Package ‘hddplot’

June 15, 2018

Type Package

Title Use Known Groups in High-Dimensional Data to Derive Scores for Plots

Version 0.59

Date 2018-06-15

Author John Maindonald

Maintainer John Maindonald <jhmaindonald@gmail.com>

VignetteBuilder knitr

Description Cross-validated linear discriminant calculations determine the optimum number of features. Test and training scores from successive cross-validation steps determine, via a principal components calculation, a low-dimensional global space onto which test scores are projected, in order to plot them. Further functions are included that are intended for didactic use. The package implements, and extends, methods described in J.H. Maindonald and C.J. Burden (2005) <https://journal.austms.org.au/V46/CTAC2004/Main/home.html>.

LazyLoad true

LazyData true

Depends R (>= 3.0.0)

Imports MASS, multtest

Suggests knitr

ZipData yes

License GPL (>= 2)

Repository CRAN

NeedsCompilation no

Date/Publication 2018-06-15 19:55:43 UTC
Description

Cross-validated linear discriminant calculations determine the optimum number of features. Test and training scores from successive cross-validation steps determine, via a principal components calculation, a low-dimensional global space onto which test scores are projected, in order to plot them. Further functions are included that are intended for didactic use. The package implements, and extends, methods described in J.H. Maindonald and C.J. Burden (2005) <https://journal.austms.org.au/V46/CTAC2004/Main/home.html>.

Details

The DESCRIPTION file:

Package: hddplot
Type: Package
Title: Use Known Groups in High-Dimensional Data to Derive Scores for Plots
Version: 0.59
Date: 2018-06-15
Author: John Maindonald
Maintainer: John Maindonald <jhmaindonald@gmail.com>
VignetteBuilder: knitr
Description: Cross-validated linear discriminant calculations determine the optimum number of features. Test and training scores from successive cross-validation steps determine, via a principal components calculation, a low-dimensional global space onto which test scores are projected, in order to plot them. Further functions are included that are intended for didactic use. The package implements, and extends, methods described in J.H. Maindonald and C.J. Burden (2005) <https://journal.austms.org.au/V46/CTAC2004/Main/home.html>.

LazyLoad: true
LazyData: true
Depends: R (>= 3.0.0)
Imports: MASS, multtest
Suggests: knitr
ZipData: yes
License: GPL (>=2)
URL: http://maths-people.anu.edu.au/~johnm/
Repository: CRAN

Index of help topics:

Golub
Golub data (7129 rows by 72 columns), after normalization

accTrainTest
Two subsets of data each take in turn the role of test set

aovFbyrow
Calculate aov F-statistic for each row of a matrix

cvdisc
Cross-validated accuracy, in linear discriminant calculations

cvscores
For high-dimensional data with known groups, derive scores for plotting

defectiveCVdisc
defective accuracy assessments from linear discriminant calculations

divideUp
Partition data into multiple nearly equal subsets

golubInfo
Classifying factors for the 72 columns of the Golub data set

hddplot-package
Use Known Groups in High-Dimensional Data to Derive Scores for Plots

orderFeatures
Order features, based on their ability to discriminate

pcp
Convenience version of the singular value decomposition

plotTrainTest
Plot predictions for both a I/II train/test split, and the reverse

qqthin
A version of qqplot() that thins out points that overplot

scoreplot
Plot discriminant function scores, with various identification

simulateScores
Generate linear discriminant scores from random data, after selection

Further information is available in the following vignettes:

QUICKhddplot Feature Selection Bias in Classification of High Dimensional Data (source)
Cross-validated linear discriminant calculations determine the optimum number of features. Test and training scores from successive cross-validation steps determine, via a principal components calculation, a low-dimensional global space onto which test scores are projected, in order to plot them. Further functions are included for didactic purposes.

```
Package: hddplot
Type: Package
Version: 1.0
Date: 2006-01-09
License: GPL Version 2 or later.
```

The most important functions are:

- `cvdisc`: Determine variation in cross-validated accuracy with number of features
- `cvscores`: For a specific choice of number of features, determine scores that can be used for plotting

Note also `scoreplot` (plot scores), `qqthin` (qqplots, designed to avoid generating large files when there are many points), and functions that are intended to illustrate issues that arise in the plotting of expression array and other high-dimensional data

Author(s)

John Maindonald

Maintainer: John Maindonald <jhmaindonald@gmail.com>

References

See Also

`cvscores`, `scoreplot`

Examples

```r
## Use first 500 rows (expression values) of Golub, for demonstration.
data(Golub)
data(golubInfo)
attach(golubInfo)
miniG.BM <- Golub[1:500, BM=="BM"] # 1st 500 rows only
cancer.BM <- cancer[BM=="BM"]
miniG.cv <- cvdisc(miniG.BM, cl=cancer.BM, nfeatures=1:10, nfold=c(10,4))
miniG.scores <- cvscores(cvlist=miniG.cv, nfeatures=4, cl.other=NULL)
subsetB <- (cancer=="allB") & (tissue.mf %in% c("BM:f","BM:m","PB:m"))
tissue.mfB <- tissue.mf[subsetB, drop=TRUE]
```
Description

A division of data is specified, for use of linear discriminant analysis, into a training and test set. Feature selection and model fitting is formed, first with I/II as training/test, then with II/I as training/test.

Usage

```r
acctrainTest(x = matrix(rnorm(1000), ncol=20), cl = factor(rep(1:3,c(7,9,4))),
  traintest = divideUp(cl, nset=2), nfeatures = NULL, print.acc = FALSE,
  print.progress=TRUE)
```

Arguments

- `x` Matrix; rows are features, and columns are observations ('samples')
- `cl` Factor that classifies columns into groups that will classify the data for purposes of discriminant calculations
- `traintest` Values that specify a division of observations into two groups. In the first pass (fold), one to be training and the other test, with the roles then reversed in a second pass or fold.
- `nfeatures` integer: numbers of features for which calculations are required
- `print.acc` logical: should accuracies be printed?
- `print.progress` logical: should progress by feature number be printed?

