Package ‘hdeco’

February 20, 2015

Type Package

Title Hierarchical DECOmposition of Entropy for Categorical Map Comparisons

Version 0.4.1

Date 2009-02-25

Author Tarmo K. Remmel, Sandor Kabos, and Ferenc (Ferko) Csillag

Maintainer Tarmo K. Remmel <remmelt@yorku.ca>

Description A flexible and hierarchical framework for comparing categorical map composition and configuration (spatial pattern) along spatial, thematic, or external grouping variables. Comparisons are based on measures of mutual information between thematic classes (colours) and location (spatial partitioning). Results are returned in textual, tabular, and graphical forms.

Encoding latin1

License GPL (>= 2)

Depends R(>= 2.0.1)

Lazydata yes

NeedsCompilation no

Repository CRAN

Date/Publication 2009-02-25 09:29:20

R topics documented:

hdeco-package ... 2
CARsimu .. 3
checker .. 4
decomppath .. 5
demoimage1 ... 5
demoimage2 ... 6
fixedcolimage ... 6
hdeco ... 7
HPROFIL .. 9
Description

We provide a measurement scheme for the comparison of categorical maps that decomposes the differences in multidimensional nested coincidence tables according to variables that record occurrence frequencies of categories (Z), at levels of spatial aggregation (Y), on specific maps (X). Sequences of conditional entropies computed according to the specific questions asked (e.g. is there coincidence between colours and locations), characterize the correspondence between the three types of variables in common units (bits) measured by mutual information. The form of these sequences, as a variable runs from coarse to fine detail, referred to as spectra, provide meaningful characterizations of the similarities/differences between categorical maps, including their spatial configuration.

Details

Package: hdeco
Type: Package
Version: 0.4
Date: 2007-05-02
License: GPL (Version 2.0 or later)

Author(s)

Tarmo K. Remmel and Sandor Kabos
Maintainer: Tarmo K. Remmel <remmelt@yorku.ca>

References

CARsimu

Conditional AutoRegressive surface simulator

Description

A stationary tool for simulating a surface (as a matrix of values) with specified spatial autocorrelation parameters. The simulation returns $2^{level} \times 2^{level}$ real-valued surface (e.g., landscape) based on the FFT algorithm and the spectral (or autocorrelation theorem using first and second order neighbours in N-S, E-W, NW-SE, and NE-SW directions.

Usage

CARsimu(level = 5, row1 = 0.2499999, row2 = 0, col1 = 0.2499999, col2 = 0, rc1 = 0, cr1 = 0)

Arguments

- **level**: Integer: controls the dimensions of the output surface ($2^{level} \times 2^{level}$)
- **row1**: First order neighbour East-West autocorrelation parameter
- **row2**: Second order neighbour East-West autocorrelation parameter
- **col1**: First order neighbour North-South autocorrelation parameter
- **col2**: Second order neighbour North-South autocorrelation parameter
- **rc1**: First order neighbour NW-SE autocorrelation parameter
- **cr1**: First order neighbour NE-SW autocorrelation parameter

Details

The sum of all six autocorrelation parameters MUST be less than 0.5. Their effect is highly non-linear, thus there is a marked difference between 0.499 and 0.499999. This implementation corresponds to the homogeneous (stationary) conditional autoregressive (CAR) model.

Value

Returns a $2^{level} \times 2^{level}$ matrix of real numbers. It is possible to use the image() or imaks() functions to graphically display the surface. Saving the output from this function into a new object is likely the most desirable usage. This surface can then be factored to produce binary maps with specified proportions as in Remmel and Csillag (2003).

Note

This function was originally called ujabki() - some earlier versions may be available elsewhere under this name.

Author(s)

Sandor Kabos, Ferenc (Ferko) Csillag, and Tarmo Remmel
References

Examples

carimage <- CARsimu(level=5, row1=0.2499999, row2=0, col1=0.2499999, col2=0, rcl=0, rcr=0)
image(carimage)

checker

Checkerboard map builder

Description

A simple function for building 64x64 pixel checkerboard (categorical binary) maps with specified block sizes to be used as test maps.

Usage

checker(block = 4)

Arguments

block The number of pixels that form the edge of a single colour block. For example, 4 will yield a checkerboard with 16 pixel squares.

Value

This function returns a binary integer matrix with dimensions 64x64.

Note

This function only generates 64x64 binary maps for testing. Construction of larger maps will require a modification of the source code.

