Package ‘itsmr’

February 20, 2015

Type Package
Title Time series analysis package for students
Version 1.5
Date 2011-11-12
Author George Weigt
Maintainer George Weigt <g808391@gmail.com>
Description This package provides a subset of the functionality found in the Windows-based program ITSM. The intended audience is students using the textbook “Introduction to Time Series and Forecasting” by Peter J. Brockwell and Richard A. Davis.
License Unlimited
LazyLoad yes
Repository CRAN
Date/Publication 2011-11-13 09:12:27
NeedsCompilation no

R topics documented:

itsmr-package ... 2
aacvf ... 3
acvf ... 5
airpass ... 6
ar.inf ... 6
arar ... 7
arma ... 8
autofit .. 9
burg ... 10
check ... 11
deaths ... 11
dowj ... 12
forecast ... 12
hannan ... 13
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr</td>
<td>14</td>
</tr>
<tr>
<td>ia</td>
<td>15</td>
</tr>
<tr>
<td>lake</td>
<td>16</td>
</tr>
<tr>
<td>ma.inf</td>
<td>16</td>
</tr>
<tr>
<td>periodogram</td>
<td>17</td>
</tr>
<tr>
<td>plota</td>
<td>18</td>
</tr>
<tr>
<td>plotc</td>
<td>18</td>
</tr>
<tr>
<td>plots</td>
<td>18</td>
</tr>
<tr>
<td>Resid</td>
<td>19</td>
</tr>
<tr>
<td>season</td>
<td>20</td>
</tr>
<tr>
<td>selftest</td>
<td>21</td>
</tr>
<tr>
<td>sim</td>
<td>22</td>
</tr>
<tr>
<td>smooth.exp</td>
<td>22</td>
</tr>
<tr>
<td>smooth.fft</td>
<td>23</td>
</tr>
<tr>
<td>smooth.ma</td>
<td>24</td>
</tr>
<tr>
<td>smooth.rank</td>
<td>24</td>
</tr>
<tr>
<td>specify</td>
<td>25</td>
</tr>
<tr>
<td>strikes</td>
<td>26</td>
</tr>
<tr>
<td>Sunspots</td>
<td>26</td>
</tr>
<tr>
<td>test</td>
<td>26</td>
</tr>
<tr>
<td>trend</td>
<td>27</td>
</tr>
<tr>
<td>wine</td>
<td>28</td>
</tr>
<tr>
<td>yw</td>
<td>28</td>
</tr>
</tbody>
</table>

Index

itsmr-package Time series analysis package for students

Description

This package provides a subset of the functionality found in the Windows-based program ITSM. The intended audience is students using the textbook *Introduction to Time Series and Forecasting* by Peter J. Brockwell and Richard A. Davis.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>itsmr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.5</td>
</tr>
<tr>
<td>Date</td>
<td>2011-11-12</td>
</tr>
<tr>
<td>License</td>
<td>Unlimited</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>
aacvf

Author(s)

George Weigt
Maintainer: George Weigt <g808391@gmail.com>

References

Examples

```r
plotc(wine)

## Define a suitable transformation of the data
xv = c("log","season",12,"trend",1)

## Obtain residuals and check for stationarity
e = resid(wine,xv)
test(e)

## Define a suitable ARMA model
a = arma(e,p=1,q=1)

## Obtain residuals and check for white noise
ee = resid(wine,xv,a)
test(ee)

## Forecast future values
forecast(wine,xv,a)
```

aacvf

Autocovariance of ARMA model

Description

Autocovariance of ARMA model

Usage

```r
aacvf(a, h)
```

Arguments

- **a**: ARMA model
- **h**: Maximum lag
Details

The ARMA model is a list with the following components.
acvf

\[\text{phi} \] Vector of AR coefficients (index number equals coefficient subscript)
\[\text{theta} \] Vector of MA coefficients (index number equals coefficient subscript)
\[\text{sigma2} \] White noise variance

Value

Returns a vector of length \(h+1 \) to accommodate lag 0 at index 1.