Value

- `sub1.2` row numbers of features, by order of values of the group separation measure, for the first subset (I) of the x
- `acc1.2` accuracies, with I as training set and II as test
- `sub2.1` row numbers of features, by order of values of the group separation measure, for the second subset (II) of the x
- `acc2.1` accuracies, with II as training set and I as test
Author(s)

John Maindonald

Examples

```r
class <- matrix(rnorm(1000), ncol=20)
cl <- factor(rep(1:3, c(7,9,4)))
gp.id <- divideUp(cl, nset=2)
accTrainTest(x=class, cl=gp.id, 
nfeatures=1:16, print.acc=TRUE, print.progress=TRUE)

## The function is currently defined as

function(x=matrix(rnorm(1000), ncol=20), cl = factor(rep(1:3, c(7,9,4))),
    traintest=divideUp(cl, nset=2), nfeatures=NULL, print.acc=FALSE){
    traintest <- factor(traintest)
    train <- traintest==levels(traintest)[1]
    testset <- traintest==levels(traintest)[2]
    cl1 <- cl[train]
    cl2 <- cl[testset]
    ng1 <- length(cl1)
    ng2 <- length(cl2)
    maxg <- max(c(ng1-length(unique(cl1))-2,
                 ng2-length(unique(cl2))-2))
    if(is.null(nfeatures)){
        max.features <- maxg
        nfeatures <- 1:max.features
    } else
    {
        if(max(nfeatures)>maxg)nfeatures <- nfeatures[nfeatures<=maxg]
        max.features <- max(nfeatures)
    }
    ord1 <- orderFeatures(x, cl, subset=train)[1:max.features]
    ord2 <- orderFeatures(x, cl, subset=testset)[1:max.features]
    ord <- unique(c(ord1, ord2))
    sub1 <- match(ord1, ord)
    sub2 <- match(ord2, ord)
    df1 <- data.frame(t(x[ord, train]))
    df2 <- data.frame(t(x[ord, testset]))
    acc1 <- acc2 <- numeric(max(nfeatures))
    for(i in nfeatures){
        if(print.progress)cat(paste(i, ",", sep="")
        df1.lda <- lda(df1, sub1[1:i], drop=FALSE, cl1)
        hat2 <- predict(df1.lda, newdata=df2, sub2[1:i], drop=FALSE)
        tab <- table(hat2, cl2)
        acc1[i] <- sum(tab[row(tab)==col(tab)])/sum(tab)
        df2.lda <- lda(df2, sub2[1:i], drop=FALSE, cl2)
        hat1 <- predict(df2.lda, newdata=df1, sub1[1:i], drop=FALSE)
        tab <- table(hat1, cl1)
        acc2[i] <- sum(tab[row(tab)==col(tab)])/sum(tab)
    }
    cat("\\n")
    if(print.acc){
```

```r
print(round(acc1,2))
print(round(acc2,2))
}
maxacc1 <- max(acc1)
maxacc2 <- max(acc2)
sub1 <- match(maxacc1, acc1)
sub2 <- match(maxacc2, acc2)
nextacc1 <- max(acc1[acc1<1])
nextacc2 <- max(acc1[acc1<2])
lower1 <- maxacc1-sqrt(nextacc1*(1-nextacc1)/ng1)
lower2 <- maxacc2-sqrt(nextacc2*(1-nextacc2)/ng2)
lsub1 <- min((1:ng1)[acc1>lower1])
lsub2 <- min((1:ng2)[acc2>lower2])
lower <- c("Best accuracy, less 1SD ",
          paste(paste(round(c(lower1, lower2)), c(lsub1, lsub2),
               sep= " ", " features ", sep=""))
best <- c("Best accuracy",
          paste(paste(round(c(maxacc1, maxacc2)), c(sub1, sub2),
               sep= " ", " features ", sep="")))
acc.df <- cbind(lower, best)
dimnames(acc.df) <- list(c("Training/test split",
                          "I (training) / II (test) ",
                          "II (training) / I (test) "),c("",""))
print(acc.df, quote=FALSE)
invisible(list(sub1.2=ord1, acc1.2=acc1, sub2.1=ord2, acc2.1=acc2))
}
```

aovFbyrow

calculate aov F-statistic for each row of a matrix

Description

Returns aov F-statistic for each row of `x`.

Usage

```r
aovFbyrow(x=matrix(rnorm(1000), ncol=20), cl = factor(rep(1:3, c(7,9,4))))
```

Arguments

- `x`: features by observations matrix
- `cl`: factor that classifies the values in each row

Details

This uses the functions `qr()` and `qr.qty()` for the main part of the calculation, for handling the calculations efficiently.

Value

one F-statistic for each row of `x`

Author(s)

John Maindonald

See Also

See also `orderFeatures`

Examples

```r
mat <- matrix(rnorm(1000), ncol=20)
c1 <- factor(rep(1:3, c(7,9,4)))
Fstats <- aovByRow(x = mat, cl = c1)

## The function is currently defined as
aovByRow <-
function(x=matrix(rnorm(1000), ncol=20),
        cl=factor(rep(1:3, c(7,9,4)))){
y <- t(x)
qr.obj <- qr(model.matrix(~cl))
qty.obj <- qr.qty(qr.obj,y)
tab <- table(factor(cl))
dfb <- length(tab)-1
dfw <- sum(tab)-dfb-1
ms.between <- apply(qty.obj[2:(dfb+1)], , drop=FALSE)^2, 2, sum)/dfb
ms.within <- apply(qty.obj[-1:(dfb+1)], , drop=FALSE)^2, 2, sum)/dfw
Fstat <- ms.between/ms.within
}
```

cvdisc

Cross-validated accuracy, in linear discriminant calculations

Description

Determine cross-validated accuracy, for each of a number of features in a specified range, with feature selection repeated at each step of the cross-validation.

Usage

```r
cvdisc(x, cl, nfold = c(10,1), test = "f", nfeatures = 2, seed = 31,
funda = lda, print.progress = TRUE, subset = NULL)
```
Arguments

x Matrix; rows are features, and columns are observations ('samples')
c1 Factor that classifies columns into groups
nfold Number of folds for the cross-validation. Optionally, a second number species the number of repeats of the cross-validation.
test What statistic will be used to measure separation between groups? Currently "f" is the only possibility.
nfeatures Specifies the different numbers of features (e.g., 1:10) that will be tried, to determine cross-validation accuracy in each instance
seed This can be used to specify a starting value for the random number generator, in order to make calculations repeatable
funda Function that will be used for discrimination. Currently lda is the only option
print.progress Set to TRUE (default) for printing out, as calculations proceed, the number of the current fold
subset Allows the use of a subset of the samples (observations)

Value

folds Each column gives, for one run of the cross-validation, numbers that identify the nfold distinct folds of the cross-validation
xused returns the rows of x that were used, in at least one fold
c1 Factor that classifies columns into groups
acc.cv Cross-validated accuracy
genelist Array: max(nfeatures) by number of folds by number of repeats, identifying the features chosen at each repeat of each fold. (for k < max(nfeatures) features, take the initial k rows
Fmatrix Array, with the same dimensions as genelist, that gives the anova F-statistic when that feature is used on its own to separate groups
nfeatures Specifies the different numbers of features that were tried, to determine cross-validation accuracy in each instance

Author(s)

John Maindonald

See Also

See also cvscores, scoreplot
Examples

```r
## Use first 500 rows (expression values) of Golub, for demonstration.
data(Golub)
data(golubInfo)
attach(golubInfo)
miniG.BM <- Golub[1:500, BM.PB=="BM"]  # 1st 500 rows only
cancer.BM <- cancer[BM.PB=="BM"]
miniG.cv <- cvdisc(miniG.BM, cl=cancer.BM, nfeatures=1:10,
nfold=c(3,1))
## Plot cross-validated accuracy, as a function of number of features
plot(miniG.cv$acc.cv, type="l")
```

