond","lag","resp")
 dat$lag=0

 table(dat$resp,dat$Scond)
 M=5000
gammaProbs

Function gammaProbs

Description

Returns the probability of making confidence rating responses given parameters of gamma signal detection model.

Usage

`gammaProbs(scale, shape, bounds)`

Arguments

- **scale**: Scale of gamma distribution.
- **shape**: Shape of gamma distribution, usually fixed to 2.0
- **bounds**: Criteria placed on strength axis.
Function gammaSample

Description

Runs MCMC for the hierarchical Gamma model

Usage

gammaSample(dat, M = 10000, keep = (M/10):M, getDIC = TRUE,
freeCrit=TRUE,shape=2,jump=.005)

Arguments

dat Data frame that must include variables cond,sub,item,lag,resp. Indexes for cond,
sub, item, and response must start at zero and have no gapes (i.e., no skipped
subject numbers). Lags must be zero-centered.
M Number of MCMC iterations.
keep Which MCMC iterations should be included in estimates and returned. Use keep
to both get ride of burn-in, and thin chains if necessary
getDIC Logical. should the function compute DIC value? This takes a while if M is
large.
freeCrit Logical. If TRUE (default) individual criteria vary across people. If false, all
participants have the same criteria (but note that overall response biases are still
modeled in the means)
shape Fixed shape across both new and studied distribtuions.
jump The criteria and decorrelating steps utilize Matropolis-Hastings sampling rou-
tines, which require tuning. All MCMC functions should self tune during the
burnin perior (iterations before keep), and they will alert you to the success of
tuning. If acceptance rates are too low, "jump" should be decreased, if they are
too hight, "jump" should be increased. Alternatively, or in addition to adjusting
"jump", simply increase the burnin period which will allow the function more
time to self-tune.

Value

The function returns an internally defined "uvsd" S4 class that includes the following components

mu Indexes which element of blocks contain grand means, mu
alpha Indexes which element of blocks contain participant effects, alpha
beta Indexes which element of blocks contain item effects, beta
s2alpha Indexes which element of blocks contain variance of participant effects (alpha).
s2beta Indexes which element of blocks contain variance of item effects (beta).
theta Indexes which element of blocks contain theta, the slope of the lag effect
gammaSample

- **estN**: Posterior means of block parameters for new-item means
- **estS**: Posterior means of block parameters for studied-item means
- **estS2**: Not used for gamma model.
- **estCrit**: Posterior means of criteria
- **blockN**: Each iteration for each parameter in the new-item mean block. Rows index iteration, columns index parameter.
- **blockS**: Same as blockN, but for the studied-item means
- **blockS2**: Not used for gamma model.
- **s.crit**: Samples of each criteria.
- **pD**: Number of effective parameters used in DIC. Note that this should be smaller than the actual number of parameters, as constraint from the hierarchical structure decreases the number of effective parameters.
- **DIC**: DIC value. Smaller values indicate better fits. Note that DIC is notably biased toward complexity.
- **M**: Number of MCMC iterations run
- **keep**: MCMC iterations that were used for estimation and returned
- **b0**: Metropolis-Hastings acceptance rates for new-item distribution parameters. These should be between .2 and .6. If they are not, the M, keep, or jump need to be adjusted.
- **b0S2**: Metropolis-Hastings acceptance rates for studied-item distribution parameters.
- **b0Crit**: Metropolis-Hastings acceptance rates for criteria.

Author(s)

Michael S. Pratte

See Also

hbmem

Examples

```r
# make data from gamma model
library(hbmem)
sim=gammaSim(I=30,J=200)
dat=as.data.frame(cbind(sim@subj,sim@item,sim@cond,sim@Scond,sim@lag,sim@resp))
colnames(dat)=c("sub","item","cond","Scond","lag","resp")

M=10 # set very small for demo speed
keep=2:M
gamma=gammaSample(dat,M=M,keep=keep,jump=.01)

par(mfrow=c(3,2),pch=19,pty='s')
# Look at chains of MuN and MuS
matplot(gamma@blockN[,gamma@muN],t='l',xlab="Iteration",ylab="Mu-N")
abline(h=sim@muN,col="blue")
```
Function gammaSim

Description
Simulates data from a hierarchical Gamma model.

Usage
gammaSim(NN=1, NS=2, I=30, J=200, K=6, muN=log(.65), s2aN=.2, s2bN=.2, muS=log(c(.8, 1.2)), s2aS=.2, s2bS=.2, lagEffect=-.001, shape=2, crit=matrix(rep(c(.3, .6, 1, 1.2, 1.6), each=I), ncol=(K-1)))

Arguments
- **NN**: Number of conditions for new words.
- **NS**: Number of conditions for studied words.
- **I**: Number of participants.
- **J**: Number of items.
- **K**: Number of response options.
- **muN**: Mean of new-item distribution. If NN is greater than 1, then muN must be a vector of length NN.
- **s2aN**: Variance of participant effects on mean of new-item distribution.
- **s2bN**: Variance of item effects on mean of new-item distribution.
normalSim

muS Mean of studied-item distribution. If NS is greater than 1, then muS must be a vector of length NS.
s2aS Variance of participant effects on mean of studied-item distribution.
s2bS Variance of item effects on mean of studied-item distribution.
lagEffect Linear slope of lag effect on log of studied-item scale.
shape Common shape for both new and studied distributuions.
crit Matrix of criteria (not including -Inf or Inf). Columns correspond to criteria, rows correspond to participants.

Value

The function returns an internally defined “uvsdSim” structure.