Author(s)

Tarmo K. Remmel

Examples

checker(block = 4)
decomppath

Demonstration Decomposition Path Matrix

Description

A decomposition path matrix for use with the supplied demonstration data. It is intended for use for comparing two 16x16 pixel categorical maps along a spectra of spatial decomposition.

Usage

```r
data(decomppath)
```

Examples

```r
data(decomppath)
str(decomppath)
decomppath
```

demoimage1

Demonstration binary 16x16 categorical map 1

Description

For use with hdeco (and other functions) to illustrate usage. This categorical map has two vertical bars.

Usage

```r
data(demoimage1)
```

Examples

```r
data(demoimage1)
str(demoimage1)
fixedcolimage(demoimage1)
```
Description

For use with hdeco to illustrate usage. This categorical map has 2 horizontal bars.

Usage

data(demoimage1)

Examples

data(demoimage2)
str(demoimage2)
fixedcolimage(demoimage2)

Description

A tool for drawing categorical data (matrices) in their proper orientation and with a set colour palette. This is especially useful for drawing multiple images that require identical palettes even though some classes may not exist on all images.

Usage

fixedcolimage(BE = checker(8))

Arguments

BE Matrix: this is the input image that may or may not have an attribute cim that contains the title text.

Details

The palette is currently fixed for 21 colours. If more categorical colours are desired, the source code will need to be modified by the addition of more colours.

Value

The result is a graphic with specified colour palette. The original palette along with the used colours are listed in the command window for reference.
Note

The original function, imaks, did not force a common colour scheme across multiple images. This version assigns specific colours to integer values and maintains class–colour consistency across multiple categorical images. Images can be assigned titles with an attribute called cim that will be placed at the top of the image during plotting.

Author(s)

Tarmo K. Remmel, modified from Sandor Kabos

Examples

```r
test <- checker(8)
attr(test, "cim") <- "Checker 8"
fixedcolimage(test)
```

hdeco
Hierarchical DEComposition Analysis Environment

Description

A flexible data model and analysis environment for comparing categorical maps. Using information theory, differences between (or among) maps are computed along trajectories as either space or colours are decomposed from coarse to fine aggregations.

Usage

```r
hdeco(BE1 = demoimage1, BE2 = demoimage2, MICIKE = decomppath, MSK = FALSE, MASK = NULL, fnev = "", AutoDecoPath = FALSE, JPG = FALSE, zsir = FALSE)
```

Arguments

- **BE1**: Required: Input categorical map 1 matrix object.
- **BE2**: Input categorical map 2 matrix object (Required if comparing BE1 to BE2).
- **MICIKE**: Required: The decomposition path definition matrix.
- **MSK**: Boolean: TRUE if automatic filtering of zero values is to take place, otherwise FALSE
- **MASK**: If a mask is to be applied, enter the object name.
- **fnev**: ASCII filename to where text results are to be written. If NULL, results are displayed in the command window.
- **AutoDecoPath**: Boolean: if TRUE, a default decomposition path is used - use extreme caution, this is not recommended!
- **JPG**: Boolean: TRUE if graphic results are to be saved in JPEG format, otherwise FALSE to have graphics only displayed in a graphics window.
- **zsir**: Outdated and should be removed in a subsequent version - ignore.
MULTIX Boolean: TRUE if multiple X-variables will be used, otherwise FALSE.
RECODEX Boolean: TRUE if X-variables will be recoded.
NXRECODES Integer: Number of X-variables recodes will be provided by the lookup table.
LUTX Lookup table for recoding X-variables.
RECODEZ Boolean: TRUE if Z-variables will be recoded, otherwise FALSE.
NZRECODES Integer: Indicate how many Z-variable recodes will be provided by the lookup table.
LUTZ Lookup table for recoding Z-variables.
HISTOGRAM Boolean: TRUE if histograms of the map(s) are to be drawn, otherwise FALSE.
Z1DROP Boolean: TRUE if the Z1-variable is to be dropped from the multidimensional array construction. If the Z-variable is recoded and the original data (Z1) are not required, dropping this variable can save considerable space and processing time.
OMITX1 Boolean: TRUE if the X1-variable is to be dropped from the multidimensional array construction. If the Z-variable is recoded and the original data (Z1) are not required, dropping this variable can save considerable space and processing time.
PS Boolean: TRUE if Postscript versions of the graphics are to be generated, otherwise FALSE.

Details

Graphical results are returned to the graphics window, a series of tabular results are stored as hidden objects. To view a listing of these hidden objects, use the provided function ls().