The function is currently defined as
```r
function(x, cl, nfold=NULL, test="f",
  nfeatures=2, seed=31, funda=lda, print.progress=TRUE,
  subset=NULL){
  ## If nfold is not specified, use leave-one-out CV
  if(is.null(nfold))nfold <- sum(!is.na(cl))
  ## Option to omit one or more points
  if(!is.null(subset)){
    nfold[1] <- min(nfold[1], sum(!is.na(cl)));
    if(any(is.na(cl))){
      x <- x[,!is.na(cl)]
      cl <- cl[!is.na(cl)]
    }
  }
  if(length(nfold)==1)nfold <- c(nfold,1)
  cl <- factor(cl)
nfold <- length(levels(cl))
genes <- rownames(x)
nobs <- dim(x)[2]
if(is.null(genes)){
  genes <- paste(1:dim(x)[1])
  print("Input rows (features) are not named. Names")
  print(paste("","", dim(x)[1], " will be assigned.", sep=""))
  rownames(x) <- genes
}
require(MASS)
if(!is.null(seed))set.seed(seed)
Fcut <- NULL
maxgenes <- max(nfeatures)
## Cross-validation calculations
if(nfold[1]==nobs)foldids <- matrix(sample(1:nfold[1]), ncol=1) else
foldids <- sapply(1:nfold[2], function(x)
  divideUp(cl, nset=nfold[1]))
genelist <- array("", dim=c(nrow=maxgenes, ncol=nfold[1], nleaf=nfold[2]))
Fmatrix <- array(0, dim=c(nrow=maxgenes, ncol=nfold[1], nleaf=nfold[2]))
testscores <- NULL
acc.cv <- numeric(maxgenes)
if(print.progress)
cat("\n", "Preliminary per fold calculations","\n")
for(k in 1:nfold[2])
```
cvdisc

```r
{
  foldk <- foldids[, k]
  ufold <- sort(unique(foldk))
  for(i in ufold){
    if(print.progress) cat(paste(i, ":", sep=""))
    trainset <- (1:nobs)[foldk!=i]
    cli <- factor(cl[trainset])
    stat <- aovFbyrow(x=x[, trainset], cl=cli)
    ordi <- order(-abs(stat))[1:maxgenes]
    genelist[, i, k] <- genes[ordi]
    fmatrix[, i, k] <- stat[ordi]
  }
  ulist <- unique(as.vector(genelist))
  df <- data.frame(t(x[ulist, , drop=FALSE]))
  names(df) <- ulist

  if(print.progress)cat("\n", "Show each choice of number of features: ", "\n")
  for(ng in nfeatures){
    hat <- cl
    if(print.progress)cat(paste(ng, ":", sep=""))
    for(k in 1:nfold[2]){
      foldk <- foldids[, k]
      ufold <- sort(unique(foldk))
      for(i in ufold){
        testset <- (1:nobs)[foldk==i]
        trainset <- (1:nobs)[foldk!=i]
        ntest <- length(testset)
        ntrain <- nobs-ntest
        genes.i <- genelist[1:ng, i, k]
        dfi <- df[-testset, genes.i, drop=FALSE]
        newdfi <- dfi[-testset, genes.i, drop=FALSE]
        cli <- cli[-testset]
        xy.xda <- funda(cli-, data=dfi)
        subs <- match(colnames(dfi), rownames(df))
        newpred.xda <- predict(xy.xda, newdata=newdfi, method="debiased")
        hat[testset] <- newpred.xda$class
      }
      tabk <- table(hat, cl)
      if(k==1)tab <- tabk else tab <- tab+tabk
    }
    acc.cv[ng] <- sum(tab[row(tab)==col(tab)])/sum(tab)
  }
  cat("\n")
  if(length(nfeatures)>1&all(diff(nfeatures)==1)){
    nobs <- length(cl)
    ng1 <- length(acc.cv)
    maxacc1 <- max(acc.cv)
    sub1 <- match(maxacc1, acc.cv)
    nextacc1 <- max(acc.cv[acc.cv<1])
    lower1 <- maxacc1-sqrt(nextacc1*(1-nextacc1)/nobs)
  }
}
```
For high-dimensional data with known groups, derive scores for plotting.

Description

This is designed to used with the output from cvdisc. Test and training scores from successive cross-validation steps determine, via a principal components calculation, a low-dimensional global space onto which test scores are projected, in order to plot them.

Usage

cvscores(cvlist, nfeatures, ndisc = NULL, cl.other, x.other, keepcols = NULL, print.progress = TRUE)

Arguments

cvlist Output object from cvdisc
nfeatures Number of features to use
ndisc Dimension of space in which scores will be formed, at most one less than the number of groups
cl.other Classifies additional observations that are to be projected onto the same low-dimensional space
x.other Matrix from which additional observations will be taken
keepcols Number of sets of principal component scores to use in discriminant calculations and consequent evaluation of scores that will determine the low-dimensional global space
print.progress Set to TRUE (default) for printing out, as calculations proceed, the number of the current fold
Value

- **scores**: Scores that can be plotted
- **cl**: Factor that was used to classify observations into groups
- **other.scores**: Other scores, if any, for plotting
- **cl.other**: Factor that was used to classify the ‘other’ data into groups
- **nfeatures**: Number of features used

Note

The methodology used here has developed beyond that described in Maindonald and Burden (2005)

Author(s)