See Also

arma

Examples

\[a = \text{arma(Sunspots,2,0)} \]
\[\text{acvf}(a,40) \]

\[
\begin{array}{c|c}
\text{acvf} & \text{Autocovariance of data} \\
\end{array}
\]

Description

Autocovariance of data

Usage

\[\text{acvf}(x, h = 40) \]

Arguments

\[x \] Data vector
\[h \] Maximum lag

Value

Returns a vector of length \(h+1 \) to accommodate lag 0 at index 1.

See Also

plota

Examples

\[\text{acvf(Sunspots)} \]
airpass

Number of international airline passengers, 1949 to 1960

Description

Number of international airline passengers, 1949 to 1960

Examples

```
plotc(airpass)
```

ar.inf

Compute AR infinity coefficients

Description

Compute AR infinity coefficients

Usage

```
ar.inf(a, n = 50)
```

Arguments

- `a`: ARMA model
- `n`: Order

Details

The ARMA model is a list with the following components.

- `phi`: Vector of AR coefficients (index number equals coefficient subscript)
- `theta`: Vector of MA coefficients (index number equals coefficient subscript)
- `sigma2`: White noise variance

Value

Returns a vector of length \(n+1 \) to accommodate coefficient 0 at index 1.

See Also

`ma.inf`
Examples

\[
a = yw(Sunspots,2) \\
ar.\text{inf}(a)
\]

Description

Forecast using ARAR algorithm

Usage

\[
arar(y, h = 10, opt = 2)
\]

Arguments

- `y` Data vector
- `h` Steps ahead
- `opt` Display option (0 silent, 1 tabulate, 2 plot and tabulate)

Value

Returns the following list invisibly.

- `pred` Predicted values
- `se` Standard errors
- `l` Lower bounds (95% confidence interval)
- `u` Upper bounds

See Also

- `forecast`

Examples

\[
arar(airpass)
\]
 arma

Estimate ARMA model coefficients using maximum likelihood

Description

Estimate ARMA model coefficients using maximum likelihood

Usage

arma(x, p = 0, q = 0)

Arguments

 x Data vector
 p AR order
 q MA order

Details

Calls the standard R function arima to estimate AR and MA coefficients. The innovations algorithm is used to estimate white noise variance.

Value

Returns an ARMA model consisting of a list with the following components.

 phi Vector of AR coefficients (index number equals coefficient subscript)
 theta Vector of MA coefficients (index number equals coefficient subscript)
 sigma2 White noise variance
 aicc Akaike information criterion corrected
 se.phi Standard errors for the AR coefficients
 se.theta Standard errors for the MA coefficients

See Also

 autofit burg hannan ia yw

Examples

 xv = c("diff",1)
 e = Resid(dowj,xv)
 a = arma(e,1,0)
 print(a)
autofit

Find the best model from a range of possible ARMA models

Description

Find the best model from a range of possible ARMA models

Usage

autofit(x, p = 0:5, q = 0:5)

Arguments

- **x**: Data vector (typically residuals from Resid)
- **p**: Range of AR orders
- **q**: Range of MA orders

Details

Tries all combinations of p and q and returns the model with the lowest AICC. The arguments p and q should be small ranges as this function can be slow otherwise. The innovations algorithm is used to estimate white noise variance.

Value

Returns an ARMA model consisting of a list with the following components.

- **phi**: Vector of AR coefficients (index number equals coefficient subscript)
- **theta**: Vector of MA coefficients (index number equals coefficient subscript)
- **sigma2**: White noise variance
- **aicc**: Akaike information criterion corrected
- **se.phi**: Standard errors for the AR coefficients
- **se.theta**: Standard errors for the MA coefficients

See Also

arma

Examples

```r
xv = c("diff",1)
e = Resid(dowj,xv)
a = autofit(e)
print(a)
```
burg

Estimate AR coefficients using the Burg method

Description

Estimate AR coefficients using the Burg method

Usage

burg(x, p)

Arguments

 x Data vector (typically residuals from resid)
 p AR order

Details

The innovations algorithm is used to estimate white noise variance.

