Package ‘intamapInteractive’

February 8, 2021

Version 1.1-13
Date 2021-02-08
Title Interactive Add-on Functionality for ‘intamap’
Author Edzer Pebesma <edzer.pebesma@uni-muenster.de>, Jon Skoien <jon.skoien@gmail.com> with contributions from Olivier Baume, A.Chorti, D.T. Hristopulos, S.J. Melles, G. Spiliopoulos
Maintainer Jon Skoien <jon.skoien@gmail.com>
Depends intamap
Imports spatstat.geom, automap, gstat, rgdal, methods, sp
Suggests spcosa, DBI, RSQLite
Description Includes additional functionality for spatial interpolation in the intamap package, such as bias correction and network optimization.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2021-02-08 11:50:02 UTC

R topics documented:

intamapInteractive-package 2
anisotropyChoice .. 2
biasCorr ... 4
calculateMukv .. 6
doSegmentation 7
findBiasUK ... 9
findBoundaryLines 10
findLocalBias .. 11
findRegionalBias 13
optimizeNetwork 15
spCovAdd .. 19
spCovDel .. 20
ssaOptim .. 21
Description

This package provides some added functionality to the link{intamap} for automatic interpolation of environmental variables. Whereas link{intamap} was specifically developed as a statistical back-end for a Web Processing Service (WPS), this package offers some functionality that is not possible to access through such a WPS.

The methods in this package can mainly be put into three groups:

- bias correction methods for estimating and possibly correct for biases between measurement networks, due to differences in measurement strategies, measurement devices, or (unknown) post-processing of data
- segmentation method for segmentation of data, based on their measurement density
- network optimization methods for optimizing a measurement network (adding or removing observation points), based on different criteria

Description

This function combines segmentation of scattered 2D data and estimation of anisotropy parameters using the CTI method.

Usage

anisotropyChoice(object)

Arguments

object An Intamap type object containing one SpatialPointsDataFrame with observations.

Details

The function AnisotropyChoice function employs the doSegmentation function to automatically separate the original dataset into clusters based on the sampling density and the spatial locations of the data (see doSegmentation for details). The results of the segmentation procedure and the anisotropy analysis per cluster are returned in a matrix of dimension [cl]x5, where [cl] is the number of clusters. Each row of the matrix contains the cluster index, the anisotropy ratio, the anisotropy direction, the number of cluster points and the area inside the convex hull of the cluster. In addition, a single set of anisotropy parameters is returned in the element anisPar. These parameters are calculated using weighted averages of the covariance Hessian matrix estimates in each cluster. The weights are based on the area enclosed by the convex hull of each cluster.
anisotropyChoice

Value

object: A modified Intamap type object is returned, which contains the results of the anisotropy parameter estimation. The anisotropy parameters are returned in the element `anisPar` as described below.

`anisPar` List element in object that contains a list with the following elements:

- `ratio` A coarse-grained anisotropy ratio for all the data
- `direction` A coarse-grained anisotropy orientation for all the data
- `clusters` A matrix of dimension `[cl]x5` which determines the anisotropy per cluster. Each row of `clusters` gives the (cluster id, anisotropy ratio, anisotropy direction, number of points, area) for each cluster detected.

`clusters` list element added to the original object containing the segmentation results.

- `index` Index array identifying the cluster in which each observation point belongs. Zero value means that the observations has been removed.
- `clusterNumber` Number of clusters detected.

Note

This function uses the `akima` package to perform "bilinear" and "bicubic" interpolation for the estimation of spatial derivatives

Author(s)

D.T. Hristopulos, G.Spiliopoulos, A.Chorti

References

Examples

```r
library(gstat)
data(walker)
object=createIntamapObject(observations=walker)
object=anisotropyChoice(object)
print(summary(object$clusters$index))
print(object$anisPar)
```
biasCorr

Bias correction

Description
Identifies and removes biases from measurement networks

Usage
biasCorr(object, regCode = "regCode", ...)

Arguments
object Data frame with observations with same format as observations described in the presentation of the intamap-package
regCode the column name of regions in the data polygons, if existing
... further arguments to the bias correction methods called, see details below

Details
Many data sets can consist of data coming from a large number of different measurement networks, using different measurement devices or applying different methods for post-processing the observations. Some of these networks can exist in the same area, e.g. when different authorities are measuring the same, but at different locations (one of them in cities, the other one close to lakes), some networks will only exist as neighbouring networks (networks operated by a municipality or a country). Local networks can also be grouped together as one national data-base, which can again be merged into an international data-base.

One challenge with the merging into data-bases is that there will be inconsistencies between measurements in the different networks, which will again cause difficulties when attempting to map the observations, as done in the intamap-package. The intention of this function is therefore to call other functions that are able to identify and remove such differences, which can be referred to as biases between the networks.