Value

.N The cardinality of map and spatial decompositions.
.QND The cardinality vector for the specified decomposition.
.QKEP The multi-dimensional array of probabilities.
.VFONAL The decomposition pathway matrix used in the latest run of HDECO.
.MASKTITLE The name of the mask used, if specified by the cim attribute.
.CIM The name of the image(s) processed, if specified by the cim attribute(s).
.COLOURS The total number of colours entering the HDECO algorithm.
.LUT.X The lookup table for the X variable(s) if used; otherwise NULL.
.LUT.Z The lookup table for the Z variable(s) if used; otherwise NULL.
.BASE The base hypotheses - all X, Y, and Z variables entering the analysis.
.HPROFIL The primary output of hdeco used for producing graphical spectra. The columns represent the joint entropy between null and alternate hypotheses (HALAPF), the entropy of the null hypothesis (HNULL), the entropy of the alternate hypothesis (HALT), the mutual information between the null and alternate hypotheses (MUTU), and the uncertainty coefficient (UNC). Additionally, the G-squared statistic, it’s significance value, an indication (SING-MULT=1,2) as to whether
the decomposition was for a single or multiple images, and a flag that determines
log file phrase selection (DESC=1,2) reflecting either single or multiple image
decomposition.

.AHIPO The alternate hypotheses at each decomposition step - the X, Y, and Z variables
comprising the alternate hypotheses.

.NHIPO The null hypotheses at each decomposition step - the X, Y, and Z variables
comprising the null hypotheses.

.KIVALO The conditional alternate hypotheses identified at each step of the decompo-
sition. These are identified by the integer '2' in the decomposition pathway
matrix.

Note

If 2 or more images are entered into the decomposition, they must have identical dimensions. Fur-
thermore, the dimensions must adhere to the $2^N \times 2^N$ constraint. The t.forcesize() function can be
used to inset a smaller image into a larger nodata image that can later be masked out for processing
purposes. If the fnev argument is provided, the detailed output that is normally written to the screen
is dumped into a log file with the basename provided in the fnev argument string.

Author(s)

Tarmo K. Remmel and Sándor Kabos

Examples

data(demoimage1)
data(demoimage2)
data(decomppath)
hdeco(BE1=demoimage1, BE2=demoimage2, MICIKE=decomppath)

<table>
<thead>
<tr>
<th>HPROFIL</th>
<th>Sample HDECO output data</th>
</tr>
</thead>
</table>

Description

A sample .HPROFIL matrix renamed to HPROFIL that can be used to test the plotting functions of
sigplot etc.

Usage

data(HPROFIL)

See Also

See Also sigplot, hdeco
Examples

data(HPROFIL)
str(HPROFIL)
HPROFIL

imaks
Categorical map drawing tool with set colour scheme

Description

A tool for drawing categorical data (matrices) in their proper orientation and with a set colour palette. This is especially useful for drawing multiple images that require identical palettes even though some classes may not exist on all images.

Usage

`imaks(BE = demoimage1, ncolours=NULL, LENG=4)`

Arguments

- **BE**
 Matrix: this is the input image that may or may not have an attribute `cim` that contains the title text.

- **ncolours**
 Integer: the total number of colours in the image. This can be automatically determined if set to NULL.

- **LENG**
 integer: used to control labelling.

Value

The result is a graphic with title read from attribute 'cim' if it exists.specified colour palette. This function is suitable for use with continuous surfaces.

Author(s)

Sandor Kabos and Tarmo Remmel

Examples

data(demoimage1)
imaks(demoimage1)
Description

Similar to the function `ls`, this modified form shows only those objects whose names begin with a period.

Usage

`ls()`

Details

This function will only display the hidden objects in a workspace. To see other objects, use the traditional form of the `list` function, `ls`

Value

Provides a listing of all objects in the workspace whose names begin with a period.

Note

Useful for listing hidden objects in a workspace that are generated by HDECO

Author(s)

Ferenc Csillag

See Also

`hdeco`, `ls`

Examples

`ls()`
makepath
Tool for building decomposition pathways for HDECO

Description
A tool for specifying the dimensions of a new decomposition pathway that provides a spreadsheet-style entry and editing environment for cell values.

