Package ‘hdi’

March 21, 2016

Type Package
Title High-Dimensional Inference
Version 0.1-6
Date 2016-03-21
Author Lukas Meier [aut, cre], Ruben Dezeure [aut], Nicolai Meinshausen [aut], Martin Maechler [aut], Peter Buehlmann [aut]
Maintainer Lukas Meier <meier@stat.math.ethz.ch>
Description Implementation of multiple approaches to perform inference in high-dimensional models.
Depends scalreg
DependsNote scalreg does not correctly import lars etc, so we need to depend on it
Imports grDevices, graphics, stats, parallel, MASS, glmnet, linprog
Suggests Matrix
SuggestsNote for tests only
Encoding UTF-8
License GPL
NeedsCompilation no
Repository CRAN
Date/Publication 2016-03-21 23:19:29

R topics documented:

 hdi-package ... 2
 clusterGroupBound ... 3
 fdr.adjust ... 6
 glm.pval ... 7
 groupBound ... 8
 hdi ... 10
 lasso.cv ... 12
 lasso.firstq .. 13
Description

Implementation of multiple approaches to perform inference in high-dimensional models.

Details

The DESCRIPTION file:

Package: hdi
Type: Package
Title: High-Dimensional Inference
Version: 0.1-6
Date: 2016-03-21
Author: Lukas Meier [aut, cre], Ruben Dezeure [aut], Nicolai Meinshausen [aut], Martin Maechler [aut], Peter Buehlmann [aut]
Maintainer: Lukas Meier <meier@stat.math.ethz.ch>
Description: Implementation of multiple approaches to perform inference in high-dimensional models.
Depends: scalreg
DependsNote: scalreg does not correctly import lars etc, so we need to depend on it
Imports: grDevices, graphics, stats, parallel, MASS, glmnet, linprog
Suggests: Matrix
SuggestsNote: for tests only
Encoding: UTF-8
License: GPL
regression variables

hdii Function to perform inference in high-dimensional (generalized) linear models

hdipackage hdi

lasso.cv Select Predictors via (10-fold) Cross-Validation of the Lasso

lasso.firstq Determine the first q Predictors in the Lasso Path

lasso.proj P-values based on lasso projection method

lm.ci Function to calculate confidence intervals for ordinary multiple linear regression.

lm.pval Function to calculate p-values for ordinary multiple linear regression.

multi.split Calculate P-values Based on Multi-Splitting Approach

plot.clusterGroupBound Plot output of hierarchical testing of groups of variables

rXb Generate Data Design Matrix X and Coefficient Vector beta

riboflavin Riboflavin data set

ridge.proj P-values based on ridge projection method

stability Function to perform stability selection

Author(s)

Lukas Meier, Ruben Dezeure, Nicolai Meinshausen, Martin Mächler, Peter Bühlmann, Maintainer: Lukas Meier <meier@stat.math.ethz.ch>

References

Description

Computes confidence intervals for the l1-norm of groups of linear regression coefficients in a hierarchical clustering tree.

Usage

clusterGroupBound(x, y, method = "average", dist = as.dist(1 - abs(cor(x))), alpha = 0.05, eps = 0.1, hcloutput, nsplit = 11, s = min(10, ncol(x) - 1), silent = FALSE, setseed = TRUE, lpSolve = TRUE)

Arguments

x numeric design matrix of the regression \(n \times p \) with \(p \) columns for \(p \) predictor variables and \(n \) rows corresponding to \(n \) observations.

y numeric response variable of length \(n \).

method a character string; the method used for constructing the hierarchical clustering tree (default: "average" for “average linkage”) via \texttt{hclust}. Alternatively, you can provide your own hierarchical clustering through the optional argument \texttt{hcloutput}.

dist a distance matrix can be specified on which the hierarchical clustering will be based (see \texttt{dist}). The default option is that the distance between variables will be calculated as 1 less the absolute correlation matrix. Alternatively, you can provide your own hierarchical clustering through the optional argument \texttt{hcloutput}.

alpha numeric level in \((0, 1)\) at which the test / confidence intervals are to be constructed.

eps a level of \(\text{eps} \times \text{alpha} \) is used and the values of different splits are aggregated using the \((1-\text{eps})\) quantile. See reference below for more details.

hcloutput optionally, the value of a \texttt{hclust()} call. If it is provided, the arguments \texttt{dist} and \texttt{method} are ignored.

nsplit the number of data splits used.

s the dimensionality of the projection that is used. Lower values lead to faster computation and if \(n > 50 \), then \(s \) is set to 50 if left unspecified, to avoid lengthy computations.

silent logical enabling progress output.

setseed a logical; if this is true (recommended), then the same random seeds are used for all groups, which makes the confidence intervals simultaneously valid over all groups of variables tested.

lpSolve logical; only set it to false if \texttt{lpSolve()} is not working on the current machine: setting it to false will result in much slower computations; only use on small problems.
Value

Returns a list with components

- `groupNumber`: The index of the group tested in the original hierarchical clustering tree
- `members`: A list containing the variables that belong into each tested group
- `noMembers`: A vector containing the number of members in each group
- `lowerBound`: The lower bound on the l1-norm in each group
- `position`: The position on the x-axis of each group (used for plotting)
- `leftChild`: Gives the index of the group that corresponds to the left child node in the tested tree (negative values correspond to leaf nodes)
- `rightChild`: Same as `leftChild` for the right child of each node
- `isLeaf`: Logical vector. Is `TRUE` for a group if it is a leaf node in the tested tree or if both child nodes have a zero lower bound on their group l1-norm

Author(s)

Nicolai Meinshausen

References

Meinshausen, N. (2015); JRSS B, see `groupBound`.