Author(s)

Michael S. Pratte

References

See Pratte, Rouder, & Morey (2009)

See Also

hbmem

Examples

library(hbmem)
#Data from hiererchial model
sim=gammaSim()
slotNames(sim)
table(sim@resp,sim@cond,sim@Scond)

#Usefull to make data.frame for passing to model-fitting functions
dat=as.data.frame(cbind(sim@subj,sim@item,sim@cond,sim@Scond,sim@lag,sim@resp))
colnames(dat)=c("sub","item","cond","Scond","lag","resp")
table(dat$resp,dat$cond,dat$Scond)

normalSim Function normalSim

Description

Simulates data from a hierarchical linear normal model.
Usage

normalSim(N=1, I=30, J=300, mu=0, s2a=.2, s2b=.2, muS2=0, s2aS2=0, s2bS2=0)

Arguments

N Number of conditions.
I Number of participants.
J Number of items.
mu Grand mean
s2a Variance of subject effect on the mean
s2b Variance of item effect on the mean
muS2 Overall variance of data on log scale
s2aS2 Variance of subject effect on variance
s2bS2 Variance of item effect on variance

Value

The function returns a data frame with subject (subj), item, lag, and response (resp) columns. Lag is a vector of zeros (i.e., no lag effect).

Author(s)

Michael S. Pratte

See Also

hbmem

Examples

library(hbmem)
I=20
J=50
R=I*J
dat=normalSim(I=I, J=J, mu=10, s2a=1, s2b=1, muS2=log(1), s2aS2=0, s2bS2=0)
summary(dat)
Description

Confidence ratings data from Pratte, Rouder, \& Morey (2009).

Usage

data(prm09)

Format

A flat-field data frame (each row is a trial) with the following variables

cond 0=new; 1=studied
sub index of subject starting at 0
item index of item starting at 0
lag index of lag, zero-centered
resp which response was made; 0="sure new"

Details

Participants studied a list of 240 words, and were then tested on the 240 studied and on 240 new words. At test, participants made one of six confidence ratings ranging from "sure new" to "sure studied". Note that to apply the models to these data the "Scond" variable should be set to "cond", and the "cond" variable should be all zeros. This is a backwards-compatibility issue.

Source

Examples

library(hbmem)
data(prm09)
table(prm09$resp,prm09$cond)
#Turn it into data suitable for
#analysis with HBMEM functions:
newdat=prm09
newdat$Scond=newdat$cond
newdat$cond=0
summary(newdat)
Function `rtgamma`

Description

Returns random draws from truncated gamma distribution.

Usage

```r
rtgamma(N, shape, scale, a, b)
```

Arguments

- `N`: Number of samples.
- `shape`: Shape of gamma distribution.
- `scale`: Scale of gamma distribution.
- `a`: Lower truncation point.
- `b`: Upper truncation point.

Function `rtnorm`

Description

Returns random samples from a truncated normal distribution.

Usage

```r
rtnorm(N, mu, sigma, a, b)
```

Arguments

- `N`: Number of samples to return.
- `mu`: A vector of length N that contains distribution means for each draw.
- `sigma`: A vector of length N that contains distribution standard deviations for each draw.
- `a`: Vector of length N of lower truncation points; may be -Inf.
- `b`: Vector of length N of upper truncation point; may be Inf.

Details

This function is currently unstable for drawing from regions with extremely low probabilities. If this happens is should print a warning, and return a draw from a uniform distribution between a and b. See example below for how to break it.
Value

Returns 'N' random draws.

Author(s)

Michael S. Pratte

See Also

hbmem

Examples

library(hbmem)
#Draw one
rtnorm(1,0,1,0,.2)
#Draw 50
N=500
mu=rep(0,N)
sigma=rep(1,N)
a=rep(1,N)
b=rep(2,N)
x=rtnorm(N,mu,sigma,a,b)
hist(x)

#Break it
rtnorm(1,0,1,1000,1001)

sampleGamma

Function sampleGamma

Description

Samples posterior of mean parameters of the hierarchical linear model on the log scale parameter of a gamma distribution. Usually used within an MCMC loop.

Usage

sampleGamma(sample, y, cond, subj, item,
lag,N,I,J,R,ncond,nsub,nitem,s2mu, s2a, s2b, met, shape,
sampLag,pos=FALSE)
Arguments

sample: Block of linear model parameters from previous iteration.
y: Vector of data
cond: Vector of condition index, starting at zero.
subj: Vector of subject index, starting at zero.
item: Vector of item index, starting at zero.
lag: Vector of lag index, zero-centered.
N: Number of conditions.
I: Number of subjects.
J: Number of items.
R: Total number of trials.
ncond: Vector of length (N) containing number of trials per condition.
nsub: Vector of length (I) containing number of trials per each subject.
nitem: Vector of length (J) containing number of trials per each item.
s2mu: Prior variance on the grand mean mu; usually set to some large number.
s2a: Shape parameter of inverse gamma prior placed on effect variances.
s2b: Rate parameter of inverse gamma prior placed on effect variances. Setting both s2a AND s2b to be small (e.g., .01, .01) makes this an uninformative prior.
met: Vector of tuning parameter for metropolis-hastings steps. Here, all sampling (except variances of alpha and beta) and decorrelating steps utilize the M-H sampling algorithm. This should be adjusted so that .2 < b0 < .6.
shape: Single shape of Gamma distribution.
samplag: Logical. Whether or not to sample the lag effect.
pos: Logical. If true, the model on scale is 1+exp(mu + alpha + beta). That is, the scale is always greater than one.

Value

The function returns a list. The first element of the list is the newly sampled block of parameters. The second element contains a vector of 0s and 1s indicating which of the decorrelating steps were accepted.