There are at the moment two methods available for bias correction, "UK" and "LM". "UK" is a universal kriging based approach implemented in findBiasUK. This method can only deal with biases between neighbouring networks, but is well capable of taking covariates into account. "LM" is based on local methods for estimating differences between networks, and is implemented in findLocalBias and findRegionalBias. The choice between the methods is given by the parameter biasRemovalMethod in the parameter element of the object, set in getIntamapParams, called from createIntamapObject.

The function will remove biases according to the settings of the parameters removeBias. Below is a list of the functions available for bias corrections. See each individual function for more information about usage.

- findBiasUK The universal kriging based function for finding biases between neighbouring networks
- findLocalBias Find biases for overlapping networks
biasCorr

- **removeLocalBias**: Removes biases between overlapping networks
- **findBoundaryLines**: Find points that define adjacent boundaries between regions
- **findRegionalBias**: Find biases for neighbouring networks
- **removeRegionalBias**: Remove biases between neighbouring networks

Value

Data frame with observations, with the identified biases removed.

Author(s)

Jon Olav Skoien

References

See Also

findLocalBias

Examples

```r
## Not run:
data(meuse)
data(meuse.grid)
observations = data.frame(x = meuse$x,y = meuse$y,value = log(meuse$zinc))
coordinates(observations) = ~x+y
grided(meuse.grid) = ~x+y
pBoundaries = spsample(observations, 8, "regular",bb = bbox(observations) +
  matrix(c(-400,-400,400,400),ncol=2),offset=c(0,0))
grided(pBoundaries) = TRUE
cs = pBoundaries$grid@cellsize[1]/2
dx = cs/5
Srl1 = list()
nb = dim(coordinates(pBoundaries))[[1]]
for (i in 1:nb) {
  pt1 = coordinates(pBoundaries)[i,]
  x1 = pt1[1]-cs
  x2 = pt1[1]+cs
  y1 = pt1[2]-cs
  y2 = pt1[2]+cs
  boun = data.frame(x=c(seq(x1,x2,dx),rep(x2,11),seq(x2,x1,-dx),rep(x1,11)),
    y=c(rep(y1,11),seq(y1,y2,dx),rep(y2,11),seq(y2,y1,-dx)))
  coordinates(boun) = ~x+y
  boun = Polygon(boun)
  Srl1[[i]] = Polygons(list(boun),ID = as.character(i))
}
```
calculateMukv

MUKV computation

Description
Computes mean universal kriging variance (MUKV) for given geostatistical parameters

Usage

```
calculateMukv(observations, predGrid, model, formulaString, fun, ...)```

### Arguments

- **observations**: `SpatialPoints` or `SpatialPointsDataFrame` with observation locations and possible covariates
- **predGrid**: `Spatial` object with coordinates of prediction locations (usually `SpatialGrid` or `SpatialGridDataFrame` when independent covariate predictor variables are used)
- **model**: Variogram model: object of class `variogramModel`, of the form created by `vgm`
- **formulaString**: formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name z, for ordinary and simple kriging use the formula `z~1`; for universal kriging, suppose z is linearly dependent on x and y, use the formula `z~x+y`. The formulaString defaults to "value~1" if value is a part of the data set. If not, the first column of the data set is used.
- **fun**: alternative penalty function, needs to be a function which can take the same arguments as `calculateMukv`
- **...**: other arguments to be passed on at lower level functions
doSegmentation

Details

This function computes kriging on the predGrid with `krige` function, and averages the kriging variance (MUKV). With covariates, the function takes a universal kriging model into account.

Value

MUKV value

Author(s)

S.J. Melles, O. Baume, J. Skoien

Examples

```r
Not run:
load data:
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
coordinates(meuse.grid) = ~x+y
gridded(meuse.grid) = TRUE
meuse.grid$soil = factor(meuse.grid$soil)

estimate variogram:
smplvarUK = variogram(zinc~dist+ffreq+soil, meuse)
plot(smplvarUK)
vfitUK = fit.variogram(variogram(zinc~dist+ffreq+soil, meuse), vgm(1, "Exp", 300, 1))
plot(smplvarUK, vfitUK)
calculateMukv(meuse, meuse.grid, vfitUK, zinc~dist+ffreq+soil)