See Also

Use `groupBound` to compute the lower bound for selected groups of variables whereas you use this `clusterGroupBound` to test all groups in a hierarchical clustering tree.

Examples

```r
## Create a regression problem with correlated design (n = 10, p = 3):
## a block of size 2 and a block of size 1, within-block correlation is 0.99

set.seed(29)
p <- 3
n <- 10

Sigma <- diag(p)
Sigma[1,2] <- Sigma[2,1] <- 0.99
x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)

## Create response with active variable 1
beta <- rep(0, p)
beta[1] <- 5
```
y <- as.numeric(x %*% beta + rnorm(n))

out <- clusterGroupBound(x, y, nsplit = 4) ## use larger value for nsplit!

Plot and print the hierarchical group-test
plot(out)
print(out)
out$members
out$lowerBound

dr.adjust

Function to calculate FDR adjusted p-values

Description
Calculates FDR adjusted p-values similar to R-function p.adjust but *without* adjustment for multiplicity.

Usage
fdr.adjust(p)

Arguments

p Vector of p-values.

Details
It is assumed that the p-values are already corrected for multiplicity. P-values with a value of 1 are currently ignored.

Value
Vector of p-values.

Author(s)
Lukas Meier

References

See Also
p.adjust
Examples

```r
x <- matrix(rnorm(100*1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)

### Multi-splitting with lasso.firstq as model selector function
fit.multi <- multi.split(x, y, model.selector = lasso.firstq,
                          args.model.selector = list(q = 10))
p.adjust <- fdr.adjust(fit.multi$pval.cor)
```

glm.pval

Function to calculate p-values for a generalized linear model.

Description

Calculates (classical) p-values for an ordinary generalized linear model in the n > p situation.

Usage

```r
glm.pval(x, y, family = "binomial", verbose = FALSE, ...)
```

Arguments

- `x` Design matrix (without intercept).
- `y` Response vector.
- `family` As in `glm`.
- `verbose` Logical. Should information be printed out if algorithm did not converge?
- `...` Additional arguments to be passed to `glm`.

Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value

Vector of p-values (not including the intercept).

Author(s)

Lukas Meier

See Also

`hdi`

Examples

```r
### ...
```
groupBound

Lower bound on the l1-norm of groups of regression variables

Description

Computes a lower bound that forms a one-sided confidence interval for the group l1-norm of a specified group of regression parameters. It is assumed that errors have a Gaussian distribution with unknown noise level. The underlying vector that inference is made about is the l1-sparsest approximation to the noiseless data.

Usage

```r
groupBound(x, y, group, alpha = 0.05, eps = 0.1, nsplit = 11, 
s = min(10, ncol(x) - 1), setseed = TRUE, 
silent = FALSE, lpSolve = TRUE, parallel = FALSE, 
ncores =getOption("mc.cores", 2L))
```

Arguments

- `x`: numeric design matrix of the regression $n \times p$ with p columns for p predictor variables and n rows corresponding to n observations.
- `y`: numeric response variable of length n.
- `group`: either a numeric vector with entries in $\{1, \ldots, p\}$ or a list with such numeric vectors. If `group` is a numeric vector, this is the group of variables for which a lower bound is computed. If `group` is a list, the lower bound is computed for each group in the list.
- `alpha`: numeric level in $(0, 1)$ at which the test / confidence interval is computed.
- `eps`: a level of $\text{eps} \times \text{alpha}$ is used and the values of different splits are aggregated using the $(1 - \text{eps})$ quantile. See reference below for more details.
- `nsplit`: the number of data splits used.
- `s`: the dimensionality of the projection that is used. Lower values lead to faster computation and if $n > 50$, then s is set to 50 if left unspecified, to avoid lengthy computations.
- `setseed`: a logical; if this is true (recommended), then the same random seeds are used for all groups, which makes the confidence intervals simultaneously valid over all groups of variables tested.
- `silent`: logical enabling progress output.
- `lpSolve`: logical; only set it to false if `lpSolve()` is not working on the current machine: setting it to false will result in much slower computations; only use on small problems.
- `parallel`: should parallelization be used? (logical)
- `ncores`: number of cores used for parallelization.
Details

The data are split since the noise level is unknown. On the first part of the random split, a cross-
validated lasso solution is computed, using the \texttt{glmnet} implementation. This estimator is used as an
initial estimator on the second half of the data. Results at level α are aggregated over n_{split} splits via the median of results at levels $\alpha/2$.

Value

If \texttt{group} is a single numeric vector, a scalar containing the lower bound for this group of variables is
returned. If \texttt{group} is a list, a numeric vector is returned where each entry corresponds to the group
of variables defined in the same order in \texttt{group}.