Author(s)

Michael S. Pratte

See Also

hbmem
Examples

```r
library(hbmem)
N=2
shape=2
I=30
J=50
R=I*J

# make some data
mu=log(c(1,2))
alpha=rnorm(I,0,.2)
beta=rnorm(J,0,.2)
theta=-.001
cond=sample(0:(N-1),R,replace=TRUE)
subj=rep(0:(I-1),each=J)
item=NULL
for(i in 1:I)
  item=c(item,sample(0:(J-1),J,replace=FALSE))
lag=lag=mean(lag)
resp=1:R
for(r in 1:R)
  {
    resp[r]=rgamma(1,shape=shape,scale=scale)
  }

ncond=table(cond)
nsub=table(subj)
nitem=table(item)

M=10
keep=2:M
B=N*I+J+3
s.block=matrix(0,nrow=M,ncol=B)
met=rep(.08,B)
b0=rep(0,B)
jump=.0005
for(m in 2:M)
  {
    tmp=sampleGamma(s.block[m-1,],resp,cond,subj,item,lag,
    N,I,J,R,ncond,nsub,nitem,.01,.01,met,2,1,pos=TRUE)
    s.block[m,]=tmp[[1]]
    b0=b0 + tmp[[2]]
  }

# Auto-tuning of metropolis decorrelating steps
if(m>20 & m<min(keep))
  {
    met=met+(b0/m<.4)*rep(-jump,B) +(b0/m>.6)*rep(jump,B)
    met[met<jump]=jump
  }
if(m==min(keep)) b0=rep(0,B)
```

sampleNorm

b0/length(keep) #check acceptance rate

hbest=colMeans(s.block[keep,])

par(mfrow=c(2,2),pch=19,pty='s')
matplot(s.block[keep,1:N],t='l')
abline(h=mu,col="green")
acf(s.block[keep,])
plot(hbest[(N+1):(I+N)]-alpha)
abline(0,1,col="green")
plot(hbest[(I+N+1):(I+J+N)]-beta)
abline(0,1,col="green")

#variance of participant effect
mean(s.block[keep,(N+I+J+1)])
#variance of item effect
mean(s.block[keep,(N+I+J+2)])
#estimate of lag effect
mean(s.block[keep,(N+I+J+3)])

sampleNorm
Function sampleNorm

Description

Samples posterior of mean parameters of the hierarchical linear normal model with a single Sigma2. Usually used within an MCMC loop.

Usage

```r
sampleNorm(sample, y, cond, subj, item, lag, N, I, J, R, ncond, nsub, nitem, s2mu, s2a, s2b, meta, metab, sigma2, sampLag=TRUE,Hier=TRUE)
```

Arguments

- `sample`: Block of linear model parameters from previous iteration.
- `y`: Vector of data.
- `cond`: Vector of condition index, starting at zero.
- `subj`: Vector of subject index, starting at zero.
- `item`: Vector of item index, starting at zero.
- `lag`: Vector of lag index, zero-centered.
- `N`: Number of conditions.
- `I`: Number of subjects.
sampleNorm

\[J \] Number of items.

\[R \] Total number of trials.

\[\text{ncond} \] Vector of length (N) containing number of trials per each condition.

\[\text{nsub} \] Vector of length (I) containing number of trials per each subject.

\[\text{nitem} \] Vector of length (J) containing number of trials per each item.

\[s2mu \] Prior variance on the grand mean mu; usually set to some large number.

\[s2a \] Shape parameter of inverse gamma prior placed on effect variances.

\[s2b \] Rate parameter of inverse gamma prior placed on effect variances. Setting both s2a AND s2b to be small (e.g., .01, .01) makes this an uninformative prior.

\[\text{meta} \] Matrix of tuning parameter for metropolis-hastings decorrelating step on mu and alpha. This should be adjusted so that \(.2 < b0 < .6\).

\[\text{metb} \] Tuning parameter for decorrelating step on alpha and beta.

\[\sigma^2 \] Variance of distribution.

\[\text{samplag} \] Logical. Whether or not to sample the lag effect.

\[\text{Hier} \] Logical. If TRUE then effect variances are estimated from data. If FALSE then these values are set to whatever value is in the s2alpha and s2beta slots of sample. This should always be set to TRUE.

Value

The function returns a list. The first element of the list is the newly sampled block of parameters. The second element contains a vector of 0s and 1s indicating which of the decorrelating steps were accepted.

Author(s)

Michael S. Pratte

References

See Pratte, Rouder, & Morey (2009)

See Also

hbmem

Examples

```r
library(hbmem)
N=2
t.mu=c(1,2)
I=2
J=50
R=I*J
#make some data
tmp=normalSim(N=N, I=I, J=J, mu=t.mu, s2a=2, s2b=2, muS2=1, s2aS2=0, s2bS2=0)
dat=tmp[[1]]
```
t.alpha=tmp[[2]]
t.beta=tmp[[3]]

ncond=table(dat$cond)
nsub=table(dat$sub)
nitem=table(dat$item)

M=10
keep=2:M
B=N+I+J+3
s.block=matrix(0,nrow=M,ncol=B)
met=c(.1,.1);b0=c(0,0)
jump=.001
for(m in 2:M)
{
tmp=sampleNorm(s.block[m-1,],dat$resp,dat$cond,dat$subj,dat$item,dat$lag,
N,I,J,R,ncond,nsub,nitem,5,.01,.01,met[1],met[2],1,1)
s.block[m,]=tmp[[1]]
b0=b0 + tmp[[2]]
}

#Auto-tuning of metropolis decorrelating steps
if(m>20 & m<m<min(keep))
{
met=met+(b0/m<.2)*c(-jump,-jump) +(b0/m>.3)*c(jump,jump)
met[met<jump]=jump
}

b0/M #check acceptance rate

hbest=colMeans(s.block[keep,])

par(mfrow=c(2,2),pch=19,pty='s')
matplot(s.block[keep,1:N],t='l')
abline(h=t.mu,col="green")
abline(h=tapply(dat$resp,dat$cond,mean),col="orange")
acf(s.block[keep,])
plot(hbest[(N+1):(I+N)]-t.alpha)
abline(0,1,col="green")
plot(hbest[(I+N+1):(I+J+N)]-t.beta)
abline(0,1,col="green")

#variance of participant effect
mean(s.block[keep,(N+I+J+1)])
#variance of item effect
mean(s.block[keep,(N+I+J+2)])
#estimate of lag effect
mean(s.block[keep,(N+I+J+3)])
Function sampleNormb

Description

Same as `sampleNorm`, but assumes an additive model on `sigma2`, and takes the block of `sigma2` parameters as argument.