John Maindonald

References

See Also

See also `cvdisc`, `scoreplot`

Examples

```r
# Use first 500 rows (expression values) of Golub, for demonstration.
data(Golub)
data(golubInfo)
attach(golubInfo)
miniG.BM <- Golub[1:500, BM_PB=="BM"]  # 1st 500 rows only
cancer.BM <- cancer[BM_PB=="BM"]
miniG.cv <- cvdisc(miniG.BM, cl=cancer.BM, nfeatures=1:10,
nfold=c(3,1))
miniG.scores <- cvscores(cvlist=miniG.cv, nfeatures=4,
c1.other=NULL)
detach(golubInfo)
```

```r
# The function is currently defined as
function(cvlist, nfeatures, ndisc=NULL, cl.other, x.other,
keepcols=NULL, print.progress=TRUE
)
library(MASS)
foldids <- cvlist$foldids
nfold <- c(length(unique(foldids)), dim(foldids)[2])
```
ugenes <- unique(as.vector(cvlist$genelist[1:nfeatures, ,]))
da <- cvlist$xUsed[, ugenes]
cl <- cvlist$cl
if(length(cl) == dim(da)[1])
 stop(paste("length(cl) == dim(da)[1]
 "dim(cvlist$df)[1] = ", dim(da)[1]))
levnames <- levels(cl)
if(is.null(disc)) disc <- length(levnames) - 1
ngp <- length(levnames)
nobs <- dim(da)[1]
allscores <- array(0, dim=c(nrow=nobs, ncol=ndisc*nfold[1], nleaf=nfold[2]))
if(is.null(cl.other))
 cl.other <- factor(cl.other)
if(is.null(dim(x.other))) stop("x.other must have dimension 2")
if(length(cl.other) == dim(x.other)[2])
 stop(paste("length(cl.other) == dim(x.other)[2]
 "dim(x.other)[2] = ", dim(x.other)[2]))
df.other <- data.frame(t(x.other[ugenes, , drop=FALSE]))
colnames(df.other) <- ugenes
else other.scores <- NULL
for(k in 1:nfold[2]){
foldk <- foldids[,k]
ufold <- sort(unique(foldk))
j <- 0
for(i in ufold){
j <- j + 1
if(print.progress) cat(paste(j," "
 testi <- (1:nobs)[foldk==i]
traini <- (1:nobs)[foldk!=i]
ntest <- length(testi)
ntrain <- nobs-ntest
genes.i <- cvlist$genelist[1:nfeatures, k]
dfi <- as.data.frame(df[-testi, genes.i, drop=FALSE])
newdfi <- as.data.frame(df[testi, genes.i, drop=FALSE])
cli <- cl[-testi]
xy.xda <- lda(cli-, data=dfi)
allscores[, ((1-1)*ndisc)+(1:ndisc), k] <-
predict(xy.xda, newdata=df, dimen=ndisc)$x
}
}
cat("\n")
dim(allscores) <- c(nobs, ndisc*prod(nfold))
if(is.null(keepcols)) keepcols <- min(nfeatures, dim(allscores)[2])
allscores.pcp <- data.frame(pcp(allscores, varscores=FALSE)$g[.1:keepcols])
globals <- predict(lda(cl-., data=allscores.pcp))$x[.1:ndisc]
fitscores <- array(0, dim=c(nrow=nobs, ncol=ndisc, nleaf=nfold[2]))
for(k in 1:nfold[2]){
foldk <- foldids[,k]
ufold <- sort(unique(foldk))
ntimes.genes <- table(cvlist$genelist[1:nfeatures,,k])
av <- colMeans(df)
j <- 0
for(i in ufold){
 j <~ j+1
 cat(paste(if (j>1) "\n" else "\n", i, sep=""))
 testi <~ (1:nobs)[Foldk==i]
 traini <~ (1:nobs)[Foldk!=i]
 genes.i <~ cvlist$genelist[1:nfeatures, i, k]
 dfi <~ data.frame(dfi[-testi, genes.i, drop=FALSE])
 newdfi <~ data.frame(dfi[-testi, genes.i, drop=FALSE])
 cli <~ cl[-testi]
 traini.xda <~ lda(traini-, data=dfi)
 scorei <~ predict(traini.xda)$x[,1:ndisc]
 newpred.xda <~ predict(traini.xda, newdata=newdfi)
 scorei.out <~ newpred.xda$x[,1:ndisc, drop=FALSE]
 scorei.all <~ globals[-testi, 1:ndisc]
 avcol <~ colMeans(scorei.all)
 scorei.all <~ sweep(scorei.all, 2, avcol, "-"
 av <~ colMeans(scorei)
 scorei <~ sweep(scorei, 2, av, "-"
 trans <~ qr.solve(scorei, scorei.all)
 scorei.out <~ sweep(scorei.out, 2, av, "-"
 fitscores[tesiti, k] <~ sweep(fitscores[out$%*%trans, 2, avcol, "+"
 }
} fitscores <~ apply(fitscores, 1:2, mean)

if(!is.null(cl.other)){
 Fmatrix <~ cvlist$Fmatrix
 ord <~ order(Fmatrix)[1:nfeatures]
 rowcol <~ cbind(as.vector(row(Fmatrix))[ord],as.vector(col(Fmatrix))[ord])
 ugenes <~ unique(as.vector(cvlist$genelist[rowcol]))
 df <~ cvlist$xused[, ugenes]
 xy.xda <~ lda(cl-, data=df)
 train.scores <~ predict(xy.xda, dimen=ndisc)$x
 other.scores <~ predict(xy.xda, newdata=df.other,
 dimen=ndisc)$x
 avcol <~ colMeans(globals)
 all.scores <~ sweep(globals, 2, avcol, "-"
 av.train <~ colMeans(train.scores)
 train.scores <~ sweep(train.scores, 2, av.train, "+")
 trans <~ qr.solve(train.scores, all.scores)
 other.scores <~ sweep(other.scores%*%trans, 2, avcol, "+"
 }
} if(print.progress)cat("\n")
invisible(list(scores=fitscores, cl=cl, other=other.scores,
 cl.other=cl.other, nfeatures=nfeatures))

defectiveCVdisc
defective accuracy assessments from linear discriminant calculations
defectiveCVdisc

Description

Determine cross-validated accuracy, for each of a number of features in a specified range, in each case with a set of features that have been selected using the total data. The "accuracy" assessment are provided only for comparative purposes.

Usage

defectiveCVdisc(x, cl, nfold = NULL, FUN = aovFbyrow, nfeatures = 2, seed = 31,
 funda = lda, foldids = NULL, subset = NULL, print.progress = TRUE)

Arguments

x Matrix; rows are features, and columns are observations ('samples')
cl Factor that classifies columns into groups
nfold Number of folds for the cross-validation. Optionally, a second number species
 the number of repeats of the cross-validation
FUN function used to calculate a measure, for each row, of separation into groups
nfeatures Specifies the different numbers of features (e.g., 1:10) that will be tried, to de-
 termine cross-validation accuracy in each instance
seed This can be used to specify a starting value for the random number generator, in
 order to make calculations repeatable
funda Function that will be used for discrimination. Currently lda is the only option
foldids Fold information, as output from cvdisc()
subset Allows the use of a subset of the samples (observations)
print.progress Set to TRUE (default) for printing out, as calculations proceed, the number of the
 current fold

Value

acc.resub resubstitution measure of 'accuracy'
acc.sel1 'accuracy' from cross-validation, with the initially selected features

Author(s)