Author(s)

Nicolai Meinshausen

References

dimensional regression without assumptions on the design. \textit{Journal of the Royal Statistical Society:}
\textit{Series B, 77}, 923–945; \url{http://dx.doi.org/10.1111/rssb.12094}.

See Also

Use \texttt{clusterGroupBound} to test all groups in a hierarchical clustering tree.

Examples

```r
## Create a regression problem with correlated design: $p = 6$, $n = 50$,
## block size $B = 3$ and within-block correlation of $\rho = 0.99$
##
## Create ind
p <- 6
n <- 50
B <- 3
rho <- 0.99

ind <- rep(1:ceiling(p / B), each = B)[1:p]
Sigma <- diag(p)

for (ii in unique(ind)){
  id <- which(ind == ii)
  Sigma[id, id] <- rho
}
diag(Sigma) <- 1

x <- matrix(rnorm(n * p), nrow = n) %% chol(Sigma)

## Create response with active variable 1
beta <- rep(0, p)
beta[1] <- 5

y <- as.numeric(x %% beta + rnorm(n))
```
hdi

Function to perform inference in high-dimensional (generalized) linear models

Description

Perform inference in high-dimensional (generalized) linear models using various approaches.

Usage

```r
hdi(x, y, method = "multi.split", B = NULL, fraction = 0.5,
    model.selector = NULL, EV = NULL, threshold = 0.75,
    gamma = seq(0.05, 0.99, by = 0.01),
    classical.fit = NULL,
    args.model.selector = NULL, args.classical.fit = NULL,
    verbose = FALSE, ...)
```

Arguments

- **x**: Design matrix (without intercept).
- **y**: Response vector.
- **method**: Multi-splitting ("multi.split") or stability-selection ("stability").
- **B**: Number of sample-splits (for "multi.split") or sub-sample iterations (for "stability"). Default is 50 ("multi.split") or 100 ("stability"). Ignored otherwise.
- **fraction**: Fraction of data used at each of the B iterations.
- **model.selector**: Function to perform model selection. Default is `lasso.cv` ("multi.split") and `lasso.firstq` ("stability"). Function must have at least two arguments: x (the design matrix) and y (the response vector). Return value is the index vector of selected columns. See `lasso.cv` and `lasso.firstq` for examples. Additional arguments can be passed through `args.model.selector`.

```r
## Compute lower bounds:
## Lower bound for the L1-norm of *all* variables 1-6 of the sparsest
## optimal vector
nsplit <- 4  ## to make example run fast (use larger value)
lowerBoundAll <- groupBound(x, y, 1:p, nsplit = nsplit)
cat("\nlower bound for all variables 1-6: ", lowerBoundAll, "\n")

## Compute additional lower bounds:
## Lower bounds for variable 1 itself, then group {1,3}, 1-2, 1-3, 2-6,
lowerBound <- groupBound(x, y, list(1, c(1,3), 1:2, 1:3, 2:6),
                        nsplit = nsplit)
cat("lower bound for the groups:
	 {1}, {1,3}, {1,2}, {1..3}, {2..6}:\n",
    format(formatC(c(lowerBound))), "\n")
```
EV (only for "stability"). Bound(s) for expected number of false positives. Can be a vector.

threshold (only for "stability"). Bound on selection frequency.

gamma (only for "multi.split"). Vector of gamma-values.

classical.fit (only for "multi.split"). Function to calculate (classical) p-values. Default is lm.pval. Function must have at least two arguments: x (the design matrix) and y (the response vector). Return value is the vector of p-values. See lm.pval for an example. Additional arguments can be passed through args.classical.fit.

args.model.selector
 Named list of further arguments for function model.selector.

args.classical.fit
 Named list of further arguments for function classical.fit.

verbose
 Should information be printed out while computing (logical).

... Other arguments to be passed to the underlying functions.

Value

pval (only for "multi.split"). Vector of p-values.

gamma.min (only for "multi.split"). Value of gamma where minimal p-values was attained.

select (only for "stability"). List with selected predictors for the supplied values of EV.

EV (only for "stability"). Vector of corresponding values of EV.

thresholds (only for "stability"). Used thresholds.

freq (only for "stability"). Vector of selection frequencies.

Author(s)

Lukas Meier

References

See Also

stability, multi.split

Examples

```r
x <- matrix(rnorm(100*1000), nrow = 100, ncol = 200)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)

## Multi-splitting with lasso.firstq as model selector function
fit.multi <- hdi(x, y, method = "multi.split")
```
lasso.cv

Select Predictors via (10-fold) Cross-Validation of the Lasso

Description

Performs (n-fold) cross-validation of the lasso (via `cv.glmnet`) and determines the prediction optimal set of parameters.