Usage

```r
sampleNormb(sample, y, cond, subj, item, lag, N, I, J, R, ncond, nsub, nitem, s2mu, s2a, s2b, meta, metb, blockSigma2, samplag, hier)
```

Arguments

- `sample`: Block of linear model parameters from previous iteration.
- `y`: Vector of data.
- `cond`: Vector of condition index, starting at zero.
- `subj`: Vector of subject index, starting at zero.
- `item`: Vector of item index, starting at zero.
- `lag`: Vector of lag index, zero-centered.
- `N`: Number of conditions.
- `I`: Number of subjects.
- `J`: Number of items.
- `R`: Total number of trials.
- `ncond`: Vector of length (N) containing number of trials per each condition.
- `nsub`: Vector of length (I) containing number of trials per each subject.
- `nitem`: Vector of length (J) containing number of trials per each item.
- `s2mu`: Prior variance on the grand mean mu; usually set to some large number.
- `s2a`: Shape parameter of inverse gamma prior placed on effect variances.
- `s2b`: Rate parameter of inverse gamma prior placed on effect variances. Setting both `s2a` AND `s2b` to be small (e.g., .01, .01) makes this an uninformative prior.
- `meta`: Matrix of tuning parameter for metropolis-hastings decorrelating step on mu and alpha. This should be adjusted so that .2 < b0 < .6.
- `metb`: Tuning parameter for decorrelating step on alpha and beta.
- `blockSigma2`: Block of parameters for Sigma2 (on log scale). Like all blocks, first element is the overall mean, followed by participant effects and then item effects.
- `samplag`: Logical. Whether or not to sample the lag effect.
- `hier`: Logical. If TRUE then effect variances are estimated from data. If false, then these values are fixed to whatever is in the s2alpha and s2beta slots of sample. This value should always be TRUE unless you know what you are doing.
The function returns a list. The first element of the list is the newly sampled block of parameters. The second element contains a vector of 0s or 1s indicating which of the decorrelating steps were accepted.

Author(s)

Michael S. Pratte

See Also

hbmem, sampleSig2b

Examples

library(hbmem)
N=2
I=50
J=200
B=N*I+J+3
R = I * J

mu=c(3,5)
mus2=1og(c(1,2))
alpha = rnorm(I, 0, sqrt(.2))
beta = rnorm(J, 0, sqrt(.2))
alphaS2 = rnorm(I, 0, sqrt(.2))
betaS2 = rnorm(J, 0, sqrt(.2))
cond=sample(0:(N-1),R,replace=TRUE)
subj = rep(0:(I - 1), each = J)
item = rep(0:(J - 1), I)
lag = rep(0, R)
lag=runif(R,-500,500)
lag=lag-mean(lag)
resp = 1:R
for (r in 1:R) {
 sd = sqrt(exp(mus2[cond[r]+1]) + alphaS2[subj[r] + 1] +
 betaS2[item[r] + 1] + .005*lag[r])
 resp[r] = rnorm(1, mean, sd)
}
sim=(as.data.frame(cbind(cond,subj, item, lag, resp)))
attach(sim)
plot(resp~lag)

#########MCMC SETUP#########
blocks=blockS2=matrix(0,nrow=10,ncol=B)
b0mean=c(0,0)
b0S2=rep(0,B)
met=rep(.01,B)
jump=.0001
Function sampleNormR

Description

Samples posterior of mean parameters of the hierarchical linear normal model with the effects a linear function of some other variable.

Usage

sampleNormR(sample, phi, blockD, y, subj, item, lag, I, J, R, nsub, nitem, s2mu, s2a, s2b, meta, metb, sigma2, samplag)
Arguments

sample Block of linear model parameters from previous iteration.
y Vector of data
phi Vector of linear slopes on effects.
blockD Block of parameters that will serve as the means of random effects
subj Vector of subject index, starting at zero.
item Vector of item index, starting at zero.
lag Vector of lag index, zero-centered.
I Number of subjects.
J Number of items.
R Total number of trials.
nsub Vector of length (I) containing number of trials per each subject.
nitem Vector of length (J) containing number of trials per each item.
s2mu Prior variance on the grand mean mu; usually set to some large number.
s2a Shape parameter of inverse gamma prior placed on effect variances.
s2b Rate parameter of inverse gamma prior placed on effect variances. Setting both s2a AND s2b to be small (e.g., .01,.01) makes this an uninformative prior.
meta Matrix of tuning parameter for metropolis-hastings decorrelating step on mu and alpha. This hould be adjusted so that .2 < b0 < .6.
metb Tunning parameter for decorrelating step on alpha and beta.
sigma2 Variance of distribution.
sampLag Logical. Whether or not to sample the lag effect.

Value

The function returns a list. The first element of the list is the newly sampled block of parameters. The THIRD element contains a vector of 0s and 1s indicating which of the decorrelating steps were accepted.

Author(s)

Michael S. Pratte

References

Not published yet.

See Also

hbmem
Examples

```r
library(hbmem)

I=50
J=100
M=10
B=I+J+4
mu=.5
muS2=0
s2a=.2
s2b=.2
s2aS2=0
s2bS2=0

phi=c(.2,.08)
blockD=rep(0,B)
blockD[2:(I+1)]=rnorm(I,0,.5)
blockD[(I+2):(I+J+1)]=rnorm(J,0,.5)

R = I * J
alpha = rnorm(I, phi[1] * blockD[2:(I+1)], sqrt(s2a))
beta = rnorm(J, phi[2] * blockD[(I+2):(I+J+1)], sqrt(s2b))
alphaS2 = rnorm(I, 0, sqrt(s2aS2))
betaS2 = rnorm(J, 0, sqrt(s2bS2))
subj = rep(0:(I - 1), each = J)
item = rep(0:(J - 1), I)
lag = rep(0, R)
resp = 1:R
for (r in 1:R) {
  mean = mu + alpha[subj[r] + 1] + beta[item[r] + 1]
  sd = sqrt(exp(muS2 + alphaS2[subj[r] + 1] + betaS2[item[r] + 1]))
  resp[r] = rnorm(1, mean, sd)
}
sim=(as.data.frame(cbind(subj, item, lag, resp)))

blockR=matrix(0,M,B)
blockR[1,c(I+J+2,1+J+3)]=c(.1,.1)
met=c(.1,.1)
b0=c(0,0)

for(m in 2:M)
{
thet=sampleNormR(blockR[m-1],phi,blockD,sim$resp,sim$subj,sim$item,sim$lag,I,J,1+J,table(sim$sub),table(sim$item),table(sim$lag),I,J)
blockR[m]=thet[[1]]
b0=b0+thet[[3]]
}
est=colMeans(blockR)
par(defpar(2,3))
```
plot(blockR[,1],t='l')
abline(h=mu,col="blue")
plot(blockR[,I+J+2],t='l')
abline(h=s2a,col="blue")
plot(blockR[,I+J+3],t='l')
abline(h=s2b,col="blue")

plot(est[2:(I+1)]-alpha);abline(0,1,col="blue")
plot(est[(I+2):(I+J+1)]-beta);abline(0,1,col="blue")

