Package ‘lineup’

March 6, 2019

Version 0.37-11
Date 2019-03-06
Title Lining Up Two Sets of Measurements
Description Tools for detecting and correcting sample mix-ups between two sets of measurements, such as between gene expression data on two tissues.
Author Karl W Broman <broman@wisc.edu>
Maintainer Karl W Broman <broman@wisc.edu>
URL https://github.com/kbroman/lineup
BugReports https://github.com/kbroman/lineup/issues
Depends R (>= 2.10.1)
Imports qtl (>= 1.20-15), class, graphics, grDevices, utils, stats, parallel
Suggests roxygen2, knitr, rmarkdown, devtools, testthat
License GPL-3
VignetteBuilder knitr
LazyData true
ByteCompile true
Encoding UTF-8
RoxygenNote 6.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-03-06 16:40:08 UTC

R topics documented:

calc.locallod ... 2
combinedist ... 3
corbetw2mat ... 5
distee .. 6
calc.locallod

* Calculate LOD score at physical position of each gene

Description

For gene expression data with physical positions of the genes, calculate the LOD score at those positions to assess evidence for local eQTL.

Usage

```r
calc.locallod(cross, pheno, pmark, addcovar = NULL, intcovar = NULL,
              verbose = TRUE, n.cores = 1)
```

Arguments

- **cross**
 - An object of class "cross" containing data for a QTL experiment. See the help file for `read.cross` in the R/qtl package (http://www.rqtl.org). There must be a phenotype named "id" or "ID" that contains the individual identifiers.

- **pheno**
 - A data frame of phenotypes (generally gene expression data), stored as individuals x phenotypes. The row names must contain individual identifiers.

- **pmark**
 - Pseudomarkers that are closest to the genes in pheno, as output by `find.gene.pseudomarker`.

- **addcovar**
 - Additive covariates passed to `scanone`.

- **intcovar**
 - Interactive covariates passed to `scanone`.

- **verbose**
 - If TRUE, print tracing information.

- **n.cores**
 - Number of CPU cores to use in the calculations. With `n.cores`=0, `detectCores` is used to detect the number of available cores.
combinedist

Details

cross and pheno must contain exactly the same individuals in the same order. (Use findCommonID to line them up.)

We consider the expression phenotypes in batches: those whose closest pseudomarker is the same.
We use Haley-Knott regression to calculate the LOD scores.
Actually, we use a bit of a contortion of the data to force the scanone function in R/qtl to calculate the LOD score at a single position.
We omit any transcripts that map to the X chromosome; we can only handle autosomal loci for now.

Value

A vector of LOD scores. The names indicate the gene names (columns in pheno).

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

findNgeneNpseudomarker, plotEGclass, findCommonID, disteg

Examples

data(f2cross, expr1, genepos, pmap)
library(qtl)

calc QTL genotype probabilities
f2cross <- calc.genoprob(f2cross, step=1)

find nearest pseudomarkers
pmark <- find.gene.pseudomarker(f2cross, pmap, genepos, "prob")

line up f2cross and expr1
id <- findCommonID(f2cross, expr1)

calculate LOD score for local eQTL
locallod <- calc.lodod(f2cross[,id$first], expr1[id$second,], pmark)

combinedist

Combine distance matrices into a single such

Description

Combine multiple distance matrices into a single distance matrix providing an overall summary
Usage

combinedist(..., method = c("median", "mean"))

Arguments

... Set of distance matrices, as calculated by distee or disteg.
method Indicates whether to summarize using the median or the mean.

Details

The row and column names of the input distance matrices define the individual IDs.
If the input distance matrices all have an attribute "denom" (for denominator) and method="mean", we use a weighted mean, weighted by the denominators. This could be used to calculate an overall proportion.

Value

A distance matrix, with class "lineupdist". The individual IDs are in the row and column names.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

distee, disteg, summary.lineupdist

Examples

library(qtl)

load example data
data(f2cross, expr1, expr2, pmap, genepos)

calculate QTL genotype probabilities
f2cross <- calc.genoprob(f2cross, step=1)

find nearest pseudomarkers
pmark <- find.gene.pseudomarker(f2cross, pmap, genepos)

line up individuals
id1 <- findCommonID(f2cross, expr1)
id2 <- findCommonID(f2cross, expr2)

calculate LOD score for local eQTL
locallod1 <- calc.locallod(f2cross[,id1$first], expr1[id1$second,], pmark)
locallod2 <- calc.locallod(f2cross[,id2$first], expr2[id2$second,], pmark)

take those with LOD > 25
Calculate correlations between columns of two matrices

For matrices x and y, calculate the correlation between columns of x and columns of y.