Value

Returns an ARMA model consisting of a list with the following components.

phi Vector of AR coefficients (index number equals coefficient subscript)
theta 0
sigma2 White noise variance
aicc Akaike information criterion corrected
se.phi Standard errors for the AR coefficients
se.theta 0

See Also

arma hanan ia yw

Examples

 xv = c("diff",1)
 e = Resid(dowj,xv)
 a = burg(e,1)
 print(a)
check
Check for causality and invertibility

Description
Check for causality and invertibility

Usage
check(a)

Arguments
a ARMA model

Details
The ARMA model is a list with the following components.

- **phi** Vector of AR coefficients (index number equals coefficient subscript)
- **theta** Vector of MA coefficients (index number equals coefficient subscript)
- **sigma2** White noise variance

Value
None

Examples
```r
a = specify(ar=c(0,0,.99))
check(a)
```

deaths
USA accidental deaths, 1973 to 1978

Description
USA accidental deaths, 1973 to 1978

Examples
```r
plotc(deaths)
```
Description

Dow Jones utilities index, August 28 to December 18, 1972

Examples

```r
dowj
```  

forecast

Forecast future values

Description

Forecast future values

Usage

```r
forecast(x, xv, a, h = 10, opt = 2)
```  

Arguments

- `x` Data vector
- `xv` Transform vector
- `a` ARMA model
- `h` Steps ahead
- `opt` Display option (0 silent, 1 tabulate, 2 plot and tabulate)

Details

The transform vector can be NULL for none. Otherwise `xv` is a vector that specifies a sequence of transform functions.

Example:

```r
xv = c("log","season",12,"trend",1)
```

The above transform vector takes the log of the data, then subtracts a seasonal component of period 12, then subtracts a linear trend component.

There are five functions from which to choose.

- `diff` Difference the data. Has a single argument, the lag.
- `hr` Subtract harmonic components. Has one or more arguments, each specifying the number of observations per harmonic.
- `log` Take the log of the data, has no arguments.
- `season` Subtract a seasonal component. Has a single argument, the number of observations per season.
- `trend` Subtract a trend component. Has a single argument, the order of the trend (1 linear, 2 quadratic, etc.)
At the end of the transform vector there is an implied subtraction of the mean operation. Hence the resulting time series always has zero mean.

All of the transformations are inverted before the forecast results are displayed.

Value

Returns the following list invisibly.

- `pred`: Predicted values
- `se`: Standard errors (not included if there is a log transform)
- `l`: Lower bounds (95% confidence interval)
- `u`: Upper bounds

See Also

`arma`, `Resid`, `test`

Examples

```r
xv = c("log", "season", 12, "trend", 1)
e = Resid(wine, xv)
a = arma(e, 1, 1)
forecast(wine, xv, a)
```

hannan

Estimate ARMA coefficients using the Hannan-Rissanen algorithm

Description

Estimate ARMA coefficients using the Hannan-Rissanen algorithm

Usage

```r
hannan(x, p, q)
```

Arguments

- `x`: Data vector (typically residuals from Resid)
- `p`: AR order
- `q`: MA order (q > 0)

Details

The innovations algorithm is used to estimate white noise variance.
Value

Returns an ARMA model consisting of a list with the following components.