End(Not run)
```

Description

This function performs segmentation of scattered 2D data based on sampling density and location.

Usage

doSegmentation(object)

Arguments

- `object`: An Intamap type object containing the element (list) observations, which includes the coordinates of the observation locations.
Details

This function performs segmentation of scattered 2D data based on sampling density and location. Let us assume that \( No \) is the number of observation locations. If \( No < 200 \), then a single cluster is returned.

(1) The segmentation algorithm first removes isolated distant points, if there are any, from the observation locations. Points \((x_i, y_i)\) are characterized as 'isolated' and 'distant' if they satisfy the following conditions: 
\[
\text{abs}(x_i - \text{mean}(x)) > 4 * \text{std}(x) \quad \text{or} \quad \text{abs}(y_i - \text{mean}(y)) > 4 * \text{std}(y)
\]
and distance from closest neighbor \( > \sqrt{((\text{std}(x)/2)^2 + (\text{std}(y)/2)^2)} \). After the first step the size of the original dataset is reduced to \( N = No - \text{isolated points} \) points.

(2) A sampling density matrix (lattice) consisting of \( N \) cells that cover the study area is constructed. Each cell is assigned a density value equal to the number of observation points inside the cell. In addition, each observation point is assigned the sampling density value of the containing cell.

(3) Unsupervised clustering edge detection is used to determine potential cluster perimeters.

(4) Each closed region’s perimeter is labeled with a different cluster (segment) number.

(5) All observation points internal to a cluster perimeter are assigned to the specific cluster.

(6) Each cluster that contains fewer than 50 observation points is rejected.

(7) The observation points that have not initially been assigned to a cluster and those belonging to rejected (small) clusters are assigned at this stage. The assignment takes into account both the distance of the points from the centroids of the accepted clusters as well as the mean sampling density of the clusters.

Note: The \( No < 200 \) empirical constraint is used to avoid extreme situations in which the sampling density is concentrated inside a few cells of the background lattice, thereby inhibiting the edge detection algorithm.

Value

A modified Intamap object which additionally includes the list element \( \text{clusters} \). This element is a list that contains (i) the indices of removed points from observations; (ii) the indices of the clusters to which the remaining observation points are assigned and (iii) the number of clusters detected.

\( \text{clusters} \) list element added to the original object containing the segmentation results.

- \( \text{rmdistIndices} \) of removed points.
- \( \text{index} \) Index array identifying the cluster in which each observation point belongs.
- \( \text{clusterNumber} \) Number of clusters detected.

Author(s)

A. Chorti, Spiliopoulos Giannis, Hristopulos Dionisis

References

Examples

```r
library(gstat)

data(walker)
coordinates(walker)==X+Y
object=createIntamapObject(observations=walker)
object=doSegmentation(object)

print(summary(object$clusters$index))
```

---

**findBiasUK**

*Finding the regional biases using GLM*

**Description**

Method for identifying regional biases (in most cases biases between countries)

**Usage**

```r
findBiasUK(object)
```

**Arguments**

- `object` an object of class `SpatialPointsDataFrame`, at least containing observations and a regional identification code (regCode)

**Value**

A `data.frame` with the biases for each country with uncertainty.

**Author(s)**

Olivier Baume

**See Also**

`findRegionalBias`
findBoundaryLines  
Finding the regional boundaries

Description
Method for identifying points on the boundaries between regions (in most cases biases between
countries)

Usage
findBoundaryLines(polygons, projOrig, projNew, regCode = "regCode")

Arguments
polygons A SpatialPolygonsDataFrame with the polygons defining the boundaries of
each separate region.
projOrig The original projection of the boundaries
projNew If a different projection is wanted for the output
regCode the column name of regions in the data polygons

Details
This function finds the points defining the boundary between two polygons and passes a SpatialPointsDataFrame
with these points back. The result in mainly used by findRegionalBias for estimation of regional
biases. The function is based on the boundary between the polygons being defined by the same
points.

Value
A SpatialPointsDataFrame with points defining the boundaries between regions.

Author(s)
Jon Olav Skoien

References
heterogeneities between monitoring networks. Environmetrics 21(1), 66-84.

Examples
data(meuse)
observations = data.frame(x = meuse$x, y = meuse$y, value = log(meuse$zinc))
coordinates(observations) = ~x+y
pBoundaries = spsample(observations, 10, "regular", bb = bbox(observations) +
    matrix(c(-400,-400,400,400),ncol=2),offset=c(0,0))
gridded(pBoundaries) = TRUE
findLocalBias

Finds (and removes) biases between overlapping networks

Description

The function tries to identify differences between different networks of observation stations that share a region. From these differences, biases are estimated, and can be removed.

Usage