Usage

corbetw2mat(x, y, what = c("paired", "bestright", "bestpairs", "all"), corthresh = 0.9)

Arguments

x A numeric matrix.

y A numeric matrix with the same number of rows as x.

what Indicates which correlations to calculate and return. See value, below.

corthresh Threshold on correlations if what="bestpairs".

Details

Missing values (NA) are ignored, and we calculate the correlation using all complete pairs, as in cor with use="pairwise.complete.obs".

Value

If what="paired", the return value is a vector of correlations, between columns of x and the corresponding column of y. x and y must have the same number of columns.

If what="bestright", we return a data frame of size ncol(x) by 3, with the ith row being the maximum correlation between column i of x and a column of y, and then the y-column index and y-column name with that correlation. (In case of ties, we give the first one.)
If what = "bestpairs", we return a data frame with five columns, containing all pairs of columns (with one in x and one in y) with correlation \(\geq \) corthresh. Each row corresponds to a column pair, and contains the correlation and then the x- and y-column indices followed by the x- and y-column names.

If what = "all", the output is a matrix of size \(\text{ncol}(x) \times \text{ncol}(y) \), with all correlations between columns of x and columns of y.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

distee, findCommonID

Examples

data(expr1, expr2)

correlations with paired columns
r <- corbetw2mat(expr1, expr2)
top 10, by absolute value
r[order(abs(r), decreasing=TRUE)[1:10]]

all pairs of columns with correlation >= 0.8
r_allpairs <- corbetw2mat(expr1, expr2, what="bestpairs", corthresh=0.6)

for each column in left matrix, most-correlated column in right matrix
r_bestright <- corbetw2mat(expr1, expr2, what="bestright")
Arguments

- **e1**: Numeric matrix of gene expression data, as individuals x genes. The row and column names must contain individual and gene identifiers.
- **e2**: (Optional) Like e1. An appreciable number of individuals and genes must be in common.
- **d.method**: Calculate inter-individual distance as RMS difference or as correlation.
- **labels**: Two character strings, to use as labels for the two data matrices in subsequent output.
- **verbose**: if TRUE, give verbose output.

Details

We calculate the pairwise distance between all individuals (rows) in e1 and all individuals in e2. This distance is either the RMS difference (d.method="rmsd") or the correlation (d.method="cor").

Value

A matrix with nrow(e1) rows and nrow(e2) columns, containing the distances. The individual IDs are in the row and column names. The matrix is assigned class "lineupdist".

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

pulldiag, omitdiag, summary.lineupdist, plot2dist, disteg, corbetw2mat

Examples

```r
# load the example data
data(expr1, expr2)

# find samples in common
id <- findCommonID(expr1, expr2)

# calculate correlations between cols of x and cols of y
thecor <- corbetw2mat(expr1[id$first,], expr2[id$second,])

# subset at genes with corr > 0.8 and scale values
eexpr1s <- expr1[,thecor > 0.8]/1000
eexpr2s <- expr2[,thecor > 0.8]/1000

# calculate distance (using "RMS difference" as a measure)
d1 <- distee(eexpr1s, eexpr2s, d.method="rmsd", labels=c("1","2"))

# calculate distance (using "correlation" as a measure...really similarity)
```
d2 <- distee(expr1s, expr2s, d.method="cor", labels=c("1", "2"))

pull out the smallest 8 self-self correlations
sort(pulldiag(d2))[1:8]

summary of results
summary(d1)
summary(d2)

plot histograms of RMS distances
plot(d1)

plot histograms of correlations
plot(d2)

plot distances against one another
plot2dist(d1, d2)

disteg

Calculate distance between two gene expression data sets

Description

Calculate a distance between all pairs of individuals for two gene expression data sets

Usage

```r
disteg(cross, pheno, pmark, min.genoprob = 0.99, k = 20,
       min.classprob = 0.8, classprob2drop = 1, repeatKNN = TRUE,
       max.selfd = 0.3, phenolabel = "phenotype", weightByLinkage = FALSE,
       map.function = c("haldane", "kosambi", "c-f", "morgan"),
       verbose = TRUE)
```

Arguments

- **cross**: An object of class "cross" containing data for a QTL experiment. See the help file for `read.cross` in the R/qtl package (http://www.rqtl.org). There must be a phenotype named "id" or "ID" that contains the individual identifiers.

