A package named 'hett' was introduced, containing functions for heteroscedastic t-regression. The version is 0.3-2, and it is documented over 11 pages.

The package includes topics such as 'mm', 'rent', 'summary.tlm', 'tlm', 'tlm.control', 'tscore', and 'tsum'. The data in 'mm' represents excess returns for the Martin Marietta company over a period of 5 years on a monthly basis.

Description:
Data from the Martin Marietta company collected over a period of 5 years on a monthly basis.
Usage

data(mm)

Format

A data frame with 60 observations on the following 4 variables.

- **date**: the month the data was collected
- **am.can**: a numeric vector
- **m.marietta**: excess returns from the Martin Marietta company
- **CRSP**: an index for the excess rate returns for the New York stock exchange

Source

Examples

```r
data(mm, package = "hett")
attach(mm)
plot(CRSP, m.marietta)
lines(CRSP, fitted(lm(m.marietta ~ CRSP)), lty = 2)
```

Rent for Land PLanted to Alfalfa

Description

Dataset collected in 1977 from Minnesota to study the variation in land rented for growing alfalfa

Usage

data(rent)

Format

A data frame with 67 observations on the following 5 variables.

- **Rent**: a numeric vector average rent per acre.
- **AllRent**: a numeric vector describing average rent paid for all tillable land.
- **Cows**: a numeric vector describing the density of dairy cows (number per square mile).
- **Pasture**: a numeric vector describing the proportion of farmland used as pasture.
- **Liming**: a factor with levels No if no liming is required to grow alfalfa and Yes if it does.
summary.tlm

Source

Examples

```r
library(lattice)
data(rent, package = "hett")
attach(rent)
xyplot(log(Rent/AllRent) ~ sqrt(Cows), groups = Liming, panel = panel.superpose)
```

summary.tlm

summary method for class "tlm"

Description

Summarizes the heteroscedastic t regression object

Usage

```r
## S3 method for class 'tlm'
summary(object, correlation = FALSE, ...)
## S3 method for class 'summary.tlm'
print(x, ...)
```

Arguments

- `object` heteroscedastic t regression object called from `tlm()`
- `x` an object of class "summary.tlm" containing the values below
- `correlation` should the calculation of the parameter correlation matrix be suppressed. If the fit includes a location and a scale formula then both correlation matrices are printed. The default is FALSE.
- `...` arguments passed to or from other methods

Details

The table summary produced by this function should be used with caution. A more appropriate test between nested models is to use the score statistic function `tscore`.

Value

a list containing the following components:

- `loc.summary` an object containing a list of objects that summarize the location model
- `scale.summary` an object containing a list of objects that summarize the scale model
iter the number of iterations of the algorithm

dof value of the fixed or estimated degrees of freedom

dofse the standard error associated with the degrees of freedom if estimated

logLik the maximised log-likelihood

method the method used to maximize the likelihood

endTime the time taken for the algorithm to converge

Author(s)
Julian Taylor

See Also

tsum, tlm

Examples

data(mm, package = "hett")
attach(mm)

fit a model with heteroscedasticity and estimating the degrees of freedom

tfit2 <- tlm(m.marietta ~ CRSP, ~ CRSP, data = mm, start = list(dof = 3), estDof = TRUE)
summary(tfit2)

Description

Fits a heteroscedastic t regression to given data for known and unknown degrees of freedom.

Usage

```r
tlm(lform, sform = ~ 1, data = sys.parent(), subset = NULL, contrasts = NULL, na.action = na.fail, start = NULL, control = tlm.control(...), obs = FALSE, estDof = FALSE, ...)  
```