```r
findLocalBias(object, gid = "group", formulaString = value ~ 1, regCode="regCode", ...)
removeLocalBias(object, localBias, gid = "group", formulaString = value ~ 1, regCode = "regCode")
```

Arguments

- `object` data frame with observations
- `gid` name of column identifying groups of local networks
- `formulaString` formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name \( z \), for ordinary and simple kriging use the formula \( z \sim 1 \); for universal kriging, suppose \( z \) is linearly dependent on \( x \) and \( y \), use the formula \( z \sim x + y \)
- `regCode` the column name of regions in the object, if existing
- `localBias` List of data frames, for a single region, or for each of the regions, each containing biases for different networks in the region(s), result of `findLocalBias`
- `...` arguments to be passed to sub-functions
findLocalBias

Details

findLocalBias tries to identify biases between overlapping networks, i.e. when there is no boundary between different networks sampling the same type of data. This can typically happen if different governmental bodies are responsible for different types of measurement, e.g. one measuring the situation around populated areas, the other one measuring close to water bodies.

The function will then try to find the difference between the different networks, and estimate the individual bias for each network, relative to a reference value, usually the average of all networks. The method is not recommended if there can be assumed to be a dependency between the process and the networks.

removeLocalBias removes the bias estimated in findLocalBias.

Value

From findLocalBias: A list consisting of one element for each regional network, or an element single if only one regional network is apparent. Each of these elements is again a list consisting of several other elements, where bias is the interesting one. The remaining elements are only necessary for debugging purposes. The elements D, V and Q refers to the matrices with same names in Skoien et al. (2009), i.e. the relationship matrix, the variance matrix and the difference matrix.

From removeLocalBias: A SpatialPointsDataFrame with the biases subtracted.

Author(s)

Jon Olav Skoien

References


Examples

# Assuming that the soil type is the source of biases
data(meuse)
coordinates(meuse) = ~x+y

lb = findLocalBias(meuse,gid = "soil",formulaString=as.formula(zinc~1))
lb$single$bias

meuseUnbias = removeLocalBias(meuse,localBias = lb, gid = "soil", formulaString = zinc~1)
findRegionalBias  Find and/or remove regional biases

Description

Method for identifying regional biases (in most cases biases between countries)

Usage

```r
findRegionalBias(object, boundaryLines,
 formulaString = value~1,
 minKrige = 5, regCode = "regCode", unbias = "default")
removeRegionalBias(object, regionalBias, formulaString = value~1, regCode = "regCode")
```

Arguments

- `object`: an object of class `SpatialPointsDataFrame`, at least containing observations and a regional identification code (`regCode`)
- `boundaryLines`: `SpatialPointsDataFrame` with points defining the boundaries between regions. This can be found using `findBoundaryLines`.
- `formulaString`: formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name `z`, for ordinary and simple kriging use the formula `z~1`; for universal kriging, suppose `z` is linearly dependent on `x` and `y`, use the formula `z~x+y`.
- `minKrige`: setting a minimum number of observations necessary for kriging
- `regCode`: the column name of regions in the data polygons, if existing
- `unbias`: defines if a particular data dependent function should be used to set unbiasedness constraints for the biases. "default" gives one additional constraint, assuming that the average of the biases should be equal to zero. See also details below.
- `regionalBias`: list of data frames, one for each region, each containing biases for different networks in the region.

Details

This method attempts to find biases between regional networks that are separated by a boundary, based on line kriging along these boundaries. A typical example of such networks would be different national networks, with the country borders as `boundaryLines`, but also other boundaries can be considered. Further details can be found in Skoien et al. (2009).

The parameter `unbias` can be used to name the unbiasedness function if the user needs a different unbiasedness constraint than the default one. Such a function (with `unbias = "new"` above) should be similar to the following:

```r
unBias.new = function(cDiff, uRegCode) {
 D = cDiff$D
 Q = cDiff$Q
 # ...}
```
V = cDiff$V
#
D = rbind(D, 0)
cd = dim(D)[1]
ino = which(uRegCode == "NO")
iis = which(uRegCode == "IS")
iuk = which(uRegCode == "UK" | uRegCode == "GB")
if (length(iis) > 0) {
  D[cd, ino] = .5
  D[cd, iuk] = .5
  D[cd, iis] = -1
  Q[cd] = 0
  V[cd] = max(V)
  cd = cd + 1
  D = rbind(D, 0)
}

D = rbind(D, 0)
D[cd,] = 1
Q[cd] = 0
V[cd] = min(V)
cDiff$D = D
cDiff$Q = Q
cDiff$V = V
return(cDiff)

The last part is similar to unbias.default. In the other part is solving the problem where there are no boundaries between Iceland and any other countries. This would cause a missing constraint when searching for the biases, which will make it impossible to find a solution. The solution here sets the bias for Iceland equal to the average of the bias for Norway and United Kingdom. Note that the real bias for Iceland is not really estimated in this case, this construction is mainly to make sure that the system can be solved. If one were only interested in the bias, it would in this case be better to remove Iceland from the data set, as a real bias is not possible to find.

Value

For findRegionalBias: a data.frame with the biases for each country with uncertainty.
For removeRegionalBias: a data.frame with observations, with biases removed

Author(s)

Jon Olav Skoien

References

Examples

library(intamapInteractive)
data(meuse)
observations = data.frame(x = meuse$x, y = meuse$y, value = log(meuse$zinc))
coordinates(observations) = ~x+y
pBoundaries = spsample(observations, 10, "regular", bb = bbox(observations) +
    matrix(c(-400,-400,400,400),ncol=2),offset=c(0,0))
gridded(pBoundaries) = TRUE
cs = pBoundaries@grid@cellsize[1]/2

Srl = list()
b = dim(coordinates(pBoundaries))[1]
for (i in 1:b) {
  pt1 = coordinates(pBoundaries)[i,]
  x1 = pt1[1]-cs
  x2 = pt1[1]+cs
  y1 = pt1[2]-cs
  y2 = pt1[2]+cs
  boun = data.frame(x=c(x1,x2,x2,x1,x1),y=c(y1,y1,y2,y2,y1))
  coordinates(boun) = ~x+y
  boun = Polygon(boun)
  Srl[[i]] = Polygons(list(boun),ID = as.character(i))
}
pBoundaries = SpatialPolygonsDataFrame(SpatialPolygons(Srl),
    data = data.frame(ID=c(1:b)))
observations$ID = over(observations, geometry(pBoundaries))
blines = findBoundaryLines(pBoundaries, regCode = "ID")
r = findRegionalBias(observations, blines, value~1, regCode = "ID")
obs2 = removeRegionalBias(observations, r, value~1, regCode = "ID")

optimizeNetwork

Optimization of networks

Description

Optimizes the sampling design of observation point locations using a variety of methods including
spatial coverage by k means (as described in spcosa) or by maximizing nearest neighbour dis-
tances and spatial simulated annealing (SSA, as described in ssaOptim) using MUKV as a criterion
(calculateMukv).

Usage

optimizeNetwork(observations, predGrid, candidates, method, action,
nDiff, model, criterion = "MUKV", plotOptim = TRUE, nGridCells, nTry, nr_iterations = 10000, formulaString, ...

Arguments

observations object of class Spatial* with coordinates and possible covariates
predGrid object of class Spatial* used when method = "ssa", predGrid should contain the coordinates of prediction locations for optimization. Usually predGrid is a SpatialGrid/SpatialPixels or a SpatialGridDataFrame/SpatialPixelsDataFrame when independent covariate predictor variables are used
candidates when method = "manual" or method = "ssa", candidates is the study area of class SpatialPolygonsDataFrame; for other methods, when action = add, candidates are points or polygons of class Spatial*
method "spcov" for spatial coverage, "ssa" for spatial simulated annealing or "manual" for manual processing of the network
action character string indicating which action to perform: "add" to add new measurement stations to the existing network or "del" to delete existing stations
nDiff number of stations to add or delete
model variogram model to consider when method = "ssa" and criterion = "mukv"; object of class variogramModel, as generated by vgm
criterion Only in use for method "ssa": character string, "mukv"
plotOptim logical; if TRUE, creates a plot of the result as optimization progresses; TRUE by default
nGridCells when method is "spcov" and action is "add": the approximate number gridcells to explore within the candidate map as locations for new observations
nTry when method is "spcov" and action is "add": nTry is the number of initial configurations to try. The method will keep the best solution in order to reduce the risk of ending up with an unfavorable solution
nr_iterations number of iterations to process before stopping. The default coolingFactor in ssaOptim is also a function of number of iterations. Refer to ssaOptim for more details
formulaString When method = "ssa", this formula defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name z, for ordinary and simple kriging use the formula z~1; for universal kriging, suppose z is linearly dependent on x and y, use the formula z~x+y. The formulaString defaults to "value~1" if value is a part of the data set. If not, the first column of the data set in observations is used.
...
other arguments to be passed on to lower level functions

Details

This function contains different methods to optimally add or remove point locations to or from a measurement network (Baume et al. 2011). Points can be added or deleted in the following ways:

1. manually
2. using a spatial coverage approach by \( k \) means to add stations (as described in \texttt{spcosa}, Brus et al. 2006) using a spatial coverage approach by maximizing mean nearest neighbour distances to remove stations (as described in \texttt{spCovDel})

3. or using spatial simulated annealing with mean universal kriging variance as a criterion (\texttt{calculateMukv}, Brus & Heuvelink 2007, Melles et al. 2011)

The results of different methods can be checked using the function \texttt{calculateMukv}, which returns mean universal kriging variance for an optimized network.

The user should be aware of the following limitations:

1. \texttt{method = "ssa"} is only implemented for \texttt{criterion = "mukv"}
2. Input candidates should preferably be a continuous domain such as \texttt{SpatialPolygons}
3. \texttt{method = "ssa"} with \texttt{criterion = "mukv"} makes it possible to assume a linear relationship between independent variables in predGrid and dependent variables at observation locations using universal kriging (\texttt{krige}). However, a correct estimate of mean universal kriging variance requires that the independent covariate variables be known at candidate locations. Thus it is necessary to have complete spatial coverage for all covariate predictors in the linear model. Covariate information must be available at both new candidate measurement locations and prediction locations. This information is acquired (or sampled) from predGrid at candidate locations during SSA using a call to \texttt{over} by default. But see \texttt{ssaOptim} for more details and an option to interpolate these values for candidate locations from predGrid.
4. Note that it is not recommended to use independent variables which differ strongly in magnitude (as for traditional universal kriging)
5. If no \texttt{formulaString} is supplied, an ordinary kriging formula is assumed, and optimization will proceed using mean ordinary kriging variance

\textbf{Value}

Object of class \texttt{SpatialPoints*} with spatial coordinates of optimized locations (including observation locations when \texttt{action = "add"})

\textbf{Author(s)}

O. Baume, S.J. Melles, J. Skoien

\textbf{References}


See Also

`ssaOptim, spCovDel, spCovAdd, calculateMukv, stratify`

Examples

