Package ‘kdetrees’

February 20, 2015

Type Package

Title Nonparametric method for identifying discordant phylogenetic trees

Version 0.1.5

Date 2014-05-21

Author Grady Weyenberg and Ruriko Yoshida

Maintainer Grady Weyenberg <grady.weyenberg@uky.edu>

Description A non-parametric method for identifying potential outliers in a collection of phylogenetic trees based on the methods of Owen and Provan (2011). Such discordant trees may indicate problems with sequence annotation or tree reconstruction, or they may represent interesting biological phenomena, such as horizontal gene transfers.

License GPL-2

Depends R (>= 2.15.1)

Imports ape, distory, ggplot2

URL http://github.com/grady/kdetrees

LazyData TRUE

NeedsCompilation no

Repository CRAN

Date/Publication 2014-05-30 01:09:11

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>kdetrees-package</td>
<td>2</td>
</tr>
<tr>
<td>apicomplexa</td>
<td>2</td>
</tr>
<tr>
<td>as.data.frame.kdetrees</td>
<td>2</td>
</tr>
<tr>
<td>as.matrix.multiPhylo</td>
<td>3</td>
</tr>
<tr>
<td>bw.nn</td>
<td>4</td>
</tr>
<tr>
<td>dist.diss</td>
<td>4</td>
</tr>
<tr>
<td>estimate</td>
<td>5</td>
</tr>
</tbody>
</table>
as.data.frame.kdetrees

hist.kdetrees ... 6
kdetrees ... 6
kdetrees.complete ... 7
normkern ... 8
plot.kdetrees ... 9
print.kdetrees ... 10

Index

kdetrees-package kdetrees

Description
kdetrees

apicomplexa Apicomplexa gene trees sample data set.

Description
Apicomplexa gene trees sample data set.

Format
a multiPhylo object with 268 phylogenetic trees

Examples
kdetrees(apicomplexa)

as.data.frame.kdetrees

Convert kdetrees object to data.frame

Description
Converts a kdetrees object to a data.frame suitable for saving as output. It contains the density estimates for each tree, a Boolean value indicating if the tree was selected as an outlier, and optionally the newick string corresponding to the tree.

Usage
S3 method for class 'kdetrees'
as.data.frame(x, row.names, optional, trees = NULL, ...)

as.matrix.multiPhylo

Arguments

x kdetrees object to be converted
row.names ignored
optional ignored
trees If given the original list of trees, will convert to newick and add a column to the
 output
... unused

Value

a data.frame

Author(s)

Grady Weyenberg

Examples

result <- kdetrees(apicomplexa)
as.data.frame(result)

as.matrix.multiPhylo dissimilarity map tree vectorization

Description

Dissimilarity maps convert trees to vectors using tip-to-tip path lengths. Branch length information
may be optionally discarded (the default), resulting in vectors based solely on tree topology.

Usage

S3 method for class 'multiPhylo'
as.matrix(x, ...)

Arguments

x an ape::multiPhylo object.
... additional options for ape::cophenetic.phylo

Value

a row matrix of tree vectors

Author(s)

Grady Weyenberg
Examples

```r
dm <- as.matrix(dist.diss(apicomplexa[1:20]))
bw.nn(dm)
```

bw.nn

nearest-neighbor adaptive bandwidth selection

Description

For each row in pairwise distance matrix find the distance to the closest prop fraction of trees.

Usage

```r
bw.nn(x, prop = 0.2, tol = 1e-06)
```

Arguments

- `x`: pairwise distance matrix
- `prop`: fraction of data to define the local neighborhood
- `tol`: tolerance for zero-bandwidth check

Value

- a vector of bandwidths for each tree (row) in x

Author(s)

Grady Weyenberg

Examples

```r
dm <- as.matrix(dist.diss(apicomplexa[1:20]))
bw.nn(dm)
```

dist.diss

Compute pairwise tree distances

Description

Compute pairwise tree distances

Usage

```r
dist.diss(x, ..., method = "euclidean", p = 2)
```
estimate

Arguments

- `x`: either a row matrix of tree vectors, or a multiPhylo object
- `...`: additional arguments passed to as.matrix.multiPhylo
- `method`: option passed to dist
- `p`: option passed to dist

Value

- a dist object with tree-to-tree distances

Author(s)