John Maindonald

See Also

cvdisc
Examples

```r
defectiveCVdisc

mat <- matrix(rnorm(1000), ncol=20)
c1 <- factor(rep(1:3, c(7,9,4)))
badaccs <- defectiveCVdisc(mat, c1, nfold=c(3,1), nfeatures=1:5)
## Note the list elements acc.resub and acc.sell

## The function is currently defined as
function(x, c1, nfold=NULL, FUN=aovFbyrow,
    nfeatures=2, seed=31, funda=lda, foldids=NULL,
    subset=NULL, print.progress=TRUE){
    ## Option to omit one or more points
    if(!is.null(subset)) c1[!is.na(cl)][!subset] <- NA
    if(any(is.na(cl)))(x <- x[, !is.na(cl)]
        cl <- cl[!is.na(cl)]
    )
    nobs <- dim(x)[2]
    ## Get fold information from foldids, if specified,
    ## else if nfold is not specified, use leave-one-out CV
    if(!is.null(foldids))
        nfold <- c(length(unique(foldids)), dim(foldids)[2])
    if(is.null(nfold)&is.null(foldids))nfold <- sum(!is.na(cl))
    else if(nfold[1]==nobs)foldids <- sample(1:nfold[1])
    else foldids <- sapply(1:nfold[2], function(x)
        divideUp(cl, nset=nfold[1]))
    if(length(nfold)==1)nfold <- c(nfold,1)
    cl <- factor(cl)
    ngp <- length(levels(cl))
    genes <- rownames(x)
    if(is.null(genes)){
        genes <- paste(1:dim(x)[1])
        print("Input rows (features) are not named. Names")
        print(paste("", dim(x)[1], " will be assigned.", sep=""))
        rownames(x) <- genes
    }
    require(MASS)
    if(!is.null(seed))set.seed(seed)
    Fcut <- NULL
    maxgenes <- max(nfeatures)
    stat <- FUN(x=x, cl)
    Fcut <- list(F=sort(stat, decreasing=TRUE)[nfeatures],
        df=c(ngp-1, nobs-ngp))
    ord <- order(-abs(stat))[1:maxgenes]
    genes.ord <- genes[ord]
    selectonce.df <- data.frame(t(x[ord, , drop=FALSE]))
    acc.resub <- acc.sell <- numeric(maxgenes)
    if(nfold[1]==0)acc.sell <- NULL
    for(ng in nfeatures){
        resub.xda <- funda(cl=-, data=selectonce.df[,1:ng,drop=FALSE])
        hat.rsb <- predict(resub.xda)$class
    }
```
divideUp

Partition data into multiple nearly equal subsets

divideUp <- function(cl, nset = 2, seed = NULL, balanced = TRUE) {
 tab.rsb <- table(hat.rsb, cl)
 acc.resub[ng] <- sum(tab.rsb[row(tab.rsb)==col(tab.rsb)])/sum(tab.rsb)
 if(nfold[1]==0) next
 if(nfold[1]==nobs) {
 hat.sel <- funda(cl=-, data=selectonce.df[,1:ng, drop=FALSE],
 CV=TRUE)$class
 tab.one <- table(hat.sel, cl)
 acc.sel[ng] <- sum(tab.one[row(tab.one)==col(tab.one)])/sum(tab.one)
 } else {
 hat <- cl
 if(print.progress)cat(paste(ng, ":", sep=""))
 for(k in 1:nfold[2]) {
 foldk <- foldids[,k]
 ufold <- sort(unique(foldk))
 for(i in ufold) {
 testset <- (1:nobs)[foldk==i]
 trainset <- (1:nobs)[foldk!=i]
 dfi <- selectonce.df[-testset, 1:ng, drop=FALSE]
 newdfi <- selectonce.df[testset, 1:ng, drop=FALSE]
 cli <- cl[-testset]
 xy.xda <- funda(cli=-, data=dfi)
 subs <- match(colnames(df), rownames(df))
 newpred.xda <- predict(xy.xda, newdata=newdfi, method="debiased")
 hat[testset] <- newpred.xda$class
 }
 tabk <- table(hat, cl)
 if(k==1) tab <- tabk else tab <- tab+tabk
 acc.sel[ng] <- sum(tab[row(tab)==col(tab)])/sum(tab)
 }
 if(print.progress)cat("\n")
 invisible(list(acc.resub=acc.resub, acc.sel=acc.sel, genes=genes.ord))
 }
}

Description

Randomly partition data into nearly equal subsets. If balanced=TRUE the requirement is imposed that the subsets should as far as possible be balanced with respect to a classifying factor. The multiple sets are suitable for use for determining the folds in a cross-validation.

Usage

divideUp(cl, nset = 2, seed = NULL, balanced=TRUE)
Arguments

- **cl**: classifying factor
- **nset**: number of subsets into which to partition data
- **seed**: set the seed, if required, in order to obtain reproducible results
- **balanced**: logical: should subsets be as far as possible balanced with respect to the classifying factor?

Value

a set of indices that identify the nset subsets

Author(s)

John Maindonald

Examples

```r
foldid <- divideUp(cl=rep(1:3, c(17,14,8)), nset=10)
table(rep(1:3, c(17,14,8)), foldid)
foldid <- divideUp(cl=rep(1:3, c(17,14,8)), nset=10, balanced=FALSE)
table(rep(1:3, c(17,14,8)), foldid)
```

```r
## The function is currently defined as
function(cl = rep(1:3, c(7, 4, 8)), nset=2, seed=NULL, balanced=TRUE){
  if(!is.null(seed))set.seed(seed)
  if(balanced){
    ord <- order(cl)
    ordcl <- cl[ord]
    gp0 <- rep(sample(1:nset), length.out=length(cl))
    gp <- unlist(sapply(gp0,ordcl), function(x)sample(x))
    gp[ord] <- gp
  } else
    gp <- sample(rep(1:nset, length.out=length(cl)))
  as.vector(gp)
}
```

Golub

Golub data (7129 rows by 72 columns), after normalization

Description

These are a normalized version of the Golub leukemia data from the golubEsets package, available from:

Usage
data(Golub)

Format
Numeric matrix: 7129 rows by 72 columns.

Details
Data have been normalized and are supplied, here, as a matrix.

Source
See the help page for the dataset golubMerge, in the golubEsets package, for details of the source of the original data.

References

Examples
data(Golub)
Select 20 rows from the data; show boxplots of variation across chips
boxplot(data.frame(t(Golub[sample(1:7129, 20),])))

golubInfo

Description
Details are given of the classifying factors for the 72 columns of the Golub data set.

Usage
data(golubInfo)

Format
A data frame with 72 observations on the following 6 variables, that identifies the samples (observations) in the data set Golub

Samples a numeric vector: sample number
BM, PB a factor with levels BM (from bone marrow) PB (from peripheral blood)
Gender a factor with levels F M
Source a factor with levels CALGB CCG DFCI St-Jude. These are the hospitals from which the sample came

tissue.mf a factor with levels BM:NA BM:f BM:m PB:NA PB:f PB:m. This factor identifies the several combinations of source and Gender

cancer a factor with levels allB allT aml There are two types of Acute Lymphoblastic Leukemia (allB and allT), plus Acute Myoblastic Leukemia (aml)

Source

See the help page for the dataset golubMerge, in the golubEsets package, for details of the source of the original data.

References

Examples

data(golubInfo)
str(golubInfo)

orderFeatures Order features, based on their ability to discriminate

Description

For each row of data, an F or (potentially) other statistic is calculated, using the function FUN, that measures the extent to which this variable separates the data into groups. This statistic is then used to order the rows.