Usage
```
makepath(NX = 2, NY = 6, NZ = 2, STEPS = 7, TITLE = "Custom Decomposition Path")
```

Arguments
- **NX**
 Integer: How many X-variables to add as columns in the decomposition path
- **NY**
 Integer: How many Y-variables to add as columns in the decomposition path
- **NZ**
 Integer: How many Z-variables to add as columns in the decomposition path
- **STEPS**
 Integer: How many rows, or decomposition steps, are to appear in the decomposition path
- **TITLE**
 String: A custom name given to this decomposition path

Details
The decomposition path dimensions must match the data entering the comparison. Each line will be executed successively and will control the operation of HDECO. Proper definition of the decomposition path is elemental to the successful running of HDECO. Once the dimensions are set, this function will provide a spreadsheet-style entry environment where the cell entries must be provided. When the spreadsheet is closed, the results are saved to an object called VFONAL. Subsequent calls to makepath will overwrite VFONAL; to mitigate this effect, rename VFONAL after its creation.

Value
This function returns a matrix with the dimensions defined above; it is called VFONAL. It will have an attribute cim that stores the custom title given to this decomposition path.

Note
Each row of the decomposition path is executed independently. Valid definition of the decomposition path is essential to the operation of HDECO. Numerous meaningless decomposition paths are possible. If unsure, begin with the examples provided in the references.

Author(s)
Tarmo K. Remmel
shift

References

See Also

hdeco

Description

Use this function to shift a categorical map by a specified number of pixels up, down, left, or right. The shifted pixels are wrapped around to the opposite edge of the map.

Usage

shift(map = demoimage1, dir = 1, n = 1, draw = TRUE, verbose = TRUE)

Arguments

map A required input categorical map as a matrix. Currently, the requirement is that the x and y dimensions are equal.
dir An integer (1,2,3, or 4) that identifies the shift direction: up, right, down, or left respectively.
n The number of pixels to shift.
draw A boolean flag indicating whether results will be drawn to the graphics window.
verbose A boolean flag indicating whether verbose feedback is provided to standard output.

Value

If valid parameters are set, the output will be the shifted map object as a matrix. Otherwise, error messages are provided and NULL is returned.

Note

This results of this function should be saved to an object.

Author(s)

Tarmo K. Remmel
See Also

See Also `fixedcolimage, demoimage1`

Examples

```r
data(demoimage1)
shift(demoimage1, dir=2, n=3, draw=TRUE, verbose=TRUE)
```

Description

Adds shaded points to decomposition spectra to identify decomposition steps with significant G-squared statistic values. Requires the output from t.hdeco, specifically the object titled `.HPROFIL`. This function is called internally by t.hdeco, but can be used independently if the `.HPROFIL` object exists.

Usage

```r
sigplot(mat = .HPROFIL, column = 5, sigcol = 7, tit = "Title of Graph", xtit = "Step", ytit = "Uncertainty Coefficient")
```

Arguments

- **mat**
 The required `.HPROFIL` matrix output by the t.hdeco function (or a comparable matrix object).

- **column**
 Identifies the column (integer) with the data to be plotted (e.g., 5 is the uncertainty coefficient - UNC).

- **sigcol**
 Identifies the column (integer) with the significance value for the G-squared statistic.

- **tit**
 A text string identifying the title for the plot.

- **xtit**
 A text string used for the x-axis label.

- **ytit**
 A text string used for the y-axis label.

- **override**
 Boolean flag to override the minimum and maximum y-axis values.

- **lowy**
 If override is TRUE, then the new low y-axis value.

- **highy**
 If override is TRUE, then the new high y-axis value.

Value

The graphical result is provided in the graphics window.

Author(s)

Tarmo K. Remmel
Examples

data(HPROFILE)
sigplot(mat = HPROFILE, column = 5, sigcol = 7, tit = "Title of Graph", xtit = "Step", ytit = "Uncertainty Coefficient")
Index

*Topic **IO**
 CARsimu, 3
 makepath, 12
 shift, 13
*Topic **aplot**
 fixedcolimage, 6
 imaks, 10
 sigplot, 14
*Topic **arith**
 hdeco, 7
*Topic **datasets**
 decomppath, 5
 demoimage1, 5
 demoimage2, 6
 HPROFIL, 9
*Topic **misc**
 checker, 4
 ls.., 11
*Topic **package**
 hdeco-package, 2
CARsimu, 3
checker, 4
decomppath, 5
demoimage1, 5, 14
demoimage2, 6
fixedcolimage, 6, 14
hdeco, 7, 9, 11, 13
hdeco-package, 2
HPROFIL, 9
imaks, 10
ls, 11
ls.., 11
makepath, 12
shift, 13
sigplot, 9, 14