Grady Weyenberg

See Also

dist

Examples

```
dist.diss(apicomplexa[1:5])
```

Description

estimate densities from kernel matrix

Usage

```
estimate(x, i = integer())
```

Arguments

- `x`: matrix of kernel contributions
- `i`: vector of columns to exclude from calculation

Value

- vector of density estimates for each tree

Author(s)

Grady Weyenberg
hist.kdetrees

Create a histogram of tree density estimates

Description

Create a histogram of tree density estimates

Usage

```r
## S3 method for class 'kdetrees'
hist(x, ...)
```

Arguments

- `x`: kdetrees object to plot
- `...`: additional arguments passed to ggplot

Value

A ggplot object

Author(s)

Grady Weyenberg

Examples

```r
result <- kdetrees(apicomplexa)
hist(result)
```

kdetrees

Identify discordant trees in a sample

Description

Analyze a set of phylogenetic trees and attempt to identify trees which are significantly discordant with other trees in the sample (outlier trees).

Usage

```r
kdetrees(trees, k = 1.5, distance = c("geodesic", "dissimilarity"),
          outgroup = NULL, topo.only = FALSE, bw = list(), greedy = FALSE, ...)
```
Arguments

trees: multiPhylo object
k: IQR multiplier for outlier detection
distance: Select "geodesic" or "dissimilarity" distance calculation method
outgroup: if a character, reroot all trees with this species as outgroup. The geodesic distance method requires rooted trees.
topo.only: set all branch lengths to 1 before analyzing?
bw: see Details
greedy: greedy outlier detection?
...: additional arguments for distance calculation function, see details

Details

If bw is a single number, it will be used as a single constant bandwidth. It can also be a vector, in which case it will be used as variable bandwidths for each tree, respectively. Finally, if it is a list (default), the list will be passed as arguments to the bw.nn adaptive bandwidth function.

... is passed to either distNNmultiPhylo or distNndiss, as appropriate. See the help for these functions for more details.

Value

a kdetrees object; list(density, outliers)

Author(s)

Grady Weyenberg

Examples

kdeobj <- kdetrees(apicomplexa)
print(kdeobj)
kdeobj$outliers

kdetrees(apicomplexa, k=2.0, distance="dissimilarity", topo.only=FALSE)

Description

Performs a complete kdetrees analysis, starting with reading trees from a newick file on disk, and writing result files to the working directory. Names and location of output files may be controlled by optional arguments.
Usage
kdetrees.complete(infile, ..., treeoutfile = "outliers.tre",
 csvfile = "results.csv", plotfile = "plot.png", histfile = "hist.png")

Arguments
infile newick file with trees
... additional parameters for kdetrees
treeoutfile write outlier trees in newick format to this file
csvfile write density results to this file
plotfile print scatterplot of results to this file
histfile print histogram of density estimates to this file

Value
result of kdetrees call

Author(s)
Grady Weyenberg

normkern Generalized Gaussian kernel

Description
The un-normalized Gaussian kernel function: \exp(-(abs(x/bw))^{delta})/bw

Usage
normkern(x, bw = 1, delta = 2L)

Arguments
x places to evaluate kernel
bw bandwidth values
delta shape parameter for kernel

Details
The bandwidth parameter may be used in any way that makes sense in the above R expression. In particular, it may be a single value, for a constant bandwidth, or a vector, with each element corresponding the bandwidth of the kernel to be placed at each respective observation.
Value

an object of the same type as x with the kernel evaluations

Author(s)

Grady Weyenberg

Description

Plot the unnormalized density estimates for each tree.

Usage

S3 method for class 'kdetrees'
plot(x, ...)

Arguments

x

kdetrees object to be plotted

... additional arguments passed to ggplot

Value

a ggplot object

Author(s)

Grady Weyenberg

Examples

result <- kdetrees(apicomplexa)
plot(result)
print.kdetrees

Summary a kdetrees object in human-readable form.

Description

Pretty-prints the results of a kdetrees analysis to console.

Usage

```r
## S3 method for class 'kdetrees'
print(x, ...)
```

Arguments

- `x` object to be printed
- `...` unused, required for generic compatibility

Value

invisible(x)

Author(s)

Grady Weyenberg
Index

apicomplexa, 2
as.data.frame.kdetrees, 2
as.matrix.multiPhylo, 3

bw.nn, 4

dist.diss, 4

estimate, 5

hist.kdetrees, 6

kdetrees, 6
kdetrees-package, 2
kdetrees.complete, 7

normkern, 8

plot.kdetrees, 9
print.kdetrees, 10