Usage

```r
lasso.cv(x, y,
  nfolds = 10,
  grouped = nrow(x) > 3*nfolds,
  ...)```

**Arguments**

- `x` numeric design matrix (without intercept) of dimension $n \times p$.
- `y` response vector of length $n$.
- `nfolds` the number of folds to be used in the cross-validation.
- `grouped` corresponds to the grouped argument to `cv.glmnet`. This has a smart default such that glmnet does not give a warning about too small sample size.
- `...` further arguments to be passed to `cv.glmnet`.

**Details**

The function basically only calls `cv.glmnet`, see source code.

**Value**

Vector of selected predictors.

**Author(s)**

Lukas Meier
lasso.firstq

See Also

hdi which uses lasso.cv() by default; cv.glmnet. An alternative for hdi(): lasso.firstq.

Examples

```r
x <- matrix(rnorm(100*1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
seq <- lasso.cv(x, y)
seq
```

---

lasso.firstq | Determine the first q Predictors in the Lasso Path

Description

Determines the q predictors that enter the lasso path first.

Usage

```r
lasso.firstq(x, y, q, ...)
```

Arguments

- `x` numeric design matrix (without intercept) of dimension \( n \times p \).
- `y` response vector of length \( n \).
- `q` number of predictors that should be selected, a positive integer.
- `...` optional additional arguments to be passed to glmnet.

Details

The lasso.firstq function calls glmnet in a special way and simply postprocesses its nonzero predictor list, see its source code.

Value

Vector of selected predictors.

Author(s)

Lukas Meier

See Also

hdi; the default choice for hdi(), lasso.cv.glmnet
Examples

```r
x <- matrix(rnorm(100*1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
 sel <- lasso.firstq(x, y, q = 5)
 sel # 5 integers from {1,2, ..., 1000}, including '1' and '2', typically
```

---

**Description**

Compute p-values based on the lasso projection method, also known as the de-sparsified Lasso.

**Usage**

```r
lasso.proj(x, y, family = "gaussian", standardize = TRUE,
multiplecorr.method = "holm", N = 10000,
parallel = FALSE, ncores =getOption("mc.cores", 2L),
betainit = "cv lasso", sigma = NULL, Z = NULL, verbose = FALSE,
return.Z = FALSE, suppress.grouptesting = FALSE, robust = FALSE)
```

**Arguments**

- **x** Design matrix (without intercept).
- **y** Response vector.
- **family** family
- **standardize** Should design matrix be standardized to unit column standard deviation.
- **multiplecorr.method** Either "WY" or any of `p.adjust.methods`.
- **N** Number of empirical samples (only used if multiplecorr.method == "WY")
- **parallel** Should parallelization be used? (logical)
- **ncores** Number of cores used for parallelization.
- **betainit** Either a numeric vector, corresponding to a sparse estimate of the coefficient vector, or the method to be used for the initial estimation, "scaled lasso" or "cv lasso".
- **sigma** Estimate of the standard deviation of the error term. This estimate needs to be compatible with the initial estimate (see betainit) provided or calculated. Otherwise, results will not be correct.
- **Z** user input, also see `return.Z` below
- **verbose** A boolean to enable reporting on the progress of the computations. (Only prints out information when Z is not provided by the user)
- **return.Z** An option to return the intermediate result which only depends on the design matrix x. This intermediate results can be used when calling the function again and the design matrix is the same as before.
lasso.proj

suppress.grouptesting
A boolean to optionally suppress the preparations made for testing groups. This will avoid quite a bit of computation and memory usage. The output will also be smaller.

robust
Uses a robust variance estimation procedure to be able to deal with model misspecification.

Value

pval
Individual p-values for each parameter.
pval.cor
Multiple testing corrected p-values for each parameter.
groupTest
Function to perform groupwise tests. Groups are indicated using an index vector with entries in 1,..,p or a list thereof.
clusterGroupTest
Function to perform groupwise tests based on hierarchical clustering. You can either provide a distance matrix and clustering method or the output of hierarchical clustering from the function hclust as for clusterGroupBound. P-values are adjusted for multiple testing.
sigmahat
\( \hat{\sigma} \) coming from the scaled lasso.
Z
Only different from NULL if the option return.Z is on. This is an intermediate result from the computation which only depends on the design matrix x. These are the residuals of the nodewise regressions.

Author(s)

Ruben Dezeure

References


Examples

```r
x <- matrix(rnorm(100*20), nrow = 100, ncol = 10)
y <- x[,1] + x[,2] + rnorm(100)
fit.lasso <- lasso.proj(x, y)
which(fit.lasso$pval.cor < 0.05) # typically: '1' and '2' and no other
```
## Group-wise testing of the first two coefficients

```r
fit.lasso$groupTest(1:2)
```

## Hierarchical testing using distance matrix based on correlation matrix

```r
out.clust <- fit.lasso$clusterGroupTest()
plot(out.clust)
```

## Fit the lasso projection method without doing the preparations for group testing
### (saves time and memory)

```r
fit.lasso.faster <- lasso.proj(x, y, suppress.groupTesting = TRUE)
```

## Use the scaled lasso for the initial estimate

```r
fit.lasso.scaled <- lasso.proj(x, y, betainit = "scaled lasso")
which(fit.lasso.scaled$pval.corr < 0.05)
```

## Use a robust estimate for the standard error

