Package ‘ibd’

July 23, 2018

Version 1.4
Date 2018-07-23
Title Incomplete Block Designs
Author B N Mandal [aut, cre]
Maintainer B N Mandal <mandal.stat@gmail.com>
Depends R (>= 3.1.1), lpSolve, MASS, car, emmeans, multcompView
Description A collection of several utility functions related to binary incomplete block designs. The package contains function to generate A- and D-efficient binary incomplete block designs with given numbers of treatments, number of blocks and block size. The package also contains function to generate an incomplete block design with specified concurrence matrix. There are functions to generate balanced treatment incomplete block designs and incomplete block designs for test versus control treatments comparisons with specified concurrence matrix. Package also allows performing analysis of variance of data and computing estimated marginal means of factors from experiments using a connected incomplete block design. Tests of hypothesis of treatment contrasts in incomplete block design set up is supported.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-07-23 10:20:03 UTC

R topics documented:

aov.ibd ... 2
A_eff ... 3
bibd ... 4
btib ... 5
btib1 ... 6
Cmatrix ... 8
design_to_N ... 8
D_eff ... 9
ibd ... 10
ibddata .. 11
aov.ibd
Analysis of variance, least square means and contrast analysis of data from a block design

Description

This function performs intrablock analysis of variance of data from experiments using a block design. It also computes estimated marginal means of the factor variables (e.g. treatments) and optionally estimates and tests the contrasts of factor variables (e.g. treatments).

Usage

```r
aov.ibd(formula, specs, data, contrast, joint=FALSE, details=FALSE, sort=TRUE, by=NULL, alpha=0.05, Letters = "ABCDEFGHII", ...)
```

Arguments

- `formula`: A formula specifying the model of the form response~treatment+block or response~block+treatment. Make sure the treatment and blocks are factor variables.
- `specs`: A character vector specifying the names of the factors over which estimated marginal means are desired.
- `data`: A data frame in which the variables specified in the formula will be found. If missing, the variables are searched for in the standard way.
- `contrast`: A matrix whose rows are contrasts of factors (e.g. treatments).
- `joint`: If contrast argument has more than one row, then whether a joint test of the contrasts will be performed. Default is FALSE. If joint=TRUE, a check is performed whether the contrasts are pairwise orthogonal or not and then if orthogonal, joint test is performed.
- `details`: Logical, if details=TRUE then all objects including lm object from lm(), emmGrid object from emmeans() are returned. Default is FALSE.
- `sort`: Logical value determining whether the least square means are sorted before the comparisons are produced. Default is TRUE.
- `by`: Character value giving the name or names of variables by which separate families of comparisons are tested. If NULL, all means are compared.
- `alpha`: Numeric value giving the significance level for the comparisons.
A_eff

Letters

Characters to be used for compact letter display of groups of factor variables over which least square means are computed. Default is english alphabet capital letters "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Details

The function makes use of lm() function in R and Anova() function in car package with specification of Type III sum of squares and emmeans(), cld(), contrast() functions in emmeans() package and combines the results in a single place.

Value

Returns a list with following components

- **lm.obj** An object of class lm if details=TRUE
- **ANOVA.table** ANOVA table from the fitted lm object
- **EMMEANS** Estimated marginal means means with compact letter display
- **contrast.analysis** Contrast analysis result if contrast matrix was supplied

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

```
data(ibddata)
aov.ibd(y=factor(trt)+factor(blk),data=ibddata)
contrast=matrix(c(1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0),nrow=2,byrow=TRUE)
aov.ibd(y=factor(trt)+factor(blk),specs="trt",data=ibddata,contrast=contrast)
```

A_eff

A-efficiency of a binary incomplete block design

Description

This function computes lower bound to A-efficiency of a binary incomplete block design. Treatment by block incidence matrix of the design is to be supplied as input to the function.

Usage

```
A_eff(N)
```

Arguments

- **N** Treatment by block incidence matrix
Value

Aeff A-efficiency

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

```r
N = matrix(c(1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0), nrow = 7, byrow = TRUE)
A_eff(N)
```

bibd

Balanced incomplete block design for given parameters

Description

This function generates a balanced incomplete block design with given number of treatments(v), number of blocks(b), number of replications (r), block size(k) and number of concurrences (lambda).