Compare estimates from regular normal ones:
s.block=matrix(0,nrow=M,ncol=B)
met=c(1,1);b0=c(0,0)
for(m in 2:M)
{
 tmp=sampleNorm(s.block[m-1,],sim$resp,rep(0,length(sim$resp)),sim$subj,sim$item,sim$lag,1,1,J,R,R,table(sim$subj),table(sim$item),100,.01,.01,met[1],met[2],1,1)
 s.block[m,]=tmp[[1]]
 b0=b0 + tmp[[2]]
}
est2=colMeans(s.block)
par(defpar(1,2))
plot(est[2:(I+1)]-est2[2:(I+1)]);abline(0,1,col="blue")
plot(est[(I+2):(I+J+1)]-est2[(I+2):(I+J+1)]);abline(0,1,col="blue")

Function samplePosNorm

Description

Samples posterior of mean parameters of the positive hierarchical linear normal model with a single Sigma2 $(x = N(exp(mu+alpha_i+beta_j),sigma2))$.

Usage

```r
samplePosNorm(sample, y, cond, sub, item, lag, N, I, J, R, 
   sig2mu, a, b, met, sigma2, sampLag)
```

Arguments

- `sample` : Block of linear model parameters from previous iteration.
- `y` : Vector of data
- `cond` : Vector of condition index.
Vector of subject index, starting at zero.
Vector of item index, starting at zero.
Vector of lag index, zero-centered.
Number of conditions.
Number of subjects.
Number of items.
Total number of trials.
Prior variance on the grand mean mu; usually set to some large number.
Shape parameter of inverse gamma prior placed on effect variances.
Rate parameter of inverse gamma prior placed on effect variances. Setting both s2a AND s2b to be small (e.g., .01, .01) makes this an uninformative prior.
Vector of tuning parameter for metropolis-hastings sampling. There is one tuning parameter for mu, each of I alphas, each of J betas, s2alpha, s2beta, and theta. Those for s2alpha and s2beta are placeholders, as these parameters are sampled with gibbs.
Variance of distribution.
Logical. Whether or not to sample the lag effect.

The function returns a list. The first element of the list is the newly sampled block of parameters. The second element contains a vector of 0s and 1s indicating which of the decorrelating steps were accepted.

Michael S. Pratte

Not Published yet

hbmem

library(hbmem)

N=3
I=50
J=100
R=N*I*J
t.sigma2=3
t.mu=c(-1,0,1)
t.sig2alpha=.2
t.sig2beta=.6
t.alpha=rnorm(1,0,sqrt(t.sig2alpha))
t.beta=rnorm(1,0,sqrt(t.sig2beta))
t.theta=.5
cond=sample((0:(N-1)),R,replace=TRUE)
sub=rep(rep(0:(I-1),each=J),N)
item=rep(rep(0:(J-1),I),N)
lag=scale(rnorm(R,0,sqrt(t.sigma2)/10))

tmean=1:R
y=rnorm(R,tmean,sqrt(t.sigma2))

M=10 #Way too low for real analysis!
B=N+I+J+3
block=matrix(0,nrow=M,ncol=B)
met=rep(.1,B);jump=.0001
b0=rep(0,B)
keep=2:M
for(m in 2:M)
{
 tmp=samplePosNorm(block[m-1,],y,cond,sub,item,lag,N,I,J,R,1,.01,.01,met,t.sigma2,1)
 block[m,]=tmp[[1]]
 b0=b0+tmp[[2]]
 if(m<keep[1])
 {
 met=met+(b0/m<.3)*jump +(b0/m>.5)*jump
 met[met<jump]=jump
 }
 if(m%100==0) print(m)
}
est=colMeans(block[keep,])
b0/M

par(mfrow=c(3,2))
est.mu=est[1:N]
matplot(exp(block[keep,1:N]),t='l',main="Mu",ylab="Mu")
abline(h=exp(t.mu),col="blue")
#abline(h=tapply(y,cond,mean),col="green")
acf(block[keep,1],main="ACF of Mu")
est.alpha=est[(N+1):(N+I)]
plot(est.alpha-t.alpha,ylab="Est. Alpha",xlab="True Alpha");abline(0,1)
est.beta=est[(N+I+1):(N+I+J)]
plot(est.beta-t.beta,ylab="Est. Beta",xlab="True Beta");abline(0,1)
est.theta=est[N+I+J+3]
plot(block[keep,(N+I+J+3)],t='l',main="Theta",ylab="Theta")
abline(h=t.theta,col="blue")

plot(density(block[keep,(N+I+J+3)]),col="red",main="Posterior of Variances",xlim=c(0,1))
sampleSig2

Function sampleSig2

Description

Samples posterior of the variance of a normal distribution which has an additive structure on the mean, and a single variance for all values. Usually used within MCMC loop.

Usage

sampleSig2(sig2, block, y, cond, sub, item, lag, N, ncond, I, J, a, b)

Arguments

- `sig2` Sample of sig2 from previous iteration.
- `block` Vector of parameters for mean of distribution
- `y` Vector of data
- `cond` Vector that indexes condition (e.g., deep vs. shallow)
- `sub` Vector of subject index, starting at zero.
- `item` Vector of item index, starting at zero.
- `lag` Vector of lag index, zero-centered.
- `N` Number of conditions.
- `ncond` Number of trials per condition.
- `I` Number of subjects.
- `J` Number of items.
- `a` Shape parameter for inverse gamma prior on Sigma2.
- `b` Rate parameter for inverse gamma prior on Sigma2. Setting 'a' and 'b' to small values (e.g., .01, .01) makes the prior non-informative.