```r
fit.lasso.robust <- lasso.proj(x, y, robust = TRUE)
which(fit.lasso.robust$pval.corr < 0.05)
```

### lm.ci

Function to calculate confidence intervals for ordinary multiple linear regression.

#### Description

Calculates (classical) confidence intervals for an ordinary multiple linear regression model in the $n > p$ situation.

#### Usage

```r
lm.ci(x, y, level = 0.95, ...)
```

#### Arguments

- **x**: Design matrix (without intercept).
- **y**: Response vector.
- **level**: Coverage level.
- **...**: Additional arguments to be passed to `lm`.

#### Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

#### Value

Matrix of confidence interval bounds (not including the intercept).
Author(s)
Lukas Meier

See Also
hdi

Examples
x <- matrix(rnorm(100*5), nrow = 100, ncol = 5)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
ci <- lm.ci(x, y)
ci

\textit{lm.pval} \hspace{1cm} \textit{Function to calculate p-values for ordinary multiple linear regression.}

Description
Calculates (classical) p-values for an ordinary multiple linear regression in the n > p situation.

Usage
\texttt{lm.pval(x, y, exact = TRUE, ...)}

Arguments
\begin{itemize}
  \item \texttt{x} Design matrix (without intercept).
  \item \texttt{y} Response vector.
  \item \texttt{exact} Logical. TRUE if p-values based on t-distribution should be calculated. FALSE if normal distribution should be used as approximation.
  \item \texttt{...} Additional arguments to be passed to \texttt{lm.}
\end{itemize}

Details
A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value
Vector of p-values (not including the intercept).

Author(s)
Lukas Meier

See Also
hdi
Examples

```r
x <- matrix(rnorm(100*5), nrow = 100, ncol = 5)
y <- x[, 1] * 2 + x[, 2] * 2.5 + rnorm(100)
pval <- lm.pval(x, y)
pval
```

---

**multi.split**

*Calculate P-values Based on Multi-Splitting Approach*

Description

Calculate p-values and confidence intervals based on the multi-splitting approach

Usage

```r
multi.split(x, y, B = 100, fraction = 0.5, ci = TRUE, ci.level = 0.95,
model.selector = lasso.cv, classical.fit = lm.pval, classical.ci = lm.ci,
parallel = FALSE, ncores = getOption("mc.cores", 2L),
gamma = seq(ceiling(0.05 * B) / B, 1 - 1 / B, by = 1 / B),
args.model.selector = NULL, args.classical.fit = NULL,
args.classical.ci = NULL,
return.nonaggr = FALSE, return.selmodels = FALSE,
repeat.max = 20,
verbose = FALSE)
```

Arguments

- `x`: numeric design matrix (without intercept).
- `y`: numeric response vector.
- `B`: the number of sample-splits, a positive integer.
- `fraction`: a number in (0, 1), the fraction of data used at each sample split for the model selection process. The remaining data is used for calculating the p-values.
- `ci`: logical indicating if a confidence interval should be calculated for each parameter.
- `ci.level`: (if `ci` is true:) a number in (0, 1), typically close to 1, the desired coverage level of the confidence intervals.
- `model.selector`: a function to perform model selection, with default `lasso.cv`. The function must have at least two arguments, `x` (the design matrix) and `y` (the response vector). Return value is the index vector of selected columns. See `lasso.cv` and `lasso.firstq` for an example. Additional arguments can be passed via `args.model.selector`.
- `classical.fit`: a function to calculate (classical) p-values. Default is `lm.pval`. The function must have at least two arguments, `x` (the design matrix) and `y` (the response vector), and return the vector of p-values. See `lm.pval` for an example. Additional arguments can be passed through `args.classical.fit`.
classical.ci is a function to calculate (classical) confidence intervals. Default is lm.ci. The function must have at least 3 arguments, x (the design matrix), y (the response vector) and level (the coverage level), and return the matrix of confidence intervals. See lm.ci for an example. Additional arguments can be passed through args.classical.ci.

parallel logical indicating if parallelization via mclapply should be used.

ncores number of cores used for parallelization as mc.cores in mclapply().

gamma vector of gamma-values. In case gamma is a scalar, the value $Q_j$ instead of $P_j$ is being calculated (see reference below).

args.model.selector named list of further arguments for function model.selector.

args.classical.fit named list of further arguments for function classical.fit.

args.classical.ci named list of further arguments for function classical.ci.

return.nonaggr logical indicating if the unadjusted p-values be returned.

return.selmodels logical indicating if the selected models (at each split) should be returned. Necessary for the clusterGroupTest() part of the result.

repeat.max positive integer indicating the maximal number of split trials. Should not matter in regular cases, but necessary to prevent infinite loops in borderline cases.

verbose should information be printed out while computing? (logical).

Value

pval.corr Vector of multiple testing corrected p-values.

gamma.min Value of gamma where minimal p-values was attained.

clusterGroupTest Function to perform groupwise tests based on hierarchical clustering. You can either provide a distance matrix and clustering method or the output of hierarchical clustering from the function hclust as for clusterGroupBound. P-values are adjusted for multiple testing.

Author(s)

Lukas Meier, Ruben Dezeure, Jacopo Mandozzi

References


See Also

lasso.cv, lasso.firstq, lm.pval, lm.ci.

Examples