Usage

```r
bibd(v, b, r, k, lambda, ntrial, pbar = FALSE)
```

Arguments

- **v**: number of treatments
- **b**: number of blocks
- **r**: number of replications
- **k**: block size
- **lambda**: number of concurrences
- **ntrial**: number of trials
- **pbar**: logical value indicating whether progress bar will be displayed or not. Default is FALSE

Value

- **v**: number of treatments
- **b**: number of blocks
- **r**: number of replications
- **k**: block size
- **lambda**: number of concurrences
- **design**: block contents in a b by k matrix
Description

This function generates a balanced treatment incomplete block design for specified parameters.

Usage

```r
btib(v, b, r, r0, k, lambda, lambda0, ntrial = 5, pbar = FALSE)
```

Arguments

- `v`: number of test treatments
- `b`: number of blocks
- `r`: number of replications of test treatments
- `r0`: number of replications of the control treatment
- `k`: block size
- `lambda`: number of concurrences among test treatments
- `lambda0`: number of concurrences between test treatments and the control treatment
- `ntrial`: number of trials. Default is 5.
- `pbar`: Logical value indicating whether progress bar will be displayed or not. Default is FALSE.
Value

- **v**: number of test treatments
- **b**: number of blocks
- **r**: number of replications of test treatments
- **r0**: number of replications of the control treatment
- **k**: block size
- **lambda**: number of concurrences among test treatments
- **lambda0**: number of concurrences between test treatments and the control treatment
- **design**: generated block design
- **N**: treatment by block incidence matrix of the generated block design
- **Nnp**: concurrence matrix of the generated design
- **Aeff**: A-efficiency of the generated design

Author(s)

B N Mandal <mandal.stat@gmail.com>

References

Examples

```r
btib(4, 6, 3, 6, 3, 1, 3, 10)
```

```
btib1 balanced treatment incomplete block designs
```

Description

This function generates a balanced treatment incomplete block design for specified parameters by searching all possible combinations.

Usage

```r
btib1(v, b, r, r0, k, lambda, lambda0)
```
Arguments

\(v \)
number of test treatments

\(b \)
number of blocks

\(r \)
number of replications of test treatments

\(r_0 \)
number of replications of the control treatment

\(k \)
block size

\(\lambda \)
number of concurrences among test treatments

\(\lambda_0 \)
number of concurrences between test treatments and control treatment

Value

\(v \)
number of test treatments

\(b \)
number of blocks

\(r \)
number of replications of test treatments

\(r_0 \)
number of replications of control treatment

\(k \)
block size

\(\lambda \)
number of concurrences among test treatments

\(\lambda_0 \)
number of concurrences between test treatments and control treatment

\(\text{design} \)
generated block design

\(\text{T} \)
treatment by block incidence matrix of the generated block design

\(\text{NNP} \)
concurrence matrix of the generated design

\(A_{\text{eff}} \)
A-efficiency of the generated design

Author(s)

B N Mandal <mandal.stat@gmail.com>

References

Examples

btib(4, 6, 3, 6, 3, 1, 3)
Cmatrix

Information matrix from given treatment by block incidence matrix of a block design

Description

This function gives the information matrix from a given treatment by block incidence matrix of a block design

Usage

Cmatrix(N)

Arguments

N treatment by block incidence matrix

Value

Cmatrix v by v information matrix where v is number of treatments

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

N=matrix(c(1,0,0,0,1,0,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,0,0
,1,0,1,0,0),nrow=7,byrow=TRUE)
Cmatrix(N)

design_to_N block design to treatment by block incidence matrix

description

This function generates treatment by block incidence matrix from a given block design

Usage

design_to_N(design)

Arguments

design design
D_eff

Value

N A treatment by block incidence matrix of order v by b with elements as 0 and 1
where v is the number of treatments and b is the number of blocks

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

d=matrix(c(1,4,6,5,6,7,3,4,5,2,4,7,1,3,7,2,3,6,1,2,5),nrow=7,byrow=TRUE)
design_to_N(d)

d_eff(N)

D_eff D-efficiency of a binary incomplete block design

Description

This function computes lower bound to D-efficiency of a binary incomplete block design. Treatment
by block incidence matrix of the design is to be supplied as input to the function.