- **pheno**: A data frame of phenotypes (generally gene expression data), stored as individuals x phenotypes. The row names must contain individual identifiers.

- **pmark**: Pseudomarkers that are closest to the genes in pheno, as output by `find.gene.pseudomarker`.

- **min.genoprob**: Threshold on genotype probabilities; if maximum probability is less than this, observed genotype taken as NA.

- **k**: Number of nearest neighbors to consider in forming a k-nearest neighbor classifier.
min.classprob Minimum proportion of neighbors with a common class to make a class prediction.

classprob2drop If an individual is inferred to have a genotype mismatch with classprob > this value, treat as an outlier and drop from the analysis and then repeat the KNN construction without it.

repeatKNN If TRUE, repeat k-nearest neighbor a second time, after omitting individuals who seem to not be self-self matches.

max.selfd Min distance from self (as proportion of mismatches between observed and predicted eQTL genotypes) to be excluded from the second round of k-nearest neighbor.

phenolabel Label for expression phenotypes to place in the output distance matrix.

weightByLinkage If TRUE, weight the eQTL to account for their relative positions (for example, two tightly linked eQTL would each count about 1/2 of an isolated eQTL)

map.function Used if weightByLinkage is TRUE

verbose if TRUE, give verbose output.

Details

We consider the expression phenotypes in batches, by which pseudomarker they are closest to. For each batch, we pull the genotype probabilities at the corresponding pseudomarker and use the individuals that are in common between cross and pheno and whose maximum genotype probability is above min.genoprob, to form a classifier of eQTL genotype from expression values, using k-nearest neighbor (the function knn). The classifier is applied to all individuals with expression data, to give a predicted eQTL genotype. (If the proportion of the k nearest neighbors with a common class is less than min.classprob, the predicted eQTL genotype is left as NA.)

If repeatKNN is TRUE, we repeat the construction of the k-nearest neighbor classifier after first omitting individuals whose proportion of mismatches between observed and inferred eQTL genotypes is greater than max.selfd.

Finally, we calculate the distance between the observed eQTL genotypes for each individual in cross and the inferred eQTL genotypes for each individual in pheno, as the proportion of mismatches between the observed and inferred eQTL genotypes.

If weightByLinkage is TRUE, we use weights on the mismatch proportions for the various eQTL, taking into account their linkage. Two tightly linked eQTL will each be given half the weight of a single isolated eQTL.

Value

A matrix with nind(cross) rows and nrow(pheno) columns, containing the distances. The individual IDs are in the row and column names. The matrix is assigned class "lineupdist".

The names of the genes that were used to construct the classifier are saved in an attribute "retained".

The observed and inferred eQTL genotypes are saved as attributes "obsg" and "infg".

The denominators of the proportions that form the inter-individual distances are in the attribute "denom".
Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

distee, summary.lineupdist, pulldiag, omitdiag, findCommonID, find.gene.pseudomarker, calc.locallod, plot.lineupdist, knn, plotEGclass

Examples

library(qtl)

load example data
data(f2cross, expr1, pmap, genepos)

calculate QTL genotype probabilities
f2cross <- calc.genoprob(f2cross, step=1)

find nearest pseudomarkers
pmark <- find.gene.pseudomarker(f2cross, pmap, genepos)

line up individuals
id <- findCommonID(f2cross, expr1)

calculate LOD score for local eQTL
locallod <- calc.locallod(f2cross[,id$first], expr1[id$second[,], pmark)

take those with LOD > 25
expr1s <- expr1[, locallod>25, drop=FALSE]

calculate distance between individuals
(prop'n mismatches between obs and inferred eQTL geno)
d <- disteg(f2cross, expr1s, pmark)

plot distances
plot(d)

summary of apparent mix-ups
summary(d)

plot of classifier for and second eQTL
par(mfrow=c(2,1), las=1)
plotEGclass(d)
plotEGclass(d, 2)
Example gene expression data

Description
Matrices of simulated gene expression data, each for 98 individuals at 5,000 genes. Think of expr1 and expr2 as expression data on two different tissues.