```r
n <- 40 # a bit small, to keep example "fast"
p <- 256
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(n)

Multi-splitting with lasso.firstq as model selector function
'q' must be specified
fit.multi <- multi.split(x, y, model.selector = lasso.firstq,
 args.model.selector = list(q = 10))
fit.multi
head(fit.multi$pval.corr, 10) ## the first 10 p-values
ci. <- confint(fit.multi)
head(ci.) # the first 6
stopifnot(all.equal(ci.,
 with(fit.multi, cbind(lci, uci)), check.attributes=FALSE))

Use default 'lasso.cv' (slower{!!) -- incl cluster group testing:
system.time(fit.m2 <- multi.split(x, y, return.selmodels = TRUE)) # 9 sec (on "i7")
head(fit.m2$pval.corr) ## the first 5 p-values
head(confint(fit.m2)) ## the first 5 95% conf.intervals

Now do clustergroup testing
cGTst <- fit.m2$clusterGroupTest
names(envGT <- environment(cGTst)) # about 14
if(!interactive()) # if you are curious (and advanced):
 print(ls.str(envGT, max = 0))
stopifnot(identical(cGTst, envGT$clusterGroupTest))
ccc <- cGTst()
str(ccc)
ccc$sh # the clustering
has.1.or.2 <- sapply(ccc$clusters,
 function(j.set) any(c(1,2) %in% j.set))
ccc$pval[has.1.or.2] ## all very small
ccc$pval[!has.1.or.2] ## all 1
```

---

**plot.clusterGroupBound**

Plot output of hierarchical testing of groups of variables

**Description**

The **plot()** method for "**clusterGroupBound**" objects plots the outcome of applying a lower bound on the 1-norm on groups of variables in a hierarchical clustering tree.
### S3 method for class 'clusterGroupBound'

```r
plot(x, cexfactor = 1, yaxis = "members",
 xlab = "", col = NULL, pch = 20, ...)```

Arguments

- `x`: an object of class "clusterGroupBound", as resulting from `clusterGroupBound()`.
- `cexfactor`: numeric expansion factor for the size of the node symbols.
- `yaxis`: a string; for the default "members", the hierarchical tree is shown as function of cluster size on the y-axis, whereas the node sizes are proportional to the lower L1-norm of the respective groups of variables. If `yaxis` takes any different value, then this is reversed and the tree is shown against the lower L1-norm on the y-axis, while node sizes are now proportional to the number of elements in each cluster.
- `xlab`: label used for the x-axis; by default none.
- `col`: the colour of the symbols for the nodes.
- `pch`: the plot symbol (see `points`) of the symbols for the nodes.
- `...`: optional additional arguments passed to `plot.default`.

Value

Nothing is returned.

Author(s)

Nicolai Meinshausen <meinshausen@stat.math.ethz.ch>

See Also

Use `clusterGroupBound()` to test all groups in a hierarchical clustering tree. Use `groupBound()` to compute the lower bound for selected groups of variables.

Examples

```r
## Create a regression problem with correlated design (n = 10, p = 3):
## a block of size 2 and a block of size 1, within-block correlation is 0.99
set.seed(29)
p <- 3
n <- 10
Sigma <- diag(p)
Sigma[1,2] <- Sigma[2,1] <- 0.99
```
```r
x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)

## Create response with active variable 1
beta <- rep(0, p)
beta[1] <- 5

y <- as.numeric(x %*% beta + rnorm(n))

## Compute the lower bound for all groups in a hierarchical clustering tree
cgb5 <- clusterGroupBound(x, y, nsplit = 4) ## use larger value for nsplit!

## Plot the tree with y-axis proportional to the (log) of the number of
## group members and node sizes proportional to the lower \ell_1-norm bound.
plot(cgb5)

## Show the lower bound on the y-axis and node sizes proportional to
## number of group members
plot(cgb5, yaxis = "")
```

riboflavin

Riboflavin data set

Description

Dataset of riboflavin production by Bacillus subtilis containing \(n = 71 \) observations of \(p = 4088 \) predictors (gene expressions) and a one-dimensional response (riboflavin production).

Usage

```r
data(riboflavin)
```

Format

- **y**: Log-transformed riboflavin production rate (original name: q_RIBFLV).
- **x**: (Co-)variables measuring the logarithm of the expression level of 4088 genes.

Details

Data kindly provided by DSM (Switzerland).

References

Examples

```r
data(riboflavin)
```
Description

Compute p-values for lasso-type regression coefficients based on the ridge projection method.

Usage

```r
ridge.proj(x, y, family = "gaussian", standardize = TRUE,
           lambda = 1, betainit = "cv lasso", sigma = NULL,
           suppress.grouptesting = FALSE,
           multiplecorr.method = "holm", N = 10000)
```

Arguments

- `x`: design matrix (without intercept).
- `y`: response vector.
- `family`: family
- `standardize`: Should design matrix be standardized to unit column standard deviation (logical)?
- `lambda`: Value of penalty parameter lambda (ridge regression).
- `betainit`: Either a numeric vector, corresponding to a sparse estimate of the coefficient vector, or the method to be used for the initial estimation, "scaled lasso" or "cv lasso".
- `sigma`: Estimate of the standard deviation of the error term. This estimate needs to be compatible with the initial estimate (see betainit) provided or calculated. Otherwise, results won’t be correct.
- `suppress.grouptesting`: A boolean to optionally suppress the preparations made for testing groups. This will avoid quite a bit of computation and memory usage. The output will also be smaller.
- `multiplecorr.method`: Either "WY" or any of `p.adjust.methods`.
- `N`: number of empirical samples (only used if `multiplecorr.method = "WY"`).