Usage

D_eff(N)

Arguments

N treatment by block incidence matrix

Value

Deff Lower bound to D-efficiency

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

N=matrix(c(1,0,0,0,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,1,1,0,0,0,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0
,1,0,1,1,0,0),nrow=7,byrow=TRUE)
D_eff(N)
Description

This function generates an A- and D- efficient binary incomplete block design with given number of treatments(v), number of blocks(b) and block size(k) and optionally with a specified concurrence matrix(NNP).

Usage

ibd(v,b,k,NNPo,ntrial,pbar=FALSE)

Arguments

v number of treatments
b number of blocks
k block size
NNPo optionally, desired concurrence matrix. If not specified, a nearly balanced concurrence matrix is obtained automatically.
ntrial number of trials
pbar progress bar

Value

v number of treatments
b number of blocks
k block size
NNP specified concurrence matrix
N incidence matrix of the generated design
design block contents in a b by k matrix
conc.mat concurrence matrix of the generated design
A.efficiency lower bound to A-efficiency of the generated design
D.efficiency lower bound to D-efficiency of the generated design
time.taken time taken to generate the design

Author(s)

B N Mandal <mandal.stat@gmail.com>
ibddata

References

Examples

\begin{verbatim}
v=9
b=12
k=3
ibd(v,b,k,pbar=FALSE)
\end{verbatim}

\begin{verbatim}
data(ibddata)
\end{verbatim}

Description

Data from an experiment using incomplete block design

Usage

data("ibddata")

Format

A data frame with 36 observations on the following 3 variables.

- trt Treatments
- blk Blocks
- y The response variable

Details

The experiment used a balanced incomplete block design.

References

Examples

data(ibddata)
ibdtvc incomplete block design for test vs control(s) comparisons

Description

This function generates an incomplete block design for test vs control(s) comparisons with specified parameters and concurrence matrix.

Usage

ibdtvc(v1,v2,b,k,NNPo,ntrial=5,pbar=FALSE)

Arguments

v1 number of test treatments
v2 number of control treatments
b number of blocks
k block size
NNPo desired concurrence matrix
ntrial number of trials, default is 5
pbar Logical value indicating whether progress bar will be displayed. Default is FALSE.

Value

v1=v1,v2=v2,b=b,k=k,design=design,N=N, NNP=NNP,Aeff=Aeff)

Author(s)

B N Mandal <mandal.stat@gmail.com>

References

is.connected

Description

This function checks whether an incomplete block design is connected or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is connected, it returns a value of 1 else it returns 0.

Usage

is.connected(N)

Arguments

N incidence matrix

Value

connected Connectedness

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

N=matrix(c(1,0,0,0,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,1,1,0,0,0,1,0,1,0,0,0,1,1,0,0,0,1,1,0,0,1,0,0,1,0,1,0,0,0,1,1,0,0,0,1,1,0,0,1,0,0,1,1,0),nrow=7,byrow=TRUE)

is.connected(N)
is.equir

Equi-replicateness a binary incomplete block design

Description

This function checks whether an incomplete block design is equi-replicated or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is equi-replicated, it returns a value of 1 else it returns 0.

Usage

```r
is.equir(N)
```

Arguments

- `N` incidence matrix

Value

- `equir` equi-replicated

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

```r
N=matrix(c(1,0,0,0,1,0,1,0,0,0,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,1,1,0,0,0,1,0,0,0,0,1,1,0,0
0,0,1,0,0,1,0,1,0,0,0),nrow=7,byrow=TRUE)
is.equir(N)
```

is.orthogonal

orthogonality a block design

Description

This function checks whether an incomplete block design is orthogonal or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is orthogonal, it returns a value of 1 else it returns 0.