Usage

orderFeatures(x, cl, subset = NULL, FUN = aovFbyrow, values = FALSE)

Arguments

x Matrix; rows are features, and columns are observations (`samples')
cl Factor that classifies columns into groups
subset allows specification of a subset of the columns of data
FUN specifies the function used to measure separation between groups
values if TRUE, F-values as well as the ordering are returned
Value

Either (values=FALSE) a vector that orders the rows, or (values=TRUE)

ord a vector that orders the rows
stat ordered values of the statistic

Author(s)

John Maindonald

Examples

```r
mat <- matrix(rnorm(1000), ncol=20)
c1 <- factor(rep(1:3, c(7,9,4)))
ord <- orderFeatures(mat, c1)

## The function is currently defined as
function(x, c1, subset=NULL, FUN=aovFbyrow, values=FALSE){
  if(dim(x)[2]!=length(cl))stop(paste("Dimension 2 of x is",
    dim(x)[2], "differs from the length of cl (=",
    length(cl)))
  ## Ensure that cl is a factor & has no redundant levels
  if(is.null(subset))
    cl <- factor(cl)
  else
    cl <- factor(cl[subset])
  if(is.null(subset))
    stat <- FUN(x, cl)
  else
    stat <- FUN(x[, subset], cl)
  ord <- order(-abs(stat))
  if(!values)ord else(list(ord=ord, stat=stat[ord]))
}
```

Description

Packages results from an SVD on what can be either a cases by variables (features) or variables by cases layout, for use in principal component and related calculations

Usage

```r
pcp(x = datasets::USArrests, varscores = TRUE, cases = "rows", center = "vars",
    standardize = FALSE, scale.cases = 1, log = FALSE, sc = 1, reflect = c(1, 1))
```
Arguments

- **x**: matrix on which SVD is to be performed
- **varscores**: logical; should scores be returned?
- **cases**: specify either "rows" or "columns"
- **center**: logical: if set to "vars", then values of variables will be centered
- **standardize**: logical: should values of variables be standardized to zero mean and unit deviance. Takes precedence over the setting of center
- **scale.cases**: set to a value in [0,1]. scale.cases=0 gives a pure rotation of the variables. scale.cases=1 weights a/c the singular values
- **log**: logical: should logarithms be taken, prior to the calculation?
- **sc**: the variable scores are divided by sqrtsc − 1. By default, sc = number of cases
- **reflect**: a vector of two elements, by default c(1,1). Use of -1 in one or both positions can be useful in reconciling results with output from other software

Value

- **g**: case scores
- **h**: variable scores
- **avv**: variable means
- **sdev**: singular values, divides by the square root of one less than the number of cases

Author(s)

John Maindonald

See Also

La.svd

Examples

```r
USArrests.svd <- pcp(x = datasets::USArrests)

## The function is currently defined as
function(x=datasets::USArrests,
    varscores=TRUE,
    cases="rows",
    center="vars",
    standardize=FALSE,
    scale.cases=1,
    log=FALSE,
    sc=1,
    reflect=c(1,1))
{
    x <- as.matrix(x)
    avv <- 0
    sdv <- 1
```
plotTrainTest <- function(x, nfeatures, cl, traintest,
 titles = c("A: I/II (train with I, scores are for II)",
 "B: II/I (train with II, scores are for I)"))
Arguments

x Matrix; rows are features, and columns are observations (‘samples’)
nfeatures integer: numbers of features for which calculations are required
c1 Factor that classifies columns into groups that will classify the data for purposes of discriminant calculations
traintest Values that specify a division of observations into two groups. In the first pass (fold), one to be training and the other test, with the roles then reversed in a second pass or fold.
titles A character vector of length 2 giving titles for the two graphs

Value

Two graphs are plotted.

Author(s)

John Maindonald

Examples

mat <- matrix(rnorm(1000), ncol=20)
c1 <- factor(rep(1:3, c(7,9,4)))
gp.id <- divideUp(c1, nset=2)
plotTrainTest(x=mat, c1=c1, traintest=gp.id, nfeatures=c(2,3))

The function is currently defined as
function(x, nfeatures, c1, traintest,
 titles=c("A: I/II (train with I, scores are for II)",
 "B: II/I (train with II, scores are for I)"){
 oldpar <- par(mfrow=c(1,2), pty="s")
on.exit(par(oldpar))
 if(length(nfeatures)==1)nfeatures <- rep(nfeatures,2)
 traintest <- factor(traintest)
 train <- traintest==levels(traintest)[1]
 testset <- traintest==levels(traintest)[2]
 cl1 <- c1[train]
 cl2 <- c1[testset]
 nf1 <- nfeatures[1]
 ord1 <- orderFeatures(x, c1, subset=train)
 df1 <- data.frame(t(x[ord1[1:nf1], train]))
 df2 <- data.frame(t(x[ord1[1:nf1], testset]))
 df1.lda <- lda(df1, cl1)
 scores <- predict(df1.lda, newdata=df2)$x
 scoreplot(scorelist=list(scores=scores, cl=cl2,
 nfeatures=nfeatures[1], other=NULL, cl.other=NULL),
 prefix.title="")
mtext(side=3, line=2, titles[1], adj=0)
nf2 <- nfeatures[2]
ord2 <- orderFeatures(x, cl, subset=testset)
df2 <- data.frame(t(x[ord2[1:nf2], testset]))
df1 <- data.frame(t(x[ord2[1:nf2], train]))
df2.lda <- lda(df2, cl2)
scores <- predict(df2.lda, newdata=df1)$x
scoreplot(scores=list(scores=scores, cl=cl1,
 nfeatures=nfeatures[2], other=NULL, cl.other=NULL),
 prefix.title="")
mtext(side=3, line=2, titles[2], adj=0)
}

qqthin

\textit{a version of qqplot()} that thins out points that overplot

Description

QQ-plots with large numbers of points typically generate graphics files that are unhelpfully large. This function handles the problem by removing points that are, for all practical purposes, redundant.

Usage

\begin{verbatim}
qqthin(x, y, ends = c(0.01, 0.99), eps = 0.001, xlab = deparse(substitute(x)),
 adj.xlab = NULL, ylab = deparse(substitute(y)), show.line = TRUE,
 print.thinning.details=TRUE, centerline = TRUE, ...)
\end{verbatim}

Arguments

\begin{description}
\item[x] ordered values of \(x \) will be plotted on the x-axis
\item[y] ordered values of \(y \) will be plotted on the y-axis
\item[ends] outside these cumulative proportions of numbers of points, all points will be included in the graph
\item[eps] controls the extent of overplotting
\item[xlab] label for x-axis
\item[adj.xlab] positioning of x-label
\item[ylab] label for y-axis
\item[show.line] logical; show the line \(y=x \)?
\item[print.thinning.details] logical; print number of points after thinning?
\item[centerline] logical; draw a line though the part of the graph where some points have been omitted?
\item[...] additional graphics parameters
\end{description}

Value

Gives a qqplot. The number of points retained is returned invisibly.
qqthin

Author(s)

