Package ‘howmany’

February 20, 2015

Type Package
Title A lower bound for the number of correct rejections
Version 0.3-1
Date 2012-06-01
Author Nicolai Meinshausen
Maintainer Nicolai Meinshausen <meinshausen@stats.ox.ac.uk>
Imports graphics, stats
Description When testing multiple hypotheses simultaneously, this package provides functionality to calculate a lower bound for the number of correct rejections (as a function of the number of rejected hypotheses), which holds simultaneously -with high probability- for all possible number of rejections. As a special case, a lower bound for the total number of false null hypotheses can be inferred. Dependent test statistics can be handled for multiple tests of associations. For independent test statistics, it is sufficient to provide a list of p-values.
License GPL
URL http://www.stats.ox.ac.uk/~meinshau/
Repository CRAN
Date/Publication 2012-06-01 16:06:00
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>howmany</td>
<td>2</td>
</tr>
<tr>
<td>howmany_dependent</td>
<td>3</td>
</tr>
<tr>
<td>lowerbound</td>
<td>5</td>
</tr>
<tr>
<td>plot.howmany</td>
<td>6</td>
</tr>
<tr>
<td>print.howmany</td>
<td>7</td>
</tr>
<tr>
<td>summary.howmany</td>
<td>8</td>
</tr>
</tbody>
</table>

Index 9
howmany

Description

Lower bounds for the number of correct rejections, for independent test statistics.

Usage

howmany(pvalues, alpha = 0.05, cutoff = 0.05/length(pvalues), m = length(pvalues))

Arguments

pvalues a numeric vector of p-values
alpha the level, a scalar in [0,1]
cutoff a scalar in [0,1]
m total number of tests made

Details

When testing multiple hypotheses simultaneously (test statistics are supposed to be independent), a quantity of interest is the number of correctly rejected hypotheses. Given a list of p-values, the function provides a lower bound for the number of correct rejections, which is simultaneously valid for all possible number of rejections. The bound is monotonically increasing with the number of made rejections.

The level is asymptotically valid (for a large number of tested hypotheses). To ensure better small sample behaviour, it is recommended to truncate p-values by setting a non-zero value of cutoff. For a value c of cutoff, p-values below c are set to c.

For computational efficiency, only the most significant p-values can be supplied and the total number of tests made must then be given with the argument m.

Value

An object of class howmany, for which summary, plot, and print methods are available.

The lower bound for the number of correct rejections (as a function of the number of rejections) can be accessed with the function lowerbound.

Author(s)

Nicolai Meinshausen, <nicolai@stat.berkeley.edu>
howmany_dependent

References

N. Meinshausen and P. Buhlmann (2005) "Lower bounds for the number of false null hypotheses for multiple testing of associations", Biometrika 92(4), 893-907

See Also

lowerbound for extracting the number of correct rejections (as a function of the number of made rejections).

howmany_dependent for similar functionality for multiple tests of associations, where test statistics can be dependent.

Examples

```r
## create a list of pvalues,
## of which 1000 are uniform on [0,1]
## (1000 true null hypotheses),
## and 200 follow a (truncated) chi-squared distribution
## (200 false null hypotheses).
pvalues <- c( runif(1000), pmin(1,0.05*rchisq(50,df=1)) )

## compute object of class 'howmany' and print the result
(object <- howmany(pvalues))

## extract the lower bound
(lower <- lowerbound(object))

## plot the result
plot(object)

## for comparison: number of rejections with Bonferroni's correction
(bonf <- sum( pvalues < (0.05/1200) ))
```

howmany_dependent

Number of correct rejections, for dependent test statistics

Description

Lower bounds for the number of correct rejections, for multiple tests of associations with dependent test statistics.
Usage

howmany_dependent(X, Y, alpha = 0.05, test = wilcox.test,
alternative = "two.sided", n.permutation=round(20/alpha))

Arguments

x a n*p matrix, where each of the p columns contains n observations
y a factor or numerical vector of length n, containing a binary class variable
alpha the level, a scalar in [0,1]
test the test to be used
alternative an alternative for the test, supplied as an argument to function test
n.permutation the number of permutations to use to determine the bounding function

Details

For multiple tests of associations (with possibly dependent test statistics), a lower bound for the number of correct rejections is calculated, which is valid simultaneously for all possible number of rejections and under arbitrary dependence between test statistics. The bound is monotonically increasing with the number of made rejections.