- **phi**: Vector of AR coefficients (index number equals coefficient subscript)
- **theta**: Vector of MA coefficients (index number equals coefficient subscript)
- **sigma2**: White noise variance
- **aicc**: Akaike information criterion corrected
- **se.phi**: Standard errors for the AR coefficients
- **se.theta**: Standard errors for the MA coefficients

See Also

arma burg ia yw

Examples

```r
xv = c("diff", 12)
e = resid(deaths, xv)
a = hannan(e, 1, 1)
print(a)
```

hr

Estimate harmonic components

Description

Estimate harmonic components

Usage

```r
hr(x, d)
```

Arguments

- **x**: Data vector
- **d**: Vector of harmonic periods

Value

Returns a vector the same length as x. Subtract from x to obtain residuals.

Examples

```r
y = hr(deaths, c(12, 6))
plotc(deaths, y)
```
Description

Estimate MA coefficients using the innovations algorithm

Usage

ia(x, q, m = 17)

Arguments

x Data vector (typically residuals from Resid)
q MA order
m Recursion level

Details

Normally m should be set to the default value. The innovations algorithm is used to estimate white noise variance.

Value

Returns an ARMA model consisting of a list with the following components.

phi 0
theta Vector of MA coefficients (index number equals coefficient subscript)
sigma2 White noise variance
aicc Akaike information criterion corrected
se.phi 0
se.theta Standard errors for the MA coefficients

See Also

arma burg hannan yw

Examples

xv = c("diff",1)
e = Resid(dowj,xv)
a = ia(e,1)
print(a)
lake

Description

Level of Lake Huron, 1875 to 1972

Examples

plotc(lake)

ma.inf

Description

Compute MA infinity coefficients

Usage

ma.inf(a, n = 50)

Arguments

a ARMA model
n Order

Details

The ARMA model is a list with the following components.

phi Vector of AR coefficients (index number equals coefficient subscript)
theta Vector of MA coefficients (index number equals coefficient subscript)
sigma2 White noise variance

Value

Returns a vector of length n+1 to accommodate coefficient 0 at index 1.

See Also

ar.inf
periodogram

Examples

```r
xv = c("diff",12)
e = Resid(deaths,xv)
a = arma(e,1,1)
ma.inf(a,10)
```

periodogram | Plot a periodogram

Description

Plot a periodogram

Usage

```r
periodogram(x, q = 0, opt = 2)
```

Arguments

- `x`: Data vector
- `q`: MA filter order
- `opt`: Plot option (0 silent, 1 periodogram only, 2 periodogram and filter)

Details

The filter `q` can be a vector in which case the overall filter is the composition of MA filters of the designated orders.

Value

The periodogram vector divided by 2pi is returned invisibly.

See Also

- plots

Examples

```r
periodogram(Sunspots,c(1,1,1,1))
```
plota

Plot data and/or model ACF and PACF

Description
Plot data and/or model ACF and PACF

Usage
```
plota(u, v = NULL, h = 40)
```

Arguments
- `u, v` Data and/or ARMA model in either order
- `h` Maximum lag

Value
None

Examples
```
plota(Sunspots)
a = yw(Sunspots, 2)
plota(Sunspots, a)
```

plotc

Plot one or two time series

Description
Plot one or two time series

Usage
```
plotc(y1, y2 = NULL)
```

Arguments
- `y1` Data vector (plotted in blue with knots)
- `y2` Data vector (plotted in red, no knots)

Value
None
plots

Plot spectrum of data or ARMA model

Description
Plot spectrum of data or ARMA model

Usage
`plots(u)`

Arguments
- `u` Data vector or an ARMA model

Value
None

See Also
`periodogram`

Examples
```r
a = specify(ar=c(0,0,.99))
plots(a)
```

Resid
Compute residuals

Description
Compute residuals

Usage
`Resid(x, xv = NULL, a = NULL)`
Arguments

- **x**: Data vector
- **xv**: Transform vector
- **a**: ARMA model

Details

The transform vector can be NULL for none. Otherwise `xv` is a vector that specifies a sequence of transform functions.

Example:

```r
xv = c("log", "season", 12, "trend", 1)
```

The above transform vector takes the log of the data, then subtracts a seasonal component of period 12, then subtracts a linear trend component.