Usage

```r
is.orthogonal(N)
```

Arguments

- `N` incidence matrix
is.proper

Value

orthogonal orthogonal

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

N=matrix(c(1,0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0),nrow=7,byrow=TRUE)
is.orthogonal(N)

is.proper proper binary incomplete block design

Description

This function checks whether an incomplete block design is proper or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is proper, it returns a value of 1 else it returns 0.

Usage

is.proper(N)

Arguments

N incidence matrix

Value

proper proper

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

N=matrix(c(1,0,0,0,1,0,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0),nrow=7,byrow=TRUE)
is.proper(N)
is.vb \hspace{1cm} \text{Variance balancedness of a binary incomplete block design}

\textbf{Description}

This function checks whether an incomplete block design is variance balanced or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is variance balanced, it returns a value of 1 else it returns 0.

\textbf{Usage}

\begin{verbatim}
is.vb(N)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \textit{N} \hspace{1cm} \text{incidence matrix}
\end{itemize}

\textbf{Value}

\begin{itemize}
 \item \textit{vb} \hspace{1cm} \text{variance balanced}
\end{itemize}

\textbf{Author(s)}

B N Mandal <mandal.stat@gmail.com>

\textbf{Examples}

\begin{verbatim}
N=matrix(c(1,0,0,0,1,0,1,1,0,1,0,0,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0,0,1,1,1,0, 0,0,0,1,1,0,0,0,1,1,0),nrow=7,byrow=TRUE)
is.vb(N)
\end{verbatim}

\textbf{N_to_design} \hspace{1cm} \text{Treatment by block incidence matrix from given block design}

\textbf{Description}

This function generates the block contents from a given treatment by block incidence matrix.

\textbf{Usage}

\begin{verbatim}
N_to_design(N)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \textit{N} \hspace{1cm} \text{treatment by block incidence matrix}
\end{itemize}
N_to_design

Value

design

A matrix with number of rows equal to number of blocks and number of columns equal to block size. Constant block size is assumed. Treatments are numbered as 1, 2, ..., v

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

```r
N=matrix(c(1,0,0,0,1,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1),nrow=7,byrow=TRUE)
N_to_design(N)
```
Index

*Topic A-efficiency
 A_eff, 3
 bibd, 4
 btib, 5
 btib1, 6
 ibd, 10

*Topic Connectedness
 is.connected, 13

*Topic D-efficiency
 bibd, 4
 D_eff, 9
 ibd, 10

*Topic EMMEANS
 aov.ibd, 2

*Topic Estimated marginal means
 aov.ibd, 2

*Topic Type III sum of squares
 aov.ibd, 2

*Topic analysis of variance
 aov.ibd, 2

*Topic balanced incomplete block design
 aov.ibd, 2
 bibd, 4

*Topic block design
 is.orthogonal, 14

*Topic concurrence matrix
 bibd, 4
 ibd, 10

*Topic contrast analysis
 aov.ibd, 2

*Topic datasets
 ibddata, 11

*Topic equi-replicated
 is.e quir, 14

*Topic incidence matrix
 bibd, 4
 Cmatrix, 8
 design_to_N, 8
 ibd, 10
 N_to_design, 16

*Topic incomplete block design
 A_eff, 3
 aov.ibd, 2
 btib, 5
 btib1, 6
 Cmatrix, 8
 D_eff, 9
 design_to_N, 8
 ibd, 10
 ibdtvc, 12
 is.connected, 13
 is.e quir, 14
 is.proper, 15
 is.vb, 16
 N_to_design, 16

*Topic information matrix
 Cmatrix, 8

*Topic orthogonal
 is.orthogonal, 14

*Topic proper
 is.proper, 15

*Topic test vs control(s) comparison
 btib, 5
 btib1, 6
 ibdtvc, 12

*Topic variance balanced
 is.vb, 16

 A_eff, 3
 aov.ibd, 2
 bibd, 4
 btib, 5
 btib1, 6
 Cmatrix, 8
 D_eff, 9
INDEX

design_to_N, 8

ibd, 10
ibddata, 11
ibdtvc, 12
is.connected, 13
is.equir, 14
is.orthogonal, 14
is.proper, 15
is.vb, 16

N_to_design, 16