Value

- `pval`: Individual p-values for each parameter.
- `pval.corr`: Multiple testing corrected p-values for each parameter.
- `groupTest`: Function to perform groupwise tests. Groups are indicated using an index vector with entries in 1, ..., p or a list thereof.
clusterGroupTest

Function to perform groupwise tests based on hierarchical clustering. You can either provide a distance matrix and clustering method or the output of hierarchical clustering from the function `hclust` as for `clusterGroupBound`. P-values are adjusted for multiple testing.

sigmaHat \(\hat{\sigma} \) coming from the scaled lasso.

Author(s)

Peter Bühlmann, Ruben Dezeure, Lukas Meier

References

Examples

```r
x <- matrix(rnorm(100 * 100), nrow = 100, ncol = 100)
y <- x[,1] + x[,2] + rnorm(100)
fit.ridge <- ridge.proj(x, y)
which(fit.ridge$pval.corr < 0.05)

## Use the scaled lasso for the initial estimate
fit.ridge.scaled <- ridge.proj(x, y, betainit = "scaled lasso")
which(fit.ridge.scaled$pval.corr < 0.05)

## Group-wise testing of the first two coefficients
fit.ridge$groupTest(1:2)

## Hierarchical testing using distance matrix based on
## correlation matrix
out.clust <- fit.ridge$clusterGroupTest()
plot(out.clust)

## Fit the method without doing the preparations
## for group testing (saves time and memory)
fit.ridge.faster <- ridge.proj(x, y, suppress.grouptesting = TRUE)
```

rXb

Generate Data Design Matrix X and Coefficient Vector \(\beta \)

Description

Generate a random design matrix \(X \) and coefficient vector \(\beta \) useful for simulations of (high dimensional) linear models. In particular, the function `rXb()` can be used to exactly recreate the reference linear model datasets of the hdi paper.
Usage

```
rx(xb, n, p, s0,
  xtype = c("toeplitz", "exp.decay", "equi.corr"),
  btype = "U[-2,2]",
  permuted = FALSE, iteration = NA, do2S = TRUE,
  x.par = switch(xtype,
    "toeplitz" = 0.9,
    "equi.corr" = 0.8,
    "exp.decay" = c(0.4, 5)),
  verbose = TRUE)
```

```
rx(xb, n, p, xtype, permuted, do2S = TRUE,
  par = switch(xtype,
    "toeplitz" = 0.9,
    "equi.corr" = 0.8,
    "exp.decay" = c(0.4, 5)))
```

Arguments

- **n**: integer; the sample size \(n\) (paper had always \(n = 100\)).
- **p**: integer; the number of coefficients in the linear model. (paper had always \(p = 500\)).
- **s0**: integer number of **nonzero** coefficients desired in the model; hence at most \(p\).
- **xtype**: a **character** string specifying the type of design matrix one wants to generate. Must be one of "toeplitz", "equi.corr" or "exp.decay".
- **btype**: a **character** string specifying the type of nonzero coefficients ("beta") one wants to generate. In the hdi paper, this has been one of "U[-2,2]", "U[0,2]", "U[0,4]", "bfix1", "bfix2" and "bfix10". In general, any string of the form "U[a,b]" or "bfix<>" is allowed, where \(a, b\), and <> must be numbers (with \(a \leq b\)).
- **permuted**: logical specifying if the columns of the design matrix should be permuted.
- **iteration**: integer or NA specifying if seeds should be set to generate reproducible realizations of the design type and coefficients type. NA corresponds to not setting seeds. Iteration numbers 1 to 50 correspond to the setups from the paper. If a seed is set, the original `.Random.seed` at the point of entering the function is saved and is restored upon exit of the data generation. If NA, the current `.Random.seed` is taken as usual in R.
- **do2S**: logical indicating if in the case of xtypes "toeplitz" or "equi.corr", the \(p \times p\) covariance matrix should be inverted twice. Must be true, to regenerate the \(X\) matrices from the hdi paper exactly “to the last bit”.
- **x.par, par**: the parameters to be used for the design matrix. Must be a numeric vector of length one or two. The default uses the parameters also used in the hdi paper.
- **verbose**: should the function give a message if seeds are being set? (logical).
Details

Generation of the design matrix X:
For all `xtype`s, the X matrix will be multivariate normal, with mean zero and (co)variance matrix
$\Sigma = C$ determined from `xtype`, `x.par` and p as follows:

- `xtype = "toeplitz"`: $C \leftarrow \text{par}^\text{abs(\text{toeplitz}(\text{0:}(\text{p}-1)))}$
- `xtype = "equi.corr"`: $\Sigma_{i,j} = \text{par}$ for $i \neq j$, and $= 1$ for $i = j$, i.e., on the diagonal.
- `xtype = "exp.decay"`: $C \leftarrow \text{solve(\text{par}[1]^\text{abs(\text{toeplitz}(\text{0:}(\text{p}-1))/\text{par}[2]))}}$

Value

For `rXb()`: A list with components
- `x` the generated $n \times p$ design matrix X.
- `beta` the generated coefficient vector β (‘beta’).