Value

The function returns a new sample of Sigma2.

Author(s)

Michael S. Pratte
See Also

hbmem

Examples

library(hbmem)
ttrue.mean=c(0,0)
true.sigma2=c(10,20)
N=2
I=1
J=1
R=1000
cond=rep(0:1,R/2)
ncond=table(cond)
sub=rep(0,R)
item=rep(0,R)
lag=rep(0,R)

#make some data
dat=rnorm(R, true.mean[cond+1], sqrt(true.sigma2[cond+1]))
true.block=c(true.mean, rep(0,(I+J+3)))
a=b=.01
M=10
s.sigma2=matrix(1,M,N)

for(m in 2:M)
{
 s.sigma2[m,]=sampleSig2(s.sigma2[m-1,], true.block, dat, cond, sub, item, lag, N, ncond, I, J, a, b)
}
par(mfrow=c(1,1),pty='s')
matplot(s.sigma2,t='l')
abline(h=true.sigma2,col="blue")
abline(h=colMeans(s.sigma2),col="green") #post mean

sampleSig2b Function sampleSig2b

Description

Samples posterior of the variance of a normal distribution which has the same additive structure on the mean and the log of variance. Usually used within MCMC loop.
Usage

```r
sampleSig2b(sample, y, cond, sub, item, lag, N, I, J, R, ncond, nsub, nitem, s2mu, s2a, s2b, met, blockMean, sampLag =)
```

Arguments

- `sample`: Previous sample of block variances.
- `y`: Vector of data.
- `cond`: Vector of condition index, starting at zero.
- `sub`: Vector of subject index, starting at zero.
- `item`: Vector of item index, starting at zero.
- `lag`: Vector of lag index, zero-centered.
- `N`: Number of conditions.
- `I`: Number of subjects.
- `J`: Number of items.
- `R`: Total number of trials.
- `ncond`: Vector of length (N) containing number of trials per each condition.
- `nsub`: Vector of length (I) containing number of trials per each subject.
- `nitem`: Vector of length (J) containing number of trials per each item.
- `s2mu`: Prior variance on the grand mean mu; usually set to some large number.
- `s2a`: Shape parameter of inverse gamma prior placed on effect variances.
- `s2b`: Rate parameter of inverse gamma prior placed on effect variances. Setting both s2a AND s2b to be small (e.g., .01, .01) makes this an uninformative prior.
- `met`: Vector of metropolis-hastins tuning parameters.
- `blockMean`: Block of parameters for the mean of the distribution.
- `sampLag`: Logical. Whether or not to sample the lag effect.
- `Hier`: Logical. If TRUE then effect variances are estimated from data. If FALSE then these values are set to whatever value is in the s2alpha and s2beta slots of sample. This should always be set to TRUE.

Details

This function is for a model with an additive structure on the log of the variance of a normal distribution. This model is under development, the code is buggy, and it might not even work in the end.

Value

The function returns a new sample of a block of Sigma2 parameters.

Author(s)

Michael S. Pratte
See Also

hbmem, sampleNormb

Examples

See sampleNormb for example

uvsd-class

Class "uvsd"

Description

This class holds objects that are returned from uvsdSample.

Slots

muN: Object of class "numeric"
alphaN: Object of class "numeric"
betaN: Object of class "numeric"
s2alphaN: Object of class "numeric"
s2betaN: Object of class "numeric"
thetaN: Object of class "numeric"
muS: Object of class "numeric"
alphaS: Object of class "numeric"
betaS: Object of class "numeric"
s2alphaS: Object of class "numeric"
s2betaS: Object of class "numeric"
thetaS: Object of class "numeric"
estN: Object of class "numeric"
estS: Object of class "numeric"
estS2: Object of class "numeric"
estCrit: Object of class "matrix"
blockN: Object of class "matrix"
blockS: Object of class "matrix"
blockS2: Object of class "matrix"
s.crit: Object of class "array"
pD: Object of class "numeric"
DIC: Object of class "numeric"
M: Object of class "numeric"
keep: Object of class "numeric"
b0: Object of class "matrix"
b0S2: Object of class "numeric"
b0Crit: Object of class "numeric"
Function uvsdLogLike

Description
Computes log likelihood for UVSD model

Usage
uvsdLogLike(R, NN, NS, I, J, K, dat, cond, Scond, subj, item, lag, blockN, blockS, blockS2, crit)

Arguments

- **R**: Total number of trials.
- **NN**: Number of new-item conditions.
- **NS**: Number of studied-item conditions.
- **I**: Number of subjects.
- **J**: Number of items.
- **K**: Number of response options.
- **dat**: Vector of responses, ranging from 0:(K-1).
- **cond**: Vector of condition index.
- **Scond**: Vector of new/studied condition index; 0=new, 1=studied.
- **subj**: Vector of subject index, starting at 0 with no missing subject numbers.
- **item**: Vector of item index, starting at 0 with no missing item numbers.
- **lag**: Vector of lag index.
- **blockN**: Block of parameters for new-item means.
- **blockS**: Block of parameters for studied-item means.
- **blockS2**: Block of parameters for Sigma2 values. If there is only one Sigma2 for all participants and items, then the first element of blockS2 should contain this value, and the other elements fo blockS2 should be zero.
- **crit**: VECTOR of criteria including -Inf and Inf for top and bottom criteria, respectively. Vector contains the (K+1) criteria for the first subjects, followed by those for the second subject, etc.

Value
The function returns the log likelihood.

Author(s)
Michael S. Pratte
Function uvsdProbs

Description

Returns the probability of making confidence ratings given parameters of UVSD.