John Maindonald

References

~put references to the literature/web site here ~

Examples

mat <- matrix(rnorm(1000), ncol=20)
c1 <- factor(rep(1:3, c(7,9,4)))
Fstats <- aovFbyrow(x = mat, cl = c1)
qqthin(qf(ppoints(length(Fstats)), 2, 17), Fstats, eps=0.01)

The function is currently defined as
function(x, y, ends=c(.01,.99), eps=0.001,
 xlab = deparse(substitute(x)), adj.xlab=NULL,
 ylab = deparse(substitute(y)), show.line=TRUE,
 print.thinning.details=TRUE,
 centerline=TRUE, ...){
 ## qqthin() is a substitute for qqplot(), that thins
 ## out plotted points from the region where they are
 ## dense. Apart from the overlaid curve that shows
 ## the region where points have been thinned, it may
 ## be hard to distinguish the result of qqthin()
 ## from that of qqplot()
 xlab <- xlab
 ylab <- ylab
 x <- sort(x)
 y <- sort(y)
 dx<-diff(x)
 epsdist <- sqrt(diff(range(x))^2+diff(range(y))^2)*eps
dx<-0.5*(c(dx[1],dx)+c(dx,dx[length(dx)]))
dy<-diff(y)
dy<-0.5*(c(dy[1],dy)+c(dy,dy[length(dy)]))
dpoints <- epsdist/sqrt(dx^2+dy^2)
 ## dpoints is a local measure of the number of points
 ## per unit distance along the diagonal, with the unit
 ## set to approximately eps*(length of diagonal)
dig<-floor(dpoints)+1
 ## dig is, roughly, the number of points per unit distance.
 ## We wish to retain one point per unit distance. For this
 ## retain points where cdig rounds to an integer. For such
 ## points, cdig has increased by approx 1, relative to the
 ## previous point that is retained.
cdig<-round(cumsum(1/dig))
 subs<-match(unique(cdig), cdig)
 if(is.null(adj.xlab))
 plot(x[subs], y[subs], xlab=xlab, ylab=ylab)
 else {
 plot(x[subs], y[subs], xlab="", ylab=ylab)
 }
scoreplot

Plot discriminant function scores, with various identification

Description

There is provision for the plotting of two sets of scores on the same graph, possibly with different classifying factors. The function is designed for use with output from cvscores() or from simulateScores().

Usage

scoreplot(scorelist, plot.disc = 1:2, xlab = NULL, ylab = NULL, params = NULL, circle = NULL, cl.circle = NULL, circle.pos = c(1, 1), adj.circle = 1, adj.title = 0.5, join.legends = TRUE, prefix.title = "", cex.title = 1, ratio = 1, plot.folds = FALSE, ...)

Arguments

scorelist list, with elements scores (a matrix of scores) cl (a classifying factor), other (optional, a further set of scores), cl.other (a classifying factor for other, optional) and nfeatures (optional, used to label the graph)
plot.disc choice of columns of scorelist to plot
xlab label for x-axis
ylab label for y-axis
params List, with optional elements (lists) points, other, circle and legend. Allowed list elements for points and other are cex, lwd, pch and col. For circle they are cex, lwd and col. For legend, they are cex and cex.other
circle identifies points that are to be circled
cl.circle different colors may be used for different points, according to levels of cl.circle
circle.pos This is a vector of length 2, that specifies where to place the legend information for the circling of points. Possibilities are c(0, 0) (left, below), c(1, 1) (right, above), etc.

adj.circle controls positioning of circle legend
adj.title controls positioning of title
join.legends logical; should legends for points and other be combined?
prefix.title prefix, to place before title
cex.title cex for title
ratio y-scale to x-scale ratio for graph
plot.folds Plot individual fold information, comparing projected training scores with their projections onto the global space. This is not at present implemented

Value
A graph is plotted.

Author(s)
John Maindonald

See Also
See also `cvdisc`, `cvscores`

Examples

```r
## Use first 500 rows (expression values) of Golub, for demonstration.
data(Golub)
data(golubInfo)
attach(golubInfo)
miniG.BM <- Golub[1:500, BM.PB=="BM"] # 1st 500 rows only
cancer.BM <- cancer[BM.PB=="BM"]
miniG.cv <- cvdisc(miniG.BM, cl=cancer.BM, nfeatures=1:10,
  nfold=c(3,1))
miniG.scores <- cvscores(cvlist=miniG.cv, nfeatures=4,
  cl.other=NULL)
subsetB <- (cancer=="allB") & (tissue.mf %in% c("BM:f","BM:m","PB:m"))
tissue.mfB <- tissue.mf[subsetB, drop=TRUE]
scoreplot(scorelist=miniG.scores, cl.circle=tissue.mfB,
  circle=tissue.mfB%in%c("BM:f","BM:m"),
  params=list(circle=list(col=c("cyan","gray"))),
  prefix="BM samples -")
detach(golubInfo)

## The function is currently defined as
function(scorelist, plot.disc=1:2,
  xlab=NULL, ylab=NULL, params=NULL,
  circle=NULL, cl.circle=NULL, circle.pos=c(1,1),
  ...)

Other parameters to be passed to eqscplot()
```
adj.circle=1,
adj.title=0.5, join.legends=T, prefix.title="Golub data - ",
cex.title=1.0, ratio=1, plot.folds=FALSE, ...)

library(MASS)

combine.params <-
 function(params=list(circle=list(col=c("cyan","gray")))){
 default.params=list(points=list(cex=1, lwd=1.25, pch=1:8, col=1:8),
 other=list(cex=0.65, lwd=1.25, pch=13:9, col=c(6:8,5:1)),
 circle=list(cex=2, lwd=1, pch=1.75, col="gray40"),
 legend=list(cex=1, cex.other=1))
 nam <- names(params)
 if(!is.null(nam))
 for(a in nam){
 nam2 <- names(params[[a]])
 for(b in nam2)default.params[[a]][[b]] <- params[[a]][[b]]
 }
 default.params
 }

params <- combine.params(params=params)
cl <- scorelist$cl
cl.other <- scorelist$cl.other
if(!is.null(cl.other)) cl.other <- factor(cl.other)

nfeatures <- scorelist$nfeatures
if(length(plot.disc)==2){
 n1 <- plot.disc[1]
 n2 <- plot.disc[2]
 if(is.null(xlab))xlab <- paste("Discriminant function", n1)
 if(is.null(ylab))ylab <- paste("Discriminant function", n2)
} else stop("plot.disc must be a vector of length 2")

levnames <- levels(cl)
fitscores <- scorelist$scores
other.scores <- scorelist$other
ngp <- length(levnames)
n1lim <- range(fitscores[,n1])
n2lim <- range(fitscores[,n2])
if(!is.null(cl.other)){
 n1lim <- range(c(n1lim, other.scores[,n1]))
 n2lim <- range(c(n2lim, other.scores[,n2]))
 levnum <- unclass(cl.other)
 levnames.other <- levels(cl.other)
 intlev.other <- unclass(cl.other)
 ngp.other <- length(levels(cl.other))
}

n1 <- plot.disc[1]; n2 <- plot.disc[2]
intlev <- unclass(cl)
oldpar <- par(lwd=1)
on.exit(par(oldpar))
eqscplot(n1lim, n2lim, type="n",
xlab=xlab, ylab=ylab, ratio=ratio, ...)

