Package ‘knnncat’

February 20, 2015

Version 1.2.2
Date 2015-02-05
Title Nearest-neighbor Classification with Categorical Variables
Author Sam Buttrey
Maintainer Sam Buttrey <buttrey@nps.edu>
Description Scale categorical variables in such a way as
to make NN classification as accurate as possible. The code also
handles continuous variables and prior probabilities, and does
intelligent variable selection and estimation of both error rates
and the right number of NN’s.
License GPL-2
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-02-06 06:22:24

R topics documented:

knnncat .. 1
plot.knnncat .. 4
predict.knnncat ... 5
print.knnncat .. 6

Index

knnncat Build a knnncat classifier

Description

Build a knnncat classifier, which is used for nearest-neighbor classification with categorical variables;
continuous are permitted too.
Usage

knn cat (train, test, k = c(1, 3, 5, 7, 9), xvals = 10, xval.ceil = -1,
knots = 10, prior.ind = 4, prior, permute = 10, permute.tail = 1,
improvement = .01, ridge = .003, once.out.always.out = FALSE,
classcol = 1, verbose = 0)

Arguments

train data frame of training data, with the correct classification in the classcol column
test data frame of test data (can be omitted). This should have the correct classification in the classcol column, too.
k vector of choices for number of nn’s. Default c(1, 3, 5, 7, 9).
xvals number of cross-validations to use to find the best model size and number of nn’s. Default 10.
xval.ceil Maximum number of variables to add. -1 = Use the smallest number from any xval; 0 = use the smallest number from the first xval; >= 0, use that.
knots vector of number of knots for numeric variables. Reused if necessary. Default: 10 for each.
prior.ind Integer telling how to compute priors. 1 = estimated from training set; 2 = all equal; 3 = supplied in "prior"; 4 = ignored. Default: 4.
prior Numeric vector, one entry per unique element in the training set’s classcol column, giving prior probabilities. Ignored unless prior.ind = 3; then they’re normalized to sum to 1 and each entry must be strictly > 0.
permute Number of permutations for variable selection. Default: 10.
permute.tail A variable fails the permutation test if permute.tail or more permutations do better than the original. Default: 1.
improvement Minimum improvement for variable selection. Ignored unless present and permute missing, or permute = 0; then default = .01.
ridge Amount by which to "ridge" the W matrix for numerical stability. Default: .003.
once.out.always.out if TRUE, a variable that fails a permutation test or doesn’t improve by enough is excluded from further consideration during that cross-validation run. Default FALSE.
classcol Column with classification in it. Default: 1.
verbose Controls level of diagnostic output. Higher numbers produce more output, sometimes 'way too much. 0 produces no output; 1 gives progress report for xvals. Default: 1.

Details

A knncat classifier converts categorical labels into real numbers (phi) so as to produce a good k-nearest neighbor classifier. Continuous variables are handled by means of knots, in a manner similar to the linear spline representation. Variable selection is done by a permutation test, or by setting an "improvement" cutoff; error rate estimation is done by cross-validation. After the cross-validations are done, we choose the best value of k from among those proposed and the "best" number of variables, then make one more pass through all the data to estimate the phis.
knncat

Value

A list of S3 class knncat, containing the following entries:

cdata A vector with one entry for each of the columns of train, except the classification column, with value 1 if that column was used in the final classifier, and 0 otherwise.

phi A list with the phi’s. Each element of the list has, as its name, the name of a column of train; the values of the element are the phi’s, and the names of that element are the levels of the variable. For numeric variables, these names are "knot.1", "knot.2" etc.

k The vector of k’s to be tried, as passed in.

best.k The best k selected.

misclass.mat A matrix, number of classes * number of classes, whose columns give the correct classifications and rows, the estimates.

prior.ind Method used to compute the prior, as passed in.

prior A numeric vector, one per class, giving the prior probabilities, as computed by the program according to prior.ind.

status Return value from the program. 0 = no error.

misclass.type Type of misclass.mat. "train" means misclass.rate came from the training set; "test," from the test set.

train Name of training set at build time.

vars Vector of names of columns actually used in model.

knots.vec Vector of numbers of knots, as passed in.

build Named vector holding five of the arguments used at build time: permute, improvement, ridge, once.out.always.out, and xvals

missing Vector of values with which to replace missing values. These are the most common values for categorical variables, and the means for continuous ones.

knot.values List of knot locations, one element for each continuous variable.

Author(s)

Samuel E. Buttrey, <buttrey@nps.edu>

References

Examples

Not run:
data ("synth.tr", package="MASS")
data ("synth.te", package="MASS")
syncat <- knncat (synth.tr, classcol=3)
syncat
Train set misclass rate: 12.8

synpred <- predict (synccat, synth.tr, synth.te, train.classcol=3, newdata.classcol=3)
table (synpred, synth.te$yc)

synpred 0 1
0 460 91
1 40 409

#
Or do the whole thing in one pass:
#

knncat (synth.tr, synth.te, classcol=3)
Test set misclass rate: 13.1

End(Not run)

plot.knnncat

Plot a knncat classifier

Description

Plot a knncat classifier

Usage

```r
## S3 method for class 'knnncat'
plot(x, ...)
```

Arguments

- `x` : Knncat object, from `knnncat`
- `...` : Other arguments, currently ignored

Details

This plot shows all the estimated numbers associated with each level of a variable (or knot, for a continuous variable) in a knncat classifier.

Value

None.

Author(s)

Samuel E. Buttrey, <buttrey@nps.edu>
predict.knncat

Predict on a knncat classifier

Description

Produce predictions for a knncat classifier

Usage

```r
## S3 method for class 'knncat'
predict(object, train, newdata,
train.classcol=1, newdata.classcol=1, return.classes=TRUE,
more=FALSE, verbose = 0, ...)
```

Arguments

- `object` Knncat object, from knncat
- `train` Training set used to build classifier
- `newdata` New data on which to make predictions
- `train.classcol` Column number for classification in training set. Default: 1
- `newdata.classcol` Column number for classification in newdata set. Default: 1. If <= 0, new data has no classifications.
- `return.classes` Logical; if TRUE, return a vector of classifications of the newdata set. Default: TRUE
- `more` Logical; if TRUE, also print error rate. Default: FALSE
- `verbose` Level of verbosity for debugging. Default: 0
- `...` Other arguments, currently ignored

Details

This prints the misclassification rate from the knncat classifier, together with an indication as to whether it was based on a training or test set.

Value

None.

Author(s)

Samuel E. Buttrey, <buttrey@nps.edu>
print.knnca

descriptions: Print a knnca classifier

description
Print the misclassification rate for a knnca classifier

usage
S3 method for class 'knnca'
print(x, ...)

arguments
x
Knnca object, from knnca

... Other arguments, currently ignored

details
This prints the misclassification rate from the knnca classifier, together with an indication as to whether it was based on a training or test set.

value
None.

author(s)
Samuel E. Buttrey, <buttrey@nps.edu>
Index

*Topic models
 knncat, 1
 plot.knncat, 4
 predict.knncat, 5
 print.knncat, 6

knncat, 1, 4–6

plot.knncat, 4
predict.knncat, 5
print.knncat, 6