```r
Not run:
load data:
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
coordinates(meuse.grid) = ~x+y
gridded(meuse.grid) = TRUE
predGrid = meuse.grid

estimate variograms (OK/UK):
vfitOK = fit.variogram(variogram(zinc~1, meuse), vgm(1, "Exp", 300, 1))
vfitUK = fit.variogram(variogram(zinc~x+y, meuse), vgm(1, "Exp", 300, 1))
vfitRK = fit.variogram(variogram(zinc~dist+ffreq+soil, meuse), vgm(1, "Exp", 300, 1))

study area of interest:
bb = bbox(predGrid)
boun = SpatialPoints(data.frame(x=c(bb[1,1],bb[1,2],bb[1,1],bb[1,2],bb[1,2],bb[1,1],bb[1,1]),
y=c(bb[2,1],bb[2,1],bb[2,2],bb[2,2],bb[2,1],bb[2,2],bb[2,1])))
Srl = Polygons(list(Polygon(boun)),ID = as.character(1))
candidates = SpatialPolygonsDataFrame(SpatialPolygons(list(Srl)),
data = data.frame(ID=1))

add 20 more points assuming OK model (SSA method):
optimOK <- optimizeNetwork(meuse, meuse.grid, candidates = candidates,
 method="ssa", action="add", nDiff = 20, model = vfitOK, criterion="MUKV",
nr_iterations=10000, nmax=40)

add 20 more points assuming UK model (SSA method):
optimUK <- optimizeNetwork(meuse, meuse.grid, candidates = candidates,
 method="ssa", action="add", nDiff = 20, model = vfitUK, criterion="MUKV",
nr_iterations=10000, nmax=40, formulaString = zinc~x+y)

add 20 more points with auxiliary variables (SSA method):
optimRK <- optimizeNetwork(meuse, meuse.grid, candidates=candidates,
 method="ssa", action="add", nDiff=4, model=vfitRK, criterion="MUKV",
nr_iterations=10000, formula=zinc~dist+ffreq+soil, nmax=200)

add optimally 20 stations from current network with method "spcov"
(spatial coverage method)
optimSC = optimizeNetwork(meuse, meuse.grid, candidates, method = "spcov",
 action = "add", nDiff = 10, model = model, criterion = "MUKV", plotOptim = TRUE,
nGridCells = 10000,nTry = 100)
```
# delete optimally 10 stations from current network with method "manual"
optimMAN = optimizeNetwork(meuse, meuse.grid, candidates, method = "manual",
  action = "del", nDiff = 10, model = model, criterion = "MUKV", plotOptim = TRUE )

# comparison of results with ordinary kriging variogram, otherwise add formulaString
# ssa method, assuming ordinary kriging
calculateMukv(optimOK, predGrid, vfitOK)

# ssa method, using spatial location as covariates
calculateMukv(optimUK, predGrid, vfitUK, zinc~x+y)

# ssa method, using other variables as covariates
calculateMukv(optimRK, predGrid, vfitRK, zinc~dist+ffreq+soil)

# spcov method
calculateMukv(optimSC, predGrid, vfitOK)

# 10 stations manually deleted
calculateMukv(optimMAN, predGrid, vfitOK, zinc~1)

## End(Not run)

spCovAdd  

---

**spCovAdd**  

Spatial coverage method to add new measurements

---

**Description**

This function spCovAdd allows to build optimization scenarios based on spatial coverage method.

**Usage**