with(params$points,
 points(fitscores[,n1], fitscores[,n2], col=col[intlev],
 pch=pch[intlev], cex=cex, lwd=lwd))
if(is.null(cl.other))
 with(params$other,
 points(other.scores[,n1], other.scores[,n2],
 pch=pch[intlev.other],
 col=col[intlev.other],
 cex=cex, lwd=lwd))

if(!is.null(cl.circle)){
 cl.circle <- factor(cl.circle[cl.circle])
 lev.circle <- levels(cl.circle)
 with(params$circle,
 points(fitscores[cl.circle, n1], fitscores[cl.circle, n2], pch=pch,
 cex=cex, col=col[unclass(cl.circle)], lwd=lwd))
 }

par(xpd=TRUE)
chw <- par()$cxy[1]
chh <- par()$cxy[2]
par(lwd=1.5)
ypos <- par()$usr[4]
xmid <- mean(par()$usr[1:2])
top.pos <- 0
mtext(side=3, line=(top.pos+1), paste(prefix.title,
 nfeatures, "features"), cex=cex.title, adj=adj.title)
ypos.legend <- ypos+(top.pos-0.45)*chh*0.8

if(join.legend&is.null(cl.other)){
 leg.info <- legend(xmid, ypos.legend, xjust=0.5, yjust=0, plot=FALSE,
 x.intersp=0.5, ncol=ngp, legend=levnames,
 pt.lwd=params$points$lwd,
 pt.cex=params$points$cex,
 cex=params$legend$cex,
 pch=params$points$pch)

 legother.info <- legend(xmid, ypos.legend, xjust=0.5, yjust=0,
 plot=FALSE, x.intersp=0.5, ncol=ngp.other, legend=levnames.other,
 pt.lwd=params$other$lwd,
 pt.cex=params$other$cex,
 cex=params$legend$cex.other,
 pch=params$other$pch)

 letoff <- 0.5*legother.info$rect$x-0.5*chw
 rightoff <- 0.5*leg.info$rect$x+0.5*chw
 ypos.other <- ypos.legend
}
else {
 letoff <- 0
 rightoff <- 0
 ypos.other <- ypos+(top.pos-1.5)*chh*0.8
}

legend(xmid-letoff, ypos.legend, xjust=0.5, yjust=0,
 bty="n", pch=params$points$pch,
 x.intersp=0.5, col=params$points$col, ncol=ngp,
 legend=levnames,
 pt.lwd=params$points$lwd,
 pt.cex=params$points$cex,
simulateScores

Generate linear discriminant scores from random data, after selection

Description

Simulates the effect of generating scores from random data, possibly with predicted scores calculates also for additional 'observations'.

Usage

simulateScores(nrows = 7129, cl = rep(1:3, c(19, 10, 2)), x = NULL, cl.other = NULL, x.other = NULL, nfeatures = 15, dimen=2, seed = NULL)

Arguments

nrows
number of rows of random data matrix

c1
classifying factor
simulateScores

x data matrix, by default randomly generated
cl.other classifying factor for additional observations
x.other additional observations
nfeatures number of features to select (by default uses aov F-statistic)
dimen number of sets of discriminant scores to retain (at most one less than number of levels of cl)
seed set, if required, so that calculations can be reproduced

Value
scores matrix of scores
cl classifying factor
other matrix of `other’ scores
cl.other classifying factor for scores.other
nfeatures number of features used in generating the scores

Note
NB: Prior to 0.53, this function made (wrongly) a random selection of features.

Author(s)
John Maindonald

Examples
scorelist <- simulateScores(nrows=500, cl=rep(1:3, c(19,10,2)))
plot(scorelist$scores, col=unclass(scorelist$cl), pch=16)

The function is currently defined as
simulateScores <-
 function (nrows = 7129, cl = rep(1:3, c(19, 10, 2)), x = NULL,
 cl.other = NULL, x.other = NULL, nfeatures = 15, dimen = 2,
 seed = NULL)
 {
 if (!is.null(seed))
 set.seed(seed)
 m <- length(cl)
m.other <- length(cl.other)
 if (is.null(x)) {
 x <- matrix(rnorm(nrows * m), nrow = nrows)
 rownames(x) <- paste(1:nrows)
 }
 else nrows <- dim(x)[1]
 if (is.null(x.other)) {
 x.other <- matrix(rnorm(nrows * m.other), nrow = nrows)
 rownames(x.other) <- paste(1:nrows)
if (is.numeric(cl))
 cl <- paste("Gp", cl, sep = "")
if(!is.null(cl.other)){
 if (is.numeric(cl.other))
 cl.other <- paste("Gp", cl.other, sep = "")
 cl.other <- factor(cl.other)
 }
cl <- factor(cl)
if (dimen > length(levels(cl)) - 1)
 dimen <- length(levels(cl)) - 1
ordfeatures <- orderFeatures(x, cl = cl, values = TRUE)
stat <- ordfeatures$stat[1:nfeatures]
ord.use <- ordfeatures$ord[1:nfeatures]
xUse.ord <- data.frame(t(x[ord.use,]))
xUseOther.ord <- data.frame(t(x.other[ord.use,]))
ordUse.lda <- lda(xUse.ord, grouping = cl)
scores <- predict(ordUse.lda, dimen = dimen)$x
if(!is.null(cl.other))
 scores.other <- predict(ordUse.lda, newdata = xUseOther.ord, dimen = dimen)$x
else
 scores.other <- NULL
invisible(list(scores = scores, cl = cl, other = scores.other, cl.other = cl.other, nfeatures = nfeatures))
Index

*Topic algebra
 pcp, 22
*Topic arith
 divideUp, 18
*Topic array
 pcp, 22
*Topic datagen
 simulateScores, 32
*Topic datasets
 Golub, 19
golubInfo, 20
*Topic dplot
 cvscores, 12
*Topic hplot
 plotTrainTest, 24
 qqthin, 26
 scoreplot, 28
*Topic htest
 accTrainTest, 5
 aovFbyrow, 7
cvdisc, 8
defectiveCVdisc, 15
 orderFeatures, 21
*Topic package
 hddplot-package, 2

accTrainTest, 5
aovFbyrow, 7
cvdisc, 8, 13, 16, 29
cvscores, 4, 9, 12, 29
defectiveCVdisc, 15
divideUp, 18
Golub, 19
golubInfo, 20

hddplot (hddplot-package), 2
hddplot-package, 2

La.svd, 23
orderFeatures, 8, 21
pcp, 22
plotTrainTest, 24
qqthin, 26
scoreplot, 4, 9, 13, 28
simulateScores, 32