Usage
```
data(expr1)
data(expr2)
```

Format
A matrix of integers, individuals as rows and genes as columns.

See Also
`genepos, f2cross, pmap`

Examples
```
data(expr1)
data(expr2)

# identify the common individuals
id <- findCommonID(rownames(expr1), rownames(expr2))

# correlation between tissues for each gene
rho <- corbetwmat(expr1[id$first[,], expr2[id$second[,])
hist(rho, breaks=100)
```

Example experimental cross data

Description
Simulated experimental cross data with some sample mix-ups. The only phenotype is an individual ID. There are 100 individuals genotyped at 1000 markers on 19 autosomes.

Usage
```
data(f2cross)
```
find.gene.pseudomarker

Format
An object of class "cross". See read.cross in the R/qtl package for details.

See Also
expr1, expr2, genepos, pmap

Examples
library(qtl)
data(f2cross)
summary(f2cross)

find.gene.pseudomarker

Find nearest pseudomarker to each gene

Description
Pull out the pseudomarker that is closest to the position of each of a series of genes.

Usage
find.gene.pseudomarker(cross, pmap, geneloc, where = c("prob", "draws"))

Arguments
cross An object of class "cross" containing data for a QTL experiment. See the help file for read.cross in the R/qtl package (http://www.rqtl.org).
pmap A physical map of the markers in cross, with locations in Mbp. This is a list whose components are the marker locations on each chromosome.
geneloc A data frame specifying the physical locations of the genes. There should be two columns, chr for chromosome and pos for position in Mbp. The rownames should indicate the gene names.
where Indicates whether to pull pseudomarkers from the genotype probabilities (produced by calc.genoprob) or from the imputed genotypes (produced by sim.geno).

Details
We first convert positions (by interpolation) from those contained within cross to physical coordinates contained in pmap. We then use find.pseudomarker to identify the closest pseudomarker to each gene location.

We also include the positions of the pseudomarkers, and we print a warning message if pseudomarkers are > 2 Mbp from the respective gene.
findCommonID

Value

A data frame with columns chr (the chromosome) and pmark (the name of the pseudomarker). The third column pos contains the Mbp position of the pseudomarker. The final column is the signed distance between the gene and the pseudomarker. The rownames indicate the gene names.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

find.pseudomarker, find.pseudomarkerpos, plotEGclass, disteg, calc.locallod

Examples

data(f2cross, expr1, genepos, pmap)
library(qtl)

calc QTL genotype probabilities
f2cross <- calc.genoprob(f2cross, step=1)

find nearest pseudomarkers
pmark <- find.gene.pseudomarker(f2cross, pmap, genepos, "prob")

findCommonID

Find individuals in common between a cross and a phenotype matrix

Description

Identify which individuals are in common between a QTL mapping data set and a matrix of phenotypes, series of genes.

Usage

findCommonID(id1, id2)

Arguments

id1 A character vector of individual IDs. This can also be a QTL cross object (see read.cross), in which case getid is used to grab individual IDs, or a matrix or data frame, in which case the rownames are taken to be IDs.

id2 Like id1, can be a character vector, a cross or a matrix/data frame.
Value

A list with three components:

First, a data frame with rows corresponding to all individuals (across the two sets of individual IDs) and three columns: indexInFirst and indexInSecond contain numeric indices to the locations of the individuals within cross and pheno, and inBoth is a logical vector to indicate which individuals appear in both crosses. The row names are the individual identifiers.

The second and third components are vectors of indices in id1 and id2, respectively, indicating the paired locations of the individuals that are in common.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

calc.loclod, corbetw2mat

Examples

data(f2cross, expr1)

align IDs
id <- findCommonID(f2cross, expr1)

aligned data
f2cross_aligned <- f2cross[,id$first]
expr1_aligned <- expr1[id$second,]

fscale

Standardize the columns of a matrix

Description

Standardize each column in a matrix, so that the columns have mean 0 and SD 1.

Usage

fscale(x)

Arguments

x
A numeric matrix.
Details

Missing values (NA) are ignored and left as is.
If there is just 1 non-missing value in a column, it is left as is.
This function uses a one-pass algorithm to calculate the mean and SD, which is fast but can show a bit of round-off error.