Usage

```r
textuvsdProbs(mean, sd, bounds)
```

Arguments

- `mean`: Mean of the signal-detection distribution. In the common parameterization of the model, this would be zero for new-item trials, and d’ for studied-item trials. In the PRM09 parameterization, these are dn and ds for new and studied-item trials, respectively.
- `sd`: Standard deviation of the distribution
- `bounds`: Criteria (not including -Inf or Inf).

Value

The function returns the probability of making each response for the parameters given.

Author(s)

Michael S. Pratte

References

See Pratte, Rouder, & Morey (2009)

See Also

hbmem

Examples

```r
textuvsdProbs(-1,1,c(-1,-.5,0,.5,1)) #New condition
textuvsdProbs(1,1.3,c(-1,-.5,0,.5,1)) #Studied condition
```
uvsdSample

Function uvsdSample

Description

Runs MCMC estimation for the hierarchical UVSD model.

Usage

```r
uvsdSample(dat, M = 10000, keep = (M/10):M, getDIC = TRUE,
freeCrit=TRUE, equalVar=FALSE, freeSig2=FALSE, Hier=TRUE,jump=.0001)
```

Arguments

- **dat**
 Data frame that must include variables Scond, cond, sub, item, lag, resp. Scond indexes studied/new, whereas cond indexes conditions nested within the studied or new conditions. Indexes for Scond, cond, sub, item, and response must start at zero and have no gaps (i.e., no skipped subject numbers). Lags must be zero-centered.

- **M**
 Number of MCMC iterations.

- **keep**
 Which MCMC iterations should be included in estimates and returned. Use keep to both get ride of burn-in, and thin chains if necessary.

- **getDIC**
 Logical. should the function compute DIC value? This takes a while if M is large.

- **freeCrit**
 Logical. If TRUE (default) individual criteria vary across people. If false, all participants have the same criteria. This should be set to false if there is only one participant, e.g., if averaging data over subjects.

- **equalVar**
 Logical. If FALSE (default), unequal-variance model is fit. If TRUE, equal-variance model is fit.

- **freeSig2**
 Logical. If FALSE (default), one sigma is fit for all participants and items (as in Pratte, et al., 2009). If TRUE, then an additive model is placed on the log of sigma2 (as in Pratte and Rouder (2010)).

- **Hier**
 Logical. If TRUE then the variances of effects (e.g., item effects) are estimated from the data, i.e., effects are treated as random. If FALSE then these variances are fixed to 2.0 (.5 for recollection effects), thus treating these effects as fixed. This option is there to allow for comparison with more traditional approaches, and to see the effects of imposing hierarchal structure. It should always be set to TRUE in real analysis, and is not even guaranteed to work if set to false.

- **jump**
 The criteria and decorrelating steps utilize Matropolis-Hastings sampling routines, which require tuning. All MCMC functions should self tune during the burnin period (iterations before keep), and they will alert you to the success of tuning. If acceptance rates are too low, "jump" should be decreased, if they are too high, "jump" should be increased. Alternatively, or in addition to adjusting "jump", simply increase the burnin period which will allow the function more time to self-tune.
The function returns an internally defined "uvsd" S4 class that includes the following components:

- **mu**: Indexes which element of blocks contain grand means, \(\mu \).
- **alpha**: Indexes which element of blocks contain participant effects, \(\alpha \).
- **beta**: Indexes which element of blocks contain item effects, \(\beta \).
- **sRalpha**: Indexes which element of blocks contain variance of participant effects (\(\alpha \)).
- **sRbeta**: Indexes which element of blocks contain variance of item effects (\(\beta \)).
- **theta**: Indexes which element of blocks contain theta, the slope of the lag effect.
- **estN**: Posterior means of block parameters for new-item means.
- **estS**: Posterior means of block parameters for studied-item means.
- **estS2**: Posterior means of block for studied-item variances.
- **estCrit**: Posterior means of criteria.
- **blockN**: Each iteration for each parameter in the new-item mean block. Rows index iteration, columns index parameter.
- **blockS**: Same as blockN, but for the studied-item means.
- **blockS2**: Same as blockN, but for variances of studied-item distribution. If equalVar=TRUE, then these values are all zero. If UVSD is fit but freeSig2=FALSE, then only the first element is non-zero (\(\mu \)).
- **s.n_crit**: Samples of each criteria.
- **pd**: Number of effective parameters used in DIC. Note that this should be smaller than the actual number of parameters, as constraint from the hierarchical structure decreases the number of effective parameters.
- **DIC**: DIC value. Smaller values indicate better fits. Note that DIC is notably biased toward complexity.
- **M**: Number of MCMC iterations run.
- **keep**: MCMC iterations that were used for estimation and returned.
- **b0**: Metropolis-Hastings acceptance rates for decorrelating steps. These should be between .2 and .6. If they are not, the M, keep, or jump need to be adjusted.
- **b0S2**: If additive model is placed on Sigma2 (i.e., freeSigma2=TRUE), then all parameters on S2 must be tuned. b0S2 are the acceptance probabilities for these parameters.

Author(s)

Michael S. Pratte

References

See Pratte, Rouder, & Morey (2009)

