Package ‘intRegGOF’

May 22, 2018

Version 0.85-5
Date 2018-05-21
Title Integrated Regression Goodness of Fit
Author Jorge Luis Ojeda Cabrera <jojeda@unizar.es>
Maintainer Jorge Luis Ojeda Cabrera <jojeda@unizar.es>
Description Performs Goodness of Fit for regression models using Integrated Regression method. Works for several different fitting techniques.
Depends R (>= 2.5.0), graphics, stats
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-05-22 12:28:58 UTC

R topics documented:

anovarIntReg ... 1
Core Functions ... 3
intRegGOF .. 4
plot ... 6
Utility Functions .. 8

Index 9

anovarIntReg Integrated Regression Goodness of Fit

Description

Integrated Regression Goodness of Fit to test the adequacy of different model to represent the regression function for a given data.
Usage

```r
anovarIntReg(objH0, ..., covars = NULL, B = 499,
            LINMOD = FALSE, INCREMENTAL = FALSE)
```

S3 method for class 'anovarIntReg'

print(x, ...)

Arguments

objH0

An object of class `lm`, `glm` or `nls` which will be considered as null hypotheses model or the base reference model when INCREMENTAL is set to TRUE.

... One or more objects of class `lm`, `glm` or `nls`

covars

Names of continuous (numerical) variates used to compute Integrated Regression. They should be variables contained in the data frame used to compute the regression fit. When NULL it is obtained as the max. number of different covariates in all tested models. It also can be a `formula` like `~x1+x2+...`

B

Bootstrap resampling size.

LINMOD

When TRUE and if `obj` is an object of class `print.intRegGOFprint.intRegGOFlm` Linear Model matrix fitting equations are used.

INCREMENTAL

When is FALSE all models in ... are tested against `objH0`, while when TRUE each of the models are checked against the next one starting in `objH0`.

x

An object of class `anovarIntReg`.

Details

This function implements the test

$$H_0 : m \in M_0 \text{ vs } H_1 : m \in M_1$$

for two different models M_0, M_1 using the Integrated Regression Goodness of Fit as done in `intRegGOF`, but instead of the accumulation of the residual of a given model, in this case, the accumulation of the difference in the fits is considered:

$$R_n^w(x) = n^{-1/2} \sum_{i=1}^{n}(\hat{y}_{0i} - \hat{y}_{1i})I(x_i \leq x).$$

The test statistics considered are SK_n and SW^2_n.

If `objH0` and `objH1` are `lm`, `glm` or `nls` fits for the models in classes M_0 and M_1 respectively, then `anovarIntReg(objH0, objH1)` computes test $H_0 : m \in M_0 \text{ vs } H_1 : m \notin M_1$. When `anovarIntReg(objH0, objH1, ..., objHk)` is executed (notice that by default INCREMENTAL=FALSE) we obtain a table with the statistics K_n and W_n^2 and its associated p-values for each of the tests $H_0 : m \in M_0 \text{ vs } H_i : m \notin M_i$ being $i = 1, \ldots, k$. On the other hand, if the parameter INCREMENTAL is set to TRUE, the command returns the results for the tests $H_i : m \in M_i \text{ vs } H_{i+1} : m \notin M_{i+1}$ being $i = 1, \ldots, k - 1$.

Value

This function returns an object of class `anovarIntReg`, a matrix like `structure` whose rows refer to models and columns to statistics and its p-values. It also has an attribute `heading` to support printing the object.
Core Functions

Note

This method requires more testing, and careful study of the effect of factors (discrete random variables) when fitting the model.

Author(s)

Jorge Luis Ojeda Cabrera (<jojeda@unizar.es>).

See Also

lm, glm, nls, and intRegGOF.