Value

A matrix of the same form as the input, but with columns transformed to have mean 0 and SD 1.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

scale

Examples

x <- matrix(1:10, ncol=2)
y <- fscale(x)

genepos

Genomic positions of genes in simulated expression data

Description

A table with the genomic positions of genes in the simulated expression data, expr1 and expr2.

Usage

data(genepos)

Format

A data frame with two columns, chromosome and physical position (in Mb).

See Also

expr1, expr2, f2cross, pmap
Examples

data(genepos)

interplot genetic positions
library(qtl)
data(pmap)
data(f2cross)
genepos_interp <- interpPositions(genepos, pmap, pull.map(f2cross))
genepos[1:5,] # 'newpos' column is the interpolated cM position

lineupversion

Installed version of R/lineup

Description

Print the version number of the currently installed version of R/lineup.

Usage

lineupversion()

Value

A character string with the version number of the currently installed version of R/lineup.

Author(s)

Karl W Broman, <broman@wisc.edu>

Examples

lineupversion()

omitdiag

Replace the diagonal in a distance matrix with missing values

Description

Replace the diagonal (that is, self-self distances) from a distance matrix calculated by distee or disteg with missing values (so that only self-nonself distances are left).

Usage

omitdiag(d)
plot.lineupdist

Arguments

- `d`: A distance matrix calculated by `distee` or `disteg`.

Details

We use the row and column names to identify which entries are self-self.

Value

A matrix of the same form as the input, but with self-self distances replaced with NA.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

- `pulldiag`, `distee`, `disteg`, `summary.lineupdist`, `plot2dist`, `plot.lineupdist`

Examples

```r
data(expr1, expr2)

# distance as RMS difference
d <- distee(expr1, expr2)

# focus on the self-nonself distances
# (replace self-self distances with NA)
d_selfnonself <- omitdiag(d)
```

plot.lineupdist
Plot summary of inter-individual distances

Description

Plot histograms of self-self and self-nonself distances from a distance matrix calculated by `distee` or `disteg`.

Usage

```r
## S3 method for class 'lineupdist'
plot(x, breaks = NULL, add.rug = TRUE,
     what = c("both", "ss", "sn"), ...)
```
Arguments

- **x**: Output of `distee` or `disteg`.
- **breaks**: Optional vector of breaks, passed to `hist`, though if it is length 1, we interpret it as the number of breaks and ensure that both histograms use the same set of breaks.
- **add.rug**: If true, also include `rug` below histograms.
- **what**: Indicates whether to plot both self-self and self-nonself distances (or correlations) or just one or the other. ("ss" indicates self-self and "sn" indicates self-nonself.)
- **...**: Ignored at this point.

Details

We call `pulldiag` and `omitdiag` to get the self-self and self-nonself distances. If all of the self-self distances are missing, we plot just the self-nonself distances.

Value

None.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

`pulldiag`, `distee`, `plot2dist`

Examples

```r
data(expr1, expr2)

# distance as correlation
d <- distee(expr1, expr2, "cor")

# plot histograms of self-self and self-nonself correlations
plot(d)
```
plot2dist

Plot two sets of inter-individual distances against one another

Description

Plot two sets of inter-individual distances against one another, colored by self and non-self distances.

Usage

plot2dist(d1, d2, hirow = NULL, hicol = NULL, xlab = NULL, ylab = NULL, smoothScatter = FALSE, colself = "black", colnonself = "gray", colhirow = "green", colhicol = "orange", ...)

Arguments

d1 Output of distee.
d2 Output of distee.
hirow Names of rows to highlight in green.
hicol Names of columns to highlight in orange.
xlab X-axis label (optional)
ylab Y-axis label (optional)
smoothScatter If TRUE, plot non-self distances with smoothScatter; if FALSE, use plot.
colself Color to use for the self-self points. If NULL, these aren’t plotted.
colnonself Color to use for the non-self points. If NULL, these aren’t plotted.
colhirow Color to use for the hirow points. If NULL, these aren’t plotted.
colhicol Color to use for the hicol points. If NULL, these aren’t plotted.
... Passed to plot and points.