For `rX()`: the generated $n \times p$ design matrix X.

Author(s)

Ruben Dezeure <dezeure@stat.math.ethz.ch>

References

Examples

```r
## Generate the first realization of the linear model with design matrix
## type Toeplitz and coefficients type uniform between -2 and 2

dset <- rXb(n = 80, p = 20, s0 = 3,
  xtype = "toeplitz", btype = "U[-2,2]")
x <- dset$x
beta <- dset$beta

## generate 100 response vectors of this linear model
y <- as.vector( x %%% beta ) + replicate(100, rnorm(nrow(x)))

## Use 'beta_min' fulfilling beta's (non standard 'btype'):
str(ds2 <- rXb(n = 50, p = 12, s0 = 3,
  xtype = "exp.decay", btype = "U[0.1, 5]"))

## Generate a design matrix of type "toeplitz"
set.seed(3) # making it reproducible
X3 <- rX(n = 800, p = 500, xtype = "toeplitz", permuted = FALSE)

## permute the columns
set.seed(3)
Xp <- rX(n = 800, p = 500, xtype = "toeplitz", permuted = TRUE)
```
Function to perform stability selection

Description

Function to perform stability selection

Usage

```r
stability(x, y, EV, threshold = 0.75, B = 100, fraction = 0.5,
model.selector = lasso.firstq, args.model.selector = NULL,
parallel = FALSE, ncores = getOption("mc.cores", 2L),
verbose = FALSE)
```

Arguments

- `x`: Design matrix (without intercept).
- `y`: Response vector.
- `EV`: Bound for expected number of false positives.
- `threshold`: Threshold for selection frequency. Must be in (0.5, 1).
- `B`: Number of sub-sample iterations.
- `fraction`: Fraction of data used at each of the B sub-samples.
- `model.selector`: Function to perform model selection. Default is `lasso.firstq`. User supplied function must have at least three arguments: `x` (the design matrix), `y` (the response vector) and `q` (the maximal model size). Return value is the index vector of selected columns. See `lasso.firstq` for an example. Additional arguments can be passed through `args.model.selector`.
- `args.model.selector`: Named list of further arguments for function `model.selector`.
- `parallel`: Should parallelization be used? (logical)
- `ncores`: Number of cores used for parallelization.
- `verbose`: Should information be printed out while computing (logical).

Value

- `selected`: Vector of selected predictors.
- `freq`: Vector of selection frequencies.
- `q`: Size of fitted models in order to control error rate at desired level.

Author(s)

Lukas Meier
References

Examples

```r
x <- matrix(rnorm(100*1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
fit.stab <- stability(x, y, EV = 1)
fit.stab
fit.stab$freq[1:10] ## selection frequency of the first 10 predictors
```
Index

*Topic confidence intervals
 clusterGroupBound, 3
groupBound, 8

*Topic datagen
 rXb, 24

*Topic datasets
 riboflavin, 22

*Topic hierarchical clustering
 clusterGroupBound, 3

*Topic htest
 plot.clusterGroupBound, 20

*Topic models
 fdr.adjust, 6
glm.pval, 7
hdi, 10
lasso.cv, 12
lasso.firstq, 13
lasso.proj, 14
lm.ci, 16
lm.pval, 17
multi.split, 18
ridge.proj, 23
stability, 27

*Topic package
 hdi-package, 2

*Topic regression
 clusterGroupBound, 3
 fdr.adjust, 6
glm.pval, 7
groupBound, 8
hdi, 10
lasso.cv, 12
lasso.firstq, 13
lasso.proj, 14
lm.ci, 16
lm.pval, 17
multi.split, 18
plot.clusterGroupBound, 20
ridge.proj, 23
rXb, 24
stability, 27
.Random.seed, 25

character, 4, 25
class, 21
clusterGroupBound, 3, 9, 15, 19–21, 24
cv.glmnet, 12, 13
dist, 4
fdr.adjust, 6
function, 18, 19
glm, 7
glm.pval, 7
glmnet, 13
groupBound, 5, 8, 21
hclust, 4, 15, 19, 24
hdi, 7, 10, 13, 17
hdi-package, 2

lasso.cv, 10, 12, 13, 18, 20
lasso.firstq, 10, 13, 18, 20
lasso.proj, 14
list, 8, 19, 26
lm, 16, 17
lm.ci, 16, 19, 20
lm.pval, 11, 17, 18, 20
logical, 19
mclapply, 19
multi.split, 11, 18

p.adjust, 6
p.adjust.methods, 14, 23
plot, 20
plot.clusterGroupBound, 20
plot.default, 21
points, 21
riboflavin, 22
ridge.proj, 23
rX(rXb), 24
rXb, 24

stability, II, 27