```r
spCovAdd(observations, candidates, nDiff, nGridCells, plotOptim = TRUE, nTry, ...)
```

**Arguments**

- `observations`: object of class `data.frame` with x,y coordinates
- `candidates`: a `SpatialPolygonsDataFrame` to explore: in use when optimizing the implementation of new measurement stations to an existing network
- `nDiff`: number of stations to add or delete
- `nGridCells`: number of grid cells to work on spatial coverage strafication
- `plotOptim`: logical; to plot the result or not
- `nTry`: the method will try nTry initial configurations and will keep the best solution in order to reduce the risk of ending up with an unfavorable solution
- `...`: other arguments to be passed on at lower level functions such as `stratify`
Details
This function allows to build optimization scenarios based on spatial coverage method. The scenario action is "add". To add new measurement locations to the running network, the function uses function `stratify` from package spcosa. Function stratify adds new strata to the domain study.

Value
data.frame of optimized locations

Author(s)
Olivier Baume

References

spCovDel Optimize the network with spatial coverage methods

Description
The function spCovDel allows to build optimization scenarios based on spatial coverage method.

Usage
spCovDel(observations, candidates, nDiff, plotOptim = TRUE, ...)

Arguments
observations object of class data.frame with x,y coordinates
candidates not compulsory used only for plotting purpose – a SpatialPolygonsDataFrame describing the study area
nDiff number of stations to add or delete
plotOptim logical; to plot the result or not
...
other arguments to be passed on at lower level functions such as nndist

Details
This function allows to build optimization scenarios based on spatial coverage method. When action is "del", the function maximizes the mean distance of measurements with direct neighbours using function `nndist`. The heuristic search uses a swapping algorithm to converge more rapidly to the best solution.
**Value**

`data.frame` of optimized locations

**Author(s)**

Olivier Baume

---

**ssaOptim**

*Spatial simulated annealing (SSA) for optimization of sampling designs using a geostatistical measure of spatial prediction error*

---

**Description**

Spatial simulated annealing uses slight perturbations of previous sampling designs and a random search technique to solve spatial optimization problems. Candidate measurement locations are iteratively moved around and optimized by minimizing the mean universal kriging variance (`calculateMukv`). The approach relies on a known, pre-specified model for underlying spatial variation (`variogramModel`).

**Usage**

```r
ssaOptim(observations, predGrid, candidates, action, nDiff, model, nr_iterations, plotOptim = TRUE, formulaString = NULL, coolingFactor = nr_iterations/10, covariates = "over", ...)
```

**Arguments**

- `observations` object of class `Spatial` with coordinates and possible covariates
- `predGrid` object of class `Spatial` used when method = "ssa". `predGrid` should contain the coordinates of prediction locations for optimization. Usually `predGrid` is a `SpatialGrid/SpatialPixels` or a `SpatialGridDataFrame/SpatialPixelsDataFrame` when independent covariate predictor variables are used
- `candidates` candidates is the study area of class `SpatialPolygonsDataFrame`
- `action` character string indicating which type of action to perform: "add" to add new measurement stations to the existing network or "del" to delete existing stations
- `nDiff` number of stations to add or delete
- `model` variogram model:object of class `variogramModel`, as generated by `vgm`
- `nr_iterations` number of iterations to process before stopping. The default `coolingFactor` is also a function of number of iterations.
- `plotOptim` logical; if TRUE, creates a plot of the result as optimization progresses; TRUE by default
**formulaString**  
formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name \( z \), for ordinary and simple kriging use the formula \( z \sim 1 \); for universal kriging, suppose \( z \) is linearly dependent on \( x \) and \( y \), use the formula \( z \sim x+y \). The formulaString defaults to "value~1" if value is a part of the data set. If not, the first column of the data set is used.

**coolingFactor**  
variable defining how fast the algorithm will cool down. With SSA, worsening designs are accepted with a decreasing probability (generally set to \( p < 0.2 \) to avoid selection of local minima). The coolingFactor dictates the rate at which \( p \) decreases to zero. Commonly \( p \) is set to exponentially decrease or cool as a function of number of iterations to ensure convergence (Brus & Heuvelink 2007, Melles et al. 2011). Smaller numbers give quicker cooling; higher numbers give slower cooling.

**covariates**  
character string defining whether possible covariates should be found by "over" or "krige", see also details below

... other arguments to be passed on to lower level functions

**Details**

This function applies spatial simulated annealing for the special case of optimization with the MUKV criterion (**calculateMukv**). With covariates, the function takes a universal kriging model into account. When optimizing a sampling design using SSA and criterion = "mukv", measurement values at new sampling locations are not required in order to calculate prediction error variance (criterion = "mukv"). This attractive property allows one to estimate the kriging prediction error variance prior to collecting the data (i.e., the dependent variable is unknown at new candidate locations), and it is this property that is used in the SSA optimization procedure after (Brus & Heuvelink 2007, Melles et al. 2011).

A stopping criterion **countMax** is implemented in lower level functions to end the optimization procedure after 200 search steps have occurred without an improvement in the design. If this stopping criterion is reached before **nr_iterations**, SSA will terminate.

**method = "ssa"** with criterion = "mukv" makes it possible to assume a linear relationship between independent variables in predGrid and dependent variables at observation locations using universal kriging (**krige**). However, a correct estimate of mean universal kriging variance requires that the independent covariate variables be known at candidate locations. Thus it is necessary to have complete spatial coverage for all covariate predictors in the linear model. Covariate information must be available at both new candidate measurement locations and prediction locations. This is not possible (except for the measurement locations themselves). Instead, these are estimated from the prediction locations.

There are two possible methods to attain information on covariates at the candidate locations, and the method can be set using the argument **covariates**: **over** and **krige**. **over** finds the value of covariates at new locations by overlaying candidate locations on the prediction grid and taking the value of the nearest neighbour. The second method uses kriging to estimate covariate values at new locations from predGrid. The first method is generally faster, the second method is most likely more exact, particularly if the resolution of predGrid is low in relation to the spatial correlation lengths of the covariates. Both methods are approximations that may influence the criterion used for optimization with increasing numbers of points added.
Value

SpatialPointsDataFrame with optimized locations

Author(s)

O. Baume, S.J. Melles, J. Skoien

References


Examples