Value

None.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

pulldiag, distee, summary.lineupdist
Examples

data(expr1, expr2)

distances as RMS difference and correlation
d_rmsd <- distee(expr1, expr2, "rmsd")
d_cor <- distee(expr1, expr2, "cor")

plot distances against one another
plot2dist(d_rmsd, d_cor)

plotEGclass

Plot classifier of eQTL genotype from expression data

Description

Diagnostic plot of one of the eQTL classifiers from the results of `disteg`: generally expression phenotype against observed eQTL genotype, colored by inferred eQTL genotype.

Usage

plotEGclass(d, eqtl = 1, outercol = "inferred",
innercol = "observed", thecolors = c("#7B68ED", "#1B9E78", "#CA3767",
"#E59E00"), ...)

Arguments

d Output of `disteg`.
eqtl Numeric index or a character vector (of the form "1@102.35") indicating the eQTL to consider.
outercol Indicates how to color the outer edge of the points: "observed" indicates to color based on observed genotypes; "inferred" indicates to color based on inferred genotypes; otherwise, give a color.
innercol Like outercol, but indicating the interior of the points.
thecolors The colors to use in the plot. The last element (after the number of genotypes) indicates the color to use for missing values.
... Passed to `plot` and `points`.

Details

The function produces a diagnostic plot for studying one of the k-nearest neighbor classifiers underlying the output from `disteg`.

In the case of one expression phenotype attached to the selected eQTL, the plot is a dot plot of gene expression against observed eQTL genotype.
plotEGclass

In the case of two expression phenotypes, the plot is a scatterplot of the two expression phenotypes against each other.

In the case of more than two expression phenotypes, we use `pairs` to produce a matrix of scatterplots.

Value

None.

Author(s)

Karl W Broman, <brroman@wisc.edu>

See Also

`disteg`, `plot.lineupdist`, `plot2dist`, `knn`

Examples

```r
library(qtl)

# load example data
data(f2cross, expr1, pmap, genepos)

# calculate QTL genotype probabilities
f2cross <- calc.genoprob(f2cross, step=1)

# find nearest pseudomarkers
pmark <- find.gene.pseudomarker(f2cross, pmap, genepos)

# line up individuals
id <- findCommonID(f2cross, expr1)

# calculate LOD score for local eQTL
locallod <- calc.locallod(f2cross[,id$first], expr1[id$second,], pmark)

# take those with LOD > 25
expr1s <- expr1[,locallod>25,drop=FALSE]

# calculate distance between individuals
# (prop'n mismatches between obs and inferred eQTL geno)
d <- disteg(f2cross, expr1s, pmark)

# plot of classifier for and second eQTL
par(mfrow=c(2,1), las=1)
plotEGclass(d)
plotEGclass(d, 2)
```
pmap

Physical map of markers

Description

Physical map (Mb positions) of the markers in *f2cross*

Usage

`data(pmap)`

Format

A list of vectors, each containing the locations of markers in Mb. (Technically, an object of class “map”.)

See Also

`expr1, expr2, f2cross, genepos`

Examples

```r
data(pmap)
summary(pmap)
plot(pmap)
```

pulldiag

Pull out the diagonal from a distance matrix

Description

Pull out the diagonal from a distance matrix calculated by *distee* (that is, self-self distances).

Usage

`pulldiag(d)`

Arguments

- `d`
 A distance matrix calculated by *distee*.

Details

We use the row and column names to identify which entries are self-self.
Value

A vector with the self-self distances.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

omitdiag, distee, disteg, summary.lineupdist, plot2dist, plot.lineupdist

Examples

data(expr1, expr2)

distance as RMS difference
d <- distee(expr1, expr2)

pull out the self-self distances
d_selfself <- pulldiag(d)

samples with smallest self-self correlation
sort(d_selfself)[1:10]

subset.lineupdist Subsetting distance matrix

Description

Pull out a specified set of rows and columns from a distance matrix calculated by distee or disteg.

Usage

S3 method for class 'lineupdist'
subset(x, rows = NULL, cols = NULL, ...)

S3 method for class 'lineupdist'
x[rows = NULL, cols = NULL]

Arguments

x
A distance matrix object as obtained from distee or disteg.

rows
Optional vector of selected rows.

cols
Optional vector of selected columns.