S3 method for class 'tlm'
print(x, ...)
Arguments

- **x**: an object of class "tlm"
- **lform**: a formula of the type `response ~ terms`, where `terms` can be of the form, for example, `first + second` or `first*second` (see `lm` for details)
- **sform**: a formula of the type `~ terms`, where `terms` can be of the form, for example, `first + second` or `first*second` (see `lm` for details)
- **data**: the data in the form of a `data.frame` where the column names can be matched to the variable names supplied in `lform` and `sform`
- **subset**: numerical vector to subset the `data` argument
- **contrasts**: set of contrasts for the location model (see `contrasts.arg` for details)
- **na.action**: the action to proceed with in the event of NA’s in the response. Currently NA’s are not allowed and therefore `na.fail` is the sole argument.
- **start**: is a list of possibly four named components, ("beta", "lambda", "dof", "omega"), for the location, scale, degrees of freedom parameters and random scale effects respectively. Each component must be of the appropriate length.
- **control**: is an argument to a function that maintains the control of the algorithm. The `tlm.control()` function contains the arguments, `epsilon` to determine how small the relative difference of likelihoods should be for convergence (default is 1e-07), `maxit` to determine the maximum iterations required (default = 50), `trace` if the user requires printing of estimates etc. as algorithm runs (default = FALSE), `verboselev` to determine the amount of verbose printing to the screen as the algorithm runs (verboselev = 1 displays location scale and dof estimates and the likelihood, verboselev = 2 displays all of 1 plus the random scale effects)
- **obs**: should the location parameters be calculated using the observed or expected information (default = FALSE). (Note: using the observed information does not calculate the appropriate standard errors, see DETAILS)
- **estDof**: should the degrees of freedom parameter be estimated or not. If FALSE then the value given for dof in the `start` argument will be the fixed value used for the algorithm. If TRUE then the value given for dof in the `start` argument supplies an initial value only.
- **...**: arguments passed to `tlm.control()` or to the `print` method

Details

When the degrees of freedom is unknown the code uses the non-linear optimiser `nlm`. If the response (and therefore the errors) is tending toward a Gaussian this optimisation will still converge but with very high degrees of freedom.

To obtain the appropriate standard errors from `summary` the user must specify the argument `obs = F` to ensure that the location parameter is calculated using the expected information.

Value

a list containing the following components:
loc.fit an object containing the estimated location parameters and other elements associated with the location parameter model

scale.fit an object containing the estimated scale parameters and other elements associated with the scale parameter model

random the random scale effects

dof fixed or estimated degrees of freedom

dofse the standard error associated with the degrees of freedom

iter the number of iterations of the algorithm

logLik the maximised log-likelihood

endTime the time taken for the algorithm to converge

Background

The theoretical background for this function can be found in Taylor and Verbyla (2004)

Author(s)

Julian Taylor

References

See Also

`summary.tlm`

Examples

data(mmL, package = "hett")
attach(mm)

fit a model with no heteroscedasticity and fixed degrees of freedom

tfit <- tlm(m.marietta ~ CRSP, data = mm, start = list(dof = 3))

fit a model with heteroscedasticity and fixed degrees of freedom

tfit1 <- tlm(m.marietta ~ CRSP, ~ CRSP, data = mm, start = list(dof = 3))

fit a model with heteroscedasticity and estimating the degrees of freedom

tfit2 <- tlm(m.marietta ~ CRSP, ~ CRSP, data = mm, start = list(dof = 3), estDof = TRUE)
tlm.control

Auxiliary for Controlling tlm Fitting

Description

Auxiliary function for fitting tlm model. Generally only used when calling tlm

Usage

tlm.control(epsilon = 1e-07, maxit = 50, trace = FALSE, verboseLev = 1)

Arguments

epsilon positive convergence tolerance value. The iterations converge when \(\text{[newlik - oldlik]} < \text{epsilon/2}\)

maxit integer giving the maximum iterations allowable for the routine

trace logical. If TRUE output is printed to the screen during each iteration

verboseLev integer. If 1 then print according to trace. If 2 then print random scale effects also.

Value

A list with the argument as values

Author(s)

Julian Taylor

See Also

tlm

Examples

data(mm, package = "hett")
attach(mm)

change the maximum amount of iterations for the algorithm

fit1 <- tlm(m.marietta ~ CRSP, ~ 1, data = mm, start = list(dof = 3), estDof = TRUE, control = tlm.control(maxit = 100))
\textbf{tscore} \hspace{2cm} \textit{Score test for heteroscedastic \textit{t} models}

\textbf{Description}

Provides a score test for the location and scale parameters of the heteroscedastic \textit{t} regression model.

\textbf{Usage}

\texttt{tscore(...) \hspace{1cm}, data = NULL, scale = FALSE)}

\textbf{Arguments}

- \texttt{...} \hspace{1cm} Any number of arguments containing nested model fits from \texttt{t1m()} (see Details)
- \texttt{data} \hspace{1cm} the data used to fit the models involved
- \texttt{scale} \hspace{1cm} logical. If \texttt{TRUE} the scale model is tested

\textbf{Details}

The user must supply nested models that test, \textit{either}, the scale or the location component of the model. The model objects \textit{must} be nested from left to right. Currently there are no traps if the arguments are not given in this order.