There are five functions from which to choose:

- **diff**: Difference the data. Has a single argument, the lag.
- **hr**: Subtract harmonic components. Has one or more arguments, each specifying the number of observations per harmonic.
- **log**: Take the log of the data, has no arguments.
- **season**: Subtract a seasonal component. Has a single argument, the number of observations per season.
- **trend**: Subtract a trend component. Has a single argument, the order of the trend (1 linear, 2 quadratic, etc.)

At the end of the transform vector there is an implied subtraction of the mean operation. Hence the resulting time series always has zero mean.

Value

Returns a vector of residuals the same length as `x`.

See Also

- `test`

Examples

```r
xv = c("log", "season", 12, "trend", 1)
e = Resid(wine, xv)
a = arma(e, 1, 1)
ee = Resid(wine, xv, a)
```

season

Estimate seasonal component

Description

Estimate seasonal component
selftest

Usage
season(x, d)

Arguments
x Data vector
d Number of observations per season

Value
Returns a vector the same length as x. Subtract from x to obtain residuals.

See Also
trend

Examples
y = season(deaths, 12)
plotc(deaths, y)

selftest Run a self test

Description
Run a self test

Usage
selftest()

Details
This function is a useful check if the code is modified.

Value
None

Examples
selftest()
Sim

Generate synthetic observations

Description

Generate synthetic observations

Usage

```r
sim(a, n = 100)
```

Arguments

- `a` ARMA model
- `n` Number of synthetic observations required

Details

The ARMA model is a list with the following components.

- `phi` Vector of AR coefficients (index number equals coefficient subscript)
- `theta` Vector of MA coefficients (index number equals coefficient subscript)
- `sigma2` White noise variance

Value

Returns a vector of `n` synthetic observations.

Examples

```r
a = specify(ar=c(0,0,.99))
x = sim(a,60)
plotc(x)
```

Smooth.exp

Apply an exponential filter

Description

Apply an exponential filter

Usage

```r
smooth.exp(x, alpha)
```
smooth.fft

Arguments

 x Data vector
 alpha Smoothness setting, 0-1

Details

 Zero is maximum smoothness.

Value

 Returns a vector of smoothed data the same length as x.

Examples

 y = smooth.exp(strikes, .4)
 plotc(strikes, y)

smooth.fft Apply a low pass filter

Description

 Apply a low pass filter

Usage

 smooth.fft(x, f)

Arguments

 x Data vector
 f Cut-off frequency, 0-1

Details

 The cut-off frequency is specified as a fraction. For example, c=.25 passes the lowest 25\% of the spectrum.

Value

 Returns a vector the same length as x.

Examples

 y = smooth.fft(deaths, .1)
 plotc(deaths, y)
smooth.ma

Apply a moving average filter

Description

Apply a moving average filter

Usage

```
smooth.ma(x, q)
```

Arguments

- `x`: Data vector
- `q`: Filter order

Details

The averaging function uses $2q+1$ values.

Value

Returns a vector the same length as `x`.

Examples

```
y = smooth.ma(strikes, 2)
plotc(strikes, y)
```

smooth.rank

Apply a spectral filter

Description

Apply a spectral filter

Usage

```
smooth.rank(x, k)
```

Arguments

- `x`: Data vector
- `k`: Number of frequencies
Details
Passes the mean and the k frequencies with the highest amplitude. The remainder of the spectrum is filtered out.

Value
Returns a vector the same length as x.

Examples
\[
y = \text{smooth.rank}(\text{deaths}, 2) \\
\text{plotc}(\text{deaths}, y)
\]

specify
Specify an ARMA model

Description
Specify an ARMA model

Usage
```r
specify(ar = 0L, ma = 0, sigma2 = 1)
```

Arguments
- **ar**
 Vector of AR coefficients (index number equals coefficient subscript)
- **ma**
 Vector of MA coefficients (index number equals coefficient subscript)
- **sigma2**
 White noise variance

Value
Returns an ARMA model consisting of a list with the following components.