...
Ignored at this point.
Value

The input distance matrix object, but with only the specified subset of the data.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

disteg, distee, pulldiag

Examples

data(expr1, expr2)

find samples in common
id <- findCommonID(expr1, expr2)

calculate correlations between cols of x and cols of y
thecor <- corbetw2mat(expr1idfirst[,], expr2idsecond[,])

expr1s <- expr1[,thecor > 0.8]/1000
expr2s <- expr2[,thecor > 0.8]/1000

calculate correlations among samples
d <- distee(expr1s, expr2s, d.method="cor")

pull out distances for samples 24, 92, 44, 66
samp <- c("24", "92", "44", "66")
d[samp, samp]

summary.lineupdist Summarize inter-individual distances

Description

Summarize the results of distee or disteg, with inter-individual distances between two sets of gene expression data.

Usage

S3 method for class 'lineupdist'
summary(object, cutoff = NULL, dropmatches = TRUE,
 reorder = c("alignmatches", "bydistance", "no"), ...)

Arguments

- **object**: Output of `distee` or `disteg`.
- **cutoff**: (Optional) Cutoff on correlation/distance, with rows in the results only being kept if the best distance/correlation is above this cutoff or the self-self result is not missing and is above this cutoff.
- **dropmatches**: If TRUE, omit rows for which an individual’s best match is itself.
- **reorder**: If "bydistance", reorder rows by increasing distance (or decreasing correlation) to the best match and then by decreasing distance (or decreasing correlation) to self; if "alignmatches", group related errors together; if "no", leave as is.
- ... Passed to `print.data.frame`.

Value

A list with two components: the distances summarized by row and the distances summarized by column.

For each individual, we calculate the minimum distance to others, next-smallest distance, the self-self distance, the mean and SD of the distances to others, and finally indicate the individual (or individuals) that is closest.

Author(s)

Karl W Broman, <broman@wisc.edu>

See Also

- `pulldiag`, `omitdiag`, `distee`, `disteg`, `plot2dist`, `plot.lineupdist`

Examples

```r
data(expr1, expr2)

d <- distee(expr1, expr2, "cor")

summary(d)
```
Index

*Topic **array**
corbetw2mat, 5
fscale, 14
omitdiag, 16
pulldiag, 22

*Topic **datasets**
expr-data, 11
f2cross, 11
geneapos, 15
pmap, 22

*Topic **graphics**
plot2dist, 19
plotEGclass, 20

*Topic **manip**
subset.lineupdist, 23

*Topic **multivariate**
corbetw2mat, 5

*Topic **print**
lineupversion, 16

*Topic **univar**
corbetw2mat, 5

*Topic **utilities**
calc.locallod, 2
combinedist, 3
distee, 6
disteg, 8
find.gene.pseudomarker, 12
findCommonID, 13
plot.lineupdist, 17
summary.lineupdist, 24

[] . lineupdist (subset.lineupdist), 23
calc.genoprob, 12
calc.locallod, 2, 10, 13, 14
combinedist, 3
cor, 5
corbetw2mat, 5, 7, 14
detectCores, 2
distee, 4, 6, 6, 10, 16–19, 22–25
disteg, 3, 4, 7, 8, 13, 16–18, 20, 21, 23–25
expr-data, 11
expr1, 12, 15, 22
expr1 (expr-data), 11
expr2, 12, 15, 22
expr2 (expr-data), 11
f2cross, 11, 11, 15, 22
find.gene.pseudomarker, 2, 3, 8, 10, 12
find.pseudomarker, 12, 13
find.pseudomarkerpos, 13
findCommonID, 3, 6, 10, 13
fscale, 14
geneapos, 11, 12, 15, 22
getid, 13
hist, 18
knn, 9, 10, 21
lineupversion, 16
omitdiag, 7, 10, 16, 18, 23, 25
pairs, 21
plot, 19, 20
plot.lineupdist, 10, 17, 17, 21, 23, 25
plot2dist, 7, 17, 18, 19, 21, 23, 25
plotEGclass, 3, 10, 13, 20
pmap, 11, 12, 15, 22
points, 19, 20
print.data.frame, 25
pulldiag, 7, 10, 17–19, 22, 24, 25
read.cross, 2, 8, 12, 13
rug, 18
scale, 15
scanone, 2, 3
INDEX

sim.gen, 12
smoothScatter, 19
subset.lineupdist, 23
summary.lineupdist, 4, 7, 10, 17, 19, 23, 24