The matrix X contains the observations, while Y contains binary class labels. For each hypothesis k=1,...,p, a p-value is calculated internally according to supplied function test, with first argument X[Y==0,k], second argument X[Y==1,k], and additional argument alternative (if the class labels are not 0 and 1, they are converted accordingly). The object returned by test has to have a component p.value, containing (perhaps unsurprisingly) the p-value of the corresponding test.

The focus of the current implementation is on portability, not speed, and computations might take some time.

Value

An object of class howmany, for which summary, plot, and print methods are available.

The lower bound for the number of correct rejections (as a function of the number of rejections) can be accessed with the function lowerbound.

Author(s)

Nicolai Meinshausen, <nicolai@stat.berkeley.edu>

References

N. Meinshausen and P. Buhlmann (2005) "Lower bounds for the number of false null hypotheses for multiple testing of associations", Biometrika 92(4), 893-907
See Also

`lowerbound` for extracting the number of correct rejections (as a function of the number of made rejections).

`howmany` for similar functionality for multiple tests of associations, where test statistics are independent.

Examples

```r
## Warning: running example might take a few minutes of computing time...

## create observation matrix X
## for p=200 hypotheses with n=40 observations
p <- 200
n <- 40
Indep <- matrix( rnorm(p*n) , ncol= p )
C <- diag(p); C <- C+matrix( 0.01*rbinom(p^2,1,0.2) , ncol=p )
X <- Indep%*%C

## create binary class variables Y
Y <- c( rep(0,round(n/2)) , rep(1,n-round(n/2)) )

## 100 false null hypotheses (random effects)
for (k in 1:100){ X[Y==1, k] <- X[Y==1, k] + rnorm(1) }

## compute object of class 'howmany' and print the result
(object <- howmany_dependent(X,Y))

## extract the lower bound
(lower <- lowerbound(object))

## plot the result
plot(object)

## for comparison: number of rejections with Bonferroni correction
(bonf <- sum(object$pvalues<0.05/p))
```

`lowerbound` are the lower bound for the number of correct rejections

Description

Extracts the lower bound for the number of false rejections (as a function of the total number of made rejections) from an object of class 'howmany'.
plot.howmany

Usage

lowerbound(object)

Arguments

object an object of class 'howmany'

Value

A numerical vector, giving the lower bound for the number of correct rejections as a function of the number of made rejections.

Author(s)

Nicolai Meinshausen, <nicolai@stat.math.ethz.ch>

See Also

howmany and howmany_dependent for multiple tests with independent and dependent test statistics respectively.

Description

Displays information stored in objects of class howmany

Usage

S3 method for class 'howmany'
plot(x,...)

Arguments

x an object of class howmany

... additional arguments, currently un-implemented

Details

There are four plots.

The upper-left plot displays the empirical distribution function of p-values along with the linear function and the bounding function at the chosen level alpha (empirical distributions functions, where only true null hypotheses are present, are below the bounding function with high probability 1-alpha).

The upper-right plot displays the same information as the upper-left plot, yet with the linear component subtracted.
The lower-left plot shows the lower bound for the number of correct rejections as a function of the number of rejected hypotheses.

The lower-right plot shows the lower bound for the number of correct rejections divided by the number of made rejections.

See Also

`howmany` and `howmany_dependent`; `summary.howmany`

Description

Displays summary information about an object of class `howmany`.

Usage

```r
## S3 method for class 'howmany'
print(x, ...)
```

Arguments

- `x`:
 - an object of class `howmany`
- `...`:
 - additional arguments, currently un-implemented

Details

Currently, invokes the `summary` method.

See Also

`howmany` and `howmany_dependent`; `summary.howmany` and `plot.howmany`
summary.howmany

Summary of an object of class 'howmany'

Description
Displays summary information about an object of class howmany

Usage
S3 method for class 'howmany'
summary(object,...)

Arguments
object an object of class howmany
... additional arguments, currently un-implemented

See Also
howmany and howmany_dependent; plot.howmany
Index

*Topic htest
 howmany, 2
 howmany_dependent, 3
 lowerbound, 5
 plot.howmany, 6
 print.howmany, 7
 summary.howmany, 8

howmany, 2, 5–8
howmany_dependent, 3, 6–8

lowerbound, 2–5, 5
plot.howmany, 6, 7, 8
print.howmany, 7
summary.howmany, 7, 8