- **phi**
 Vector of AR coefficients (index number equals coefficient subscript)
- **theta**
 Vector of MA coefficients (index number equals coefficient subscript)
- **sigma2**
 White noise variance

Examples
```r
specify(ar = c(0, 0, .99))
```
strikes
USA union strikes, 1951-1980

Description
USA union strikes, 1951-1980

Examples
plotc(strikes)

Sunspots
Number of sunspots, 1770 to 1869

Description
Number of sunspots, 1770 to 1869

Examples
plotc(Sunspots)

test
Test residuals for stationarity and randomness

Description
Test residuals for stationarity and randomness

Usage
test(e)

Arguments
e Data vector (typically residuals from Resid)

Details
Plots ACF, PACF, residuals, and QQ. Displays results for Ljung-Box, McLeod-Li, turning point, difference-sign, and rank tests. The plots can be used to check for stationarity and the other tests check for white noise.
trend

Value

None

See Also

Resid

Examples

```r
xv = c("log", "season", 12, "trend", 1)
e = Resid(wine, xv)
test(e) ## Is e stationary?
a = arma(e, 1, 1)
 ee = Resid(wine, xv, a)
test( ee) ## Is ee white noise?
```

trend | Estimate trend component

Description

Estimate trend component

Usage

```r
trend(x, p)
```

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>Data vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Polynomial order (1 linear, 2 quadratic, etc.)</td>
</tr>
</tbody>
</table>

Value

Returns a vector the same length as `x`. Subtract from `x` to obtain residuals. The returned vector is the least squares fit of a polynomial to the data.

See Also

season

Examples

```r
y = trend(uspop, 2)
plotc(uspop, y)
```
wine

Australian red wine sales, January 1980 to October 1991

Description

Australian red wine sales, January 1980 to October 1991

Examples

plotc(wine)

yw

Estimate AR coefficients using the Yule-Walker method

Description

Estimate AR coefficients using the Yule-Walker method

Usage

yw(x, p)

Arguments

x Data vector (typically residuals from Resid)

p AR order

Details

The innovations algorithm is used to estimate white noise variance.

Value

Returns an ARMA model consisting of a list with the following components.

phi Vector of AR coefficients (index number equals coefficient subscript)
theta 0

sigma2 White noise variance

aicc Akaike information criterion corrected

se.phi Standard errors for the AR coefficients

se.theta 0

See Also

arma burg hannan ia
Examples

```r
xv = c("diff",1)
e = Resid(dowj,xv)
a = yw(e,1)
```
Index

*Topic datasets
 airpass, 6
 deaths, 11
 dowj, 12
 lake, 16
 strikes, 26
 Sunspots, 26
 wine, 28

*Topic package
 itsmr-package, 2

aacvf, 3
acvf, 5
airpass, 6
ar.inf, 6, 16
arar, 7
arma, 5, 8, 9, 10, 13–15, 28
autofit, 8, 9

burg, 8, 10, 14, 15, 28

check, 11

deaths, 11

dowj, 12

forecast, 7, 12

hannan, 8, 10, 13, 15, 28
hr, 14

ia, 8, 10, 14, 15, 28

itsmr (itsmr-package), 2

itsmr-package, 2

lake, 16

ma.inf, 6, 16

periodogram, 17, 19

plota, 5, 18

plotc, 18
plots, 17, 19

Resid, 13, 19, 27

season, 20, 27

selftest, 21

sim, 22
smooth.exp, 22
smooth.fft, 23
smooth.ma, 24
smooth.rank, 24
specify, 25
strikes, 26

Sunspots, 26
test, 13, 20, 26
trend, 21, 27

wine, 28

yw, 8, 10, 14, 15, 28