Examples

```r
n <- 50
d <- data.frame(X1=runif(n), X2=runif(n))
d$Y <- 1 - 2*d$X1 - 5*d$X2 + rnorm(n, sd=.125)
a0 <- lm(Y~1, d)
a1 <- lm(Y~X1, d)
a2 <- lm(Y~X1+X2, d)
anovaIntReg(a0, a1, a2, B=50)
anovarIntReg(a0, a1, a2, B=50, INCREMENTAL=TRUE)
```

Description

Core functions for the computation of the Integrated Regression Goodness of Fit

Usage

```r
compIntRegProc(y, xord, weig = rep(1, length(y)))
compBootSamp(obj, datLT, B = 999, LINMOD = FALSE)
plotIntRegProc(y, x, weig = rep(1, length(y)), ADD = FALSE, ...)
getModelFrame(obj)
getResiduals(obj, type)
```

Arguments

- `y`: vector, values to add to compute the Integrated Regression.
- `xord`: list of list with the index of covariate points that are less than covariate data. This tells how to cumulate according to covariates.
- `weig`: vector of weights, specifically used to fit and compute test statistics when data is selection biased.
- `obj`: An object of class lm, glm or nls.
- `datLT`: structure as xord telling how to cumulate according to covariates.
intRegGOF

B Bootstrap resampling size.
LINMOD When TRUE and if obj is an object of class lm Linear Model matrix fitting equations are used.
x vector with covarates to plot
ADD If TRUE the plot is added to existing plot.
type Type of residual.
... Further parameters to plot.

Details

...TODO: Each of them computes what in which way

Note

Surely they can better implemented.

Author(s)

Jorge Luis Ojeda Cabrera (<jojeda@unizar.es>).

intRegGOF Integrated Regression Goodness of Fit

Description

Integrated Regression Goodness of Fit to test if a given model is suitable to represent the regression function for a given data.

Usage

intRegGOF(obj, covars = NULL, B = 499, LINMOD = FALSE)
 ## S3 method for class 'intRegGOF'
 print(x,...)

Arguments

obj An object of class lm, glm or nls.
covars Names of continuous (numerical) variates used to compute Integrated Regression. They should be variables contained in the data frame used to compute the regression fit.
B Bootstrap resampling size.
LINMOD When TRUE and if obj is an object of class lm Linear Model matrix fitting equations are used.
x An object of class intRegGOF.
... Further parameters for print command.
The Integrated Regression Goodness of Fit technique is introduced in Stute (1997). The main idea is to study the process that results from the cumulation of the residuals up to a given value of the covariates. Once this process is built, different functional over it can be considered to measure the discrepancy between the true regression function and its estimation.

The tests that implement this function is

\[H_0 : m \in M \text{ vs } H_1 : m \notin M \]

being \(m \) the regression function, and \(M \) a given class of functions. The statistics considered are

\[K_n = \sup_{x \in \mathbb{R}^d} |R^n_w(x)| \]
\[W^2_n = \int_{\mathbb{R}^d} R^n_w(z)^2 \, dF(z). \]

where \(R^n_w(z) \) is the cumulated residual process:

\[R^n_w(x) = n^{-1/2} \sum_{i=1}^n (y_i - \hat{y}_i)I(x_i \leq x). \]

As the stochastic behaviour of this cumulated residual process is quite complex, the implementation of the technique is based on resampling techniques. In particular the chosen implementation is based on Wild Bootstrap methods.

The method also handles selection biased data by means of compensation, by means of the weights used to fit the regression function when computing the cumulated residual process.

At the moment only 'response' type of residuals are considered, jointly with wild bootstrap re-sampling technique and the result for discrete responses might no be proper.

Value

This function returns an object of class \texttt{intRegGOF}, a list which contains following objects:

- \texttt{call} The call to the function
- \texttt{regObj} String with the \texttt{lm}, \texttt{glm} or \texttt{nls} object whose fit is checked
- \texttt{regModel} \texttt{lm}, \texttt{glm} or \texttt{nls} object call.
- \texttt{p.value} \texttt{p}-values for \(K_n \) and \(W^2_n \) statistics.
- \texttt{datStat} value of \(K_n \) and \(W^2_n \) statistics.
- \texttt{covars} continuous (numerical) variates used to compute Integrated Regression.
- \texttt{intErr} cumulated residual process at the values of \texttt{covars} in data.
- \texttt{xLT} structure with the order of \texttt{covars} summation.
- \texttt{bootSamp} Bootstrap samples for \(K_n \) and \(W^2_n \).

Note

This method requires more testing, and careful study of the effect of factors (discrete random variables) when fitting the model.
Author(s)

Jorge Luis Ojeda Cabrera (<jojeda@unizar.es>).

References

See Also

lm, glm, nls and its methods summary, print, plot, etc...