```r
Not run:
load data:
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
coordinates(meuse.grid) = ~x+y
gredded(meuse.grid) = TRUE
predGrid = meuse.grid

estimate variograms (OK/UK):
vfitOK = fit.variogram(variogram(zinc~1, meuse), vgm(1, "Exp", 300, 1))
vfitUK = fit.variogram(variogram(zinc~x+y, meuse), vgm(1, "Exp", 300, 1))
vfitRK = fit.variogram(variogram(zinc~dist+ffreq+soil, meuse), vgm(1, "Exp", 300, 1))

study area of interest:
bb = bbox(predGrid)
boun = SpatialPoints(data.frame(x=c(bb[1,1],bb[1,2],bb[1,2],bb[1,1],bb[1,1]),
y=c(bb[2,1],bb[2,1],bb[2,2],bb[2,2],bb[2,1])))
Srl = Polygons(list(Polygon(boun)),ID = as.character(1))
candidates = SpatialPolygonsDataFrame(SpatialPolygons(list(Srl)),
 data = data.frame(ID=1))

add 20 more points assuming OK model (SSA method):
optimOK <- ssaOptim(meuse, meuse.grid, candidates = candidates, covariates = "over",
 nDiff = 20, action = "add", model = vfitOK, nr_iterations = 10000,
 formulaString = zinc~1, nmax = 40, countMax = 200)

add 20 more points assuming UK model (SSA method):
optimUK <- ssaOptim(meuse, meuse.grid, candidates = candidates, covariates = "over",
 nDiff = 20, action = "add", model = vfitUK, nr_iterations = 10000,
 formulaString = zinc~x+y, nmax = 40, countMax = 200)

add 20 more points with auxiliary variables (SSA method):
optimRK <- ssaOptim(meuse, meuse.grid, candidates = candidates, covariates = "over",
```
nDiff = 20, action = "add", model = vfitRK, nr_iterations = 10000,
formulaString = zinc-dist+ffreq+soil, nmax = 40, countMax = 200)

## End(Not run)
Index

* cluster
  anisotropyChoice, 2

* htest
  anisotropyChoice, 2

* nonparametric
  anisotropyChoice, 2

* spatial
  anisotropyChoice, 2
  biasCorr, 4
  calculateMukv, 6
  doSegmentation, 7
  findBiasUK, 9
  findBoundaryLines, 10
  findLocalBias, 11
  findRegionalBias, 13
  intamapInteractive-package, 2
  optimizeNetwork, 15
  spCovAdd, 19
  spCovDel, 20
  ssaOptim, 21

anisotropyChoice, 2

biasCorr, 4

calculateMukv, 6, 15, 17, 18, 21, 22

data.frame, 9, 14, 19–21

doSegmentation, 2, 7

findBiasUK, 4, 9

findBoundaryLines, 5, 10, 13

findLocalBias, 4, 5, 11

findRegionalBias, 4, 5, 9, 10, 13

getIntamapParams, 4

intamapInteractive-package, 2

krige, 7, 17, 22

nndist, 20

optimizeNetwork, 15

over, 17, 22

removeLocalBias, 5

removeLocalBias (findLocalBias), 11

removeRegionalBias, 5

removeRegionalBias (findRegionalBias), 13

Spatial, 6, 16, 21

SpatialGrid, 6, 16, 21

SpatialGridDataFrame, 6, 16, 21

SpatialPixels, 16, 21

SpatialPoints, 6, 17

SpatialPointsDataFrame, 2, 6, 9, 10, 12, 13

SpatialPolygons, 17

SpatialPolygonsDataFrame, 10, 16, 19–21

spcos, 15, 17

spCovAdd, 18, 19

spCovDel, 17, 18, 20

ssaOptim, 15–18, 21

stratify, 18–20

vgm, 6, 16, 21

25