See Also

hbmem
Examples

In this example we generate data from UVSD with a different muN,mus and sigma2 for every person and item. These data are then fit with a hierarchical UVSD allowing participant or item effects on log(sigma2).

```r
library(hbmem)
sim = uvsdSim(N=N=1,mus=-.5,Ns=2,mus=c(.5,1),I=30,J=300,s2aN = .2, s2bN = .2, muS2= log(c(1.3,1.5)),s2aS= .2,s2bS= .2,s2aS2= .2,s2bS2= .2)
dat = as.data.frame(cbind(sim@subj,sim@item,sim@cond,sim@Scond,sim@lag,sim@resp))
colnames(dat) = c("sub","item","cond","Scond","lag","resp")

M=10 #Way too low for real analysis
keep=2:M
uvbsd = uvsdSample(dat,M=M,keep=keep,equalVar=FALSE,freeSig2=TRUE,jump=.0001,Hier=1)

par(mfrow=c(3,2), pch=19, pty='s')
#Look at chains of MuN and MuS
matplot(uvbsd@blockN[uvbsd@muN],t='l',ylab="Iteration", xlab="Mu-N")
abline(h=uvbsd@muN,col="blue")
matplot(uvbsd@blocks[uvbsd@mus],t='l',ylab="Iteration", xlab="Mu-S")
abline(h=uvbsd@mus,col="blue")

#Estimates of strength effects as function of true values
plot(uvbsd@estN[uvbsd@alphaN] ~ sim@alphaN, xlab="True Alpha-N", ylab="Est. Alpha-N"); abline(0,1,col="blue")
plot(uvbsd@estS[uvbsd@alphas] ~ sim@alphas, xlab="True Alpha-S", ylab="Est. Alpha-S"); abline(0,1,col="blue")
plot(uvbsd@estN[uvbsd@betan] ~ sim@betan, xlab="True Beta-N", ylab="Est. Beta-N"); abline(0,1,col="blue")
plot(uvbsd@estS[uvbsd@betas] ~ sim@betas, xlab="True Beta-S", ylab="Est. Beta-S"); abline(0,1,col="blue")

#Sigma^2 effects
#Note that Sigma^2 is biased high with few participants and items. This bias goes away with larger sample sizes.
par(mfrow=c(2,2), pch=19, pty='s')
matplot(sqrt(exp(uvbsd@blocksS[uvbsd@mus])),t='l',ylab="Iteration", xlab="Mu-Sigma2")
abline(h=sqrt(exp(uvbsd@mus)),col="blue")
plot(uvbsd@blocksS[uvbsd@thetas],t='l')
plot(uvbsd@estS[uvbsd@alphas] ~ sim@alphasS, xlab="True Alpha-Sigma2", ylab="Est. Alpha-Sigma2"); abline(0,1,col="blue")
plot(uvbsd@estS[uvbsd@betas] ~ sim@betasS, xlab="True Beta-Sigma2", ylab="Est. Beta-Sigma2"); abline(0,1,col="blue")

#Look at some criteria
par(mfrow=c(2,2))
for(i in 1:4)
matplot(t(uvbsd@s.crit[i,,]),t='l')
```
Function `uvsdsim`

Description

Simulates data from a hierarchical UVSD model.

Usage

```r
uvsdsim(NN = 2, NS = 1, I = 30, J = 200, K = 6, muN = c(-0.5, -0.2), s2aN = 0.2, s2bN = 0.2, muS = 0.5, s2aS = 0.2, s2bS = 0.2, 
muS2 = log(1), s2aS2 = 0, s2bS2 = 0, lagEffect = -0.001, crit = matrix(rep(c(-1.5, -0.5, 0, 0.5, 1.5), 30), 30, 1))
```

Arguments

- `NN` Number of conditions for new words.
- `NS` Number of conditions for studied words.
- `I` Number of participants.
- `J` Number of items.
- `K` Number of response options.
- `muN` Mean of new-item distribution. If `NN` is greater than 1, then `muN` must be a vector of length `NN`.
- `s2aN` Variance of participant effects on mean of new-item distribution.
- `s2bN` Variance of item effects on mean of new-item distribution.
- `muS` Mean of studied-item distribution. If `NS` is greater than 1, then `muS` must be a vector of length `NS`.
- `s2aS` Variance of participant effects on mean of studied-item distribution.
- `s2bS` Variance of item effects on mean of studied-item distribution.
- `lagEffect` Magnitude of linear lag effect on both studied-item distribution and log(sigma2).
- `muS2` Mean variance of studied-item distribution, sigma2
- `s2aS2` Variance of participant effects sigma2.
- `s2bS2` Variance of item effects on sigma2.
- `crit` Matrix of criteria (not including -Inf or Inf). Columns correspond to criteria, rows correspond to participants.

Value

The function returns an internally defined “uvsdsim” structure.

Author(s)

Michael S. Pratte
References

See Pratte, Rouder, & Morey (2009)

See Also

hbmem

Examples

library(hbmem)
#Data from hiererchial model
sim=uvsdSim()
slotNames(sim)
table(sim@resp,sim@scond,sim@cond)

#Usefull to make data.frame for passing to model-fitting functions
dat=as.data.frame(cbind(sim@subj,sim@item,sim@cond,sim@scond,sim@lag,sim@resp))
colnames(dat)=c("sub","item","cond","Scond","lag","resp")
table(dat$resp,dat$Scond,dat$cond)

uvsdSim-class

Class "uvsdSim"

Description

Class that holds objects from function uvsdSim()

Slots

Scond: Object of class "numeric"
cond: Object of class "numeric"
subj: Object of class "numeric"
item: Object of class "numeric"
lag: Object of class "numeric"
resp: Object of class "numeric"
muN: Object of class "numeric"
muS: Object of class "numeric"
muS2: Object of class "numeric"
alphaN: Object of class "numeric"
betaN: Object of class "numeric"
alphaS: Object of class "numeric"
betaS: Object of class "numeric"
alphaS2: Object of class "numeric"
betaS2: Object of class "numeric"
crit: Object of class "matrix"
Index

*Topic classes
 dpsd-class, 4
dpsdSim-class, 12
uvsd-class, 40
uvsdSim-class, 47

*Topic datasets
 prm09, 21

*Topic models
 dpsdRNSample, 6
dpsdSample, 8
dpsdSim, 11
gammaSample, 16

*Topic package
 hbmem-package, 2

dpsd-class, 4
dpsdProbs, 5
dpsdRNSample, 6
dpsdRNSim, 7
dpsdSample, 8
dpsdSim, 11
dpsdSim-class, 12
gammaLikeSample, 13
gammaProbs, 15
gammaSample, 16
gammaSim, 18

hbmem (hbmem-package), 2
hbmem-package, 2

normalSim, 19

prm09, 21

rtgamma, 22
rtnorm, 22

sampleGamma, 23
sampleNorm, 26
sampleNormb, 29

sampleNormR, 31
samplePosNorm, 34
sampleSig2, 37
sampleSig2b, 38

uvsd-class, 40
uvsdLogLike, 41
uvsdProbs, 42
uvsdSample, 43
uvsdSim, 46
uvsdSim-class, 47