Examples

n <- 50
d <- data.frame(X1=runif(n), X2=runif(n))
d$Y <- 1 + 2*d$X1 + rnorm(n, sd=.125)
plot(d)
intRegGOF(lm(Y~X1+X2,d),B=99)
intRegGOF(a <- lm(Y~X1-1,d),B=99)
intRegGOF(a,c("X1","X2"),B=99)
intRegGOF(a,-X2+X1,B=99)

plot

Integrated Regression Goodness of Fit graphical output

Description

Methods to develop model validation and visualization of Integrated Regression Goodness of Fit technique.

Usage

plotAsIntRegGOF(obj, covar = 1, ADD = FALSE, ...)
pointsAsIntRegGOF(obj, covar=1,...)
linesAsIntRegGOF(obj, covar=1,...)
Arguments

obj
An object of class **lm**, **glm** or **nls**.

covar
Variable name, number or vector for which Int. Reg. is computed. If it is a number, it reference a covariate in the model frame, while if it is a name refer to data in data frame using in the fitting process.

ADD
If TRUE the plot is added to existing plot.

... Further parameters to for plotobj command.

Details

Currently, the implementation computes the accumulated residual process against a single covariate (**covar**). When the value of **covar** is set to 0, the response is used as the variable whose residual are accumulated against.

Notice that if **covar** is a vector its lenght should be equal to the number of residuals.

Note

lm objects that does not have a data parameter set when the call is executed does not work presently when the **covar** parameter is different than 0.

Author(s)

Jorge Luis Ojeda Cabrera (<jojeda@unizar.es>).

See Also

lm, **glm**, **nls** its associated plot method and intRegGOF.

Examples

```r
n <- 50
d <- data.frame(X1=runif(n),X2=runif(n))
d$Y <- 1 + 2*d$X1 + rnorm(n,sd=.125)
par(ask=TRUE)
plot(d)
plotAsIntRegGOF(lm(Y~X1+X2,d),covar="X1")
plotAsIntRegGOF(a <- lm(Y~X1-1,d))
plotAsIntRegGOF(a,c("X1"))
plotAsIntRegGOF(a,0)
plotAsIntRegGOF(a,fitted(a))
par(ask=FALSE)
```
Utility Functions

Utility functions for Integrated Regression Goodness of Fit

Description
Functions that are basic or/and useful for the computation of the Integrated Regression Goodness of Fit

Usage

getLessThan(x, d)
mvCumSum(x, ord)
mvPartOrd(x1, x2)
getContVar(df, vars = NULL)
getModelCovars(obj)
getModelWeights(obj)
rWildBoot(n)

Arguments

x, d matrix like structure.
x1, x2 vectors with the same length.
df a data frame.
ord list of list structure with the ordering to add data points according to a given covariates.
obj An object of class lm, glm or nls.
vars vector with variable names in observations data frame.
n integer, sample size.

Details

...TODO: Each of them computes what in which way

Note

getLessThan can be certainly better implemented.

Author(s)

Jorge Luis Ojeda Cabrera (<jojeda@unizar.es>).
Index

*Topic goodness of fit
 anovarIntReg, 1
 intRegGOF, 4
 plot, 6

*Topic models
 anovarIntReg, 1
 intRegGOF, 4
 plot, 6

*Topic nonlinear
 anovarIntReg, 1
 intRegGOF, 4
 plot, 6

*Topic regression
 anovarIntReg, 1
 intRegGOF, 4
 plot, 6

anovarIntReg, 1

compBootsamp (Core Functions), 3
compIntRegProc (Core Functions), 3
Core Functions, 3

formula, 2

getContVar (Utility Functions), 8
getLessThan (Utility Functions), 8
getModelCovars (Utility Functions), 8
getModelFrame (Core Functions), 3
getModelWeights (Utility Functions), 8
getResiduals (Core Functions), 3
glm, 2–4, 6–8

intRegGOF, 2, 3, 4, 7

linesAsIntRegGOF (plot), 6
lm, 2–4, 6–8

mvCumSum (Utility Functions), 8
mvPartOrd (Utility Functions), 8

nls, 2–4, 6–8

plot, 6, 6, 7
plotAsIntRegGOF (plot), 6
plotIntRegProc (Core Functions), 3
pointsAsIntRegGOF (plot), 6
print, 6
print.anovarIntReg (anovarIntReg), 1
print.intRegGOF (intRegGOF), 4

rWildBoot (Utility Functions), 8

summary, 6

Utility Functions, 8