The models must also have either, all fixed degrees of freedom or estimated degrees of freedom.

\textbf{Value}

Output containing the hypothesis, the score statistic, degrees of freedom for the test and the p-value are printed to the screen.

\textbf{Author(s)}

Julian Taylor

\textbf{References}

\textbf{See Also}

\texttt{t1m}
Examples

data(mm, package = "hett")
attach(mm)
tfit1 <- tlm(marietta ~ CRSP, - 1, data = mm, start = list(dof = 3), estDof = TRUE)
tfit2 <- tlm(marietta ~ CRSP, ~ CRSP, data = mm, start = list(dof = 3), estDof = TRUE)
ts[1](tfit1, tfit2, data = mm, scale = TRUE)

\begin{verbatim}
tsum
Summary function for the scale or location component of a heteroscedastic t model
\end{verbatim}

Description

Summarizes the location or scale components of a heteroscedastic t model

Usage

\begin{verbatim}
tsum(object, dispersion = NULL, correlation = FALSE,
 symbolic.cor = FALSE, ...)
\end{verbatim}

S3 method for class 'tsum'
print(x, digits = max(3, getOption("digits") - 3), symbolic.cor =
 x$symbolic.cor, signif.stars = getOption("show.signif.stars"),
 scale = TRUE, ...)

Arguments

- **object**: either the location or scale object created by fitting a heteroscedastic t object with tlm
- **x**: an object of class "tsum"
- **dispersion**: 1 if summarizing the location model; 2 if summarizing the scale model (see Details)
- **correlation**: logical; if TRUE, the correlation matrix of the estimated parameters is returned and printed.
- **digits**: the number of significant digits to be printed.
- **symbolic.cor**: logical. If TRUE, print the correlations in a symbolic form (see ‘symnum’) rather than as numbers.
- **signif.stars**: logical. if TRUE, "significance stars" are printed for each coefficient.
- **scale**: logical. If TRUE then the dispersion is known in advance (2), and is printed accordingly.
- **...**: further arguments passed to or from other methods.
Details

The argument supplied to dispersion must be either 1 (location model) or 2 (scale model). The reason for this is because the fitting of the model has already scaled the covariance matrix for the location coefficients. Hence the scaled and unscaled versions of covariance matrix for the location model are identical.

This function will not be generally called by the user as it will only summarize the location or scale model but not both. Instead the user should refer to \texttt{summary.tlm} to print a summary of both models.

Value

tsum returns an object of class "tsum", a list with components

- \texttt{call}: the component from object
- \texttt{df.residual}: the component from object
- \texttt{coefficients}: the matrix of coefficients, standard errors, z-values and p-values
- \texttt{dispersion}: the supplied dispersion argument
- \texttt{df}: a 2-vector of the rank of the model and the number of residual degrees of freedom
- \texttt{cov.unscaled}: the unscaled (\texttt{dispersion} = 1) estimated covariance matrix of the estimated coefficients
- \texttt{cov.scaled}: ditto, scaled by dispersion
- \texttt{correlation}: (only if \texttt{correlation} is true.) The estimated correlations of the estimated coefficients
- \texttt{symbolic.cor}: (only if \texttt{correlation} is true.) The value of the argument \texttt{symbolic.cor}

Author(s)

Julian Taylor

See Also

\texttt{summary.tlm}, \texttt{tlm}

Examples

\begin{verbatim}
data(mm, package = "hett") attach(mm) tfit <- tlm(m.marietta ~ CRSP, ~ CRSP, data = mm, start = list(dof = 3), estDof = TRUE) tsum(tfit$loc.fit, dispersion = 1)
\end{verbatim}
Index

*Topic datasets
 mm, 1
 rent, 2
*Topic distribution
 summary.tlm, 3
 tlm, 4
 tlm.control, 7
 tscore, 8
 tsum, 9
*Topic regression
 summary.tlm, 3
 tlm, 4
 tlm.control, 7
 tscore, 8
 tsum, 9

mm, 1

print.summary.tlm(summary.tlm), 3
print.tlm(tlm), 4
print.tsum(tsum), 9

rent, 2

summary.tlm, 3, 6, 10

tlm, 4, 4, 7, 8, 10
tlm.control, 7
tscore, 8
tsum, 4, 9