Package ‘longclust’

March 31, 2015

Type Package

Title Model-Based Clustering and Classification for Longitudinal Data

Version 1.2

Date 2015-03-31

Author

Paul D. McNicholas [aut, cre], K. Raju Jampani [aut] (May to Dec 2012), Sanjeena Subedi [aut]

Maintainer Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

Suggests mvtnorm

Description Clustering or classification of longitudinal data based on a mixture of multivariate t or Gaussian distributions with a Cholesky-decomposed covariance structure.

License GPL (>= 2)

LazyLoad yes

Repository CRAN

NeedsCompilation yes

Date/Publication 2015-03-31 22:11:54

R topics documented:

 longclust-package ... 2
 longclustEM ... 2
 plot.longclust ... 4
 print.longclust .. 5
 summary.longclust .. 6

Index 8
longclustEM

longclust-package Model-Based Clustering and Classification for Longitudinal Data

Description

This is a package for clustering or classification of longitudinal data based on a mixture of multivariate t or Gaussian distributions with a Cholesky-decomposed covariance structure.

Details

Package: longclust
Type: Package
Version: 1.2
Date: 2015-03-31
License: GPL-2 or GPL-3
LazyLoad: yes

This package contains the function longclustEM.

Author(s)

P. D. McNicholas, K.R. Jampani and S. Subedi
Maintainer: Paul McNicholas <mcnicholas@math.mcmaster.ca>

See Also

Details, examples, and references are given under longclustEM.

longclustEM

longclustEM Model-Based Clustering and Classification for Longitudinal Data

Description

Carries out model-based clustering or classification using multivariate t or Gaussian mixture models with Cholesky decomposed covariance structure. EM algorithms are used for parameter estimation and the BIC is used for model selection.

Usage

longclustEM(x, Gmin, Gmax, class=NULL, linearMeans = FALSE, modelSubset = NULL, initWithKMeans = FALSE, criteria = "BIC", equalDF = FALSE, gaussian=FALSE, userseed=1004)
Arguments

- **x**: A matrix or data frame such that rows correspond to observations and columns correspond to variables.
- **Gmin**: A number giving the minimum number of components to be used.
- **Gmax**: A number giving the maximum number of components to be used.
- **class**: If NULL then model-based clustering is performed. If a vector with length equal to the number of observations, then model-based classification is performed. In this latter case, the ith entry of class is either zero, indicating that the component membership of observation i is unknown, or it corresponds to the component membership of observation i.
- **linearMeans**: If TRUE, then means are modelled using linear models.
- **modelSubset**: A vector of strings giving the models to be used. If set to NULL, all models are used.
- **initWithKMeans**: If TRUE, the components are initialized using k-means algorithm.
- **criteria**: A string that denotes the criteria used for evaluating the models. Its value should be "BIC" or "ICL".
- **equalDF**: If TRUE, the degrees of freedom of all the components will be the same.
- **gaussian**: If TRUE, a mixture of Gaussian distributions is used in place of a mixture of t-distributions.
- **userseed**: The random number seed to be used.

Value

- **gbest**: The number of components for the best model.
- **zbest**: A matrix that gives the probabilities for any data element to belong to any component in the best model.
- **nubest**: A vector of gbest integers, that give the degrees of freedom for each component in the best model.
- **mubest**: A matrix containing the means of the components for the best model (one per row).
- **tbest**: A list of gbest matrices, giving the T matrices of the components for the best model.
- **dbest**: A list of gbest matrices, giving the D matrices of the components for the best model.

Author(s)

Paul D. McNicholas, K. Raju Jampani and Sanjeena Subedi

References

Examples

```r
library(mvtnorm)
m1 <- c(23, 34, 39, 45, 51, 56)
S1 <- matrix(c(1, 0.00, -0.90, 0.18, -0.13, 0.10, -0.05, -0.90,
1.31, -0.26, 0.18, -0.15, 0.07, 0.18, -0.26, 4.05, -2.84,
2.27, -1.13, -0.13, 0.18, -2.84, 2.29, -1.83, 0.91, 0.10,
-0.15, 2.27, -1.83, 3.46, -1.73, -0.05, 0.07, -1.13, 0.91,
-1.73, 1.57), 6, 6)
m2 <- c(16, 18, 15, 17, 21, 17)
S2 <- matrix(c(1, 0.00, 0.00, -0.50, -0.20, -0.20, 0.19, 0.00,
2.00, 0.00, -1.20, -0.80, -0.36, -0.50, 0.00, 1.25, 0.10,
-0.10, -0.39, -0.20, -1.20, 0.10, 2.76, 0.52, -1.22, -0.20,
-0.80, -0.10, 0.52, 1.40, 0.17, 0.19, -0.36, -0.39, -1.22,
0.17, 3.17), 6, 6)
m3 <- c(8, 11, 16, 22, 25, 28)
S3 <- matrix(c(1, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, -0.20, -0.64, 0.26, 0.00, 0.00, -0.20, 1.04, -0.17,
-0.10, 0.00, 0.00, -0.64, -0.17, 1.50, -0.65, 0.00, 0.00,
0.26, -0.10, -0.65, 1.32, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00), 6, 6)
m4 <- c(12, 9, 8, 5, 4, 2)
S4 <- diag(c(1, 1, 1, 1, 1, 1))
data <- matrix(0, 40, 6)
data[1:10,] <- rmvnorm(10, m1, S1)
data[11:20,] <- rmvnorm(10, m2, S2)
data[21:30,] <- rmvnorm(10, m3, S3)
data[31:40,] <- rmvnorm(10, m4, S4)
clus <- longclustEM(data, 3, 5, linearMeans=TRUE)
summary(clus)
plot(clus, data)
```

plot.longclust

Plots the components of the model.

Description

Displays a series of two plots, one containing all the components in different colors, and one containing subplots one per each component.

Usage

```r
# S3 method for class 'longclust'
plot(x, data, ...)
```

Arguments

- `x`: An object of type longclust returned by longclustEM.
- `data`: The data matrix used in computing clus.
- `...`: Default arguments.
Author(s)

Paul D. McNicholas, K. Raju Jampani and Sanjeena Subedi

Examples

```r
library(mvtnorm)
m1 <- c(23, 34, 39, 45, 51, 56)
S1 <- matrix(c(1.00, -0.90, 0.18, -0.13, 0.10, -0.05, -0.90,
               1.31, -0.26, 0.18, -0.15, 0.07, 0.18, -0.26, 4.05, -2.84,
               2.27, -1.13, -0.13, 0.18, -2.84, 2.29, -1.83, 0.91, 0.10,
               -0.15, 2.27, -1.83, 3.46, -1.73, -0.05, 0.07, -1.13, 0.91,
               -1.73, 1.57), 6, 6)
m2 <- c(16, 18, 15, 17, 21, 17)
S2 <- matrix(c(1.00, -0.50, -0.20, -0.20, 0.19, 0.00,
               2.00, 0.00, -1.20, -0.80, -0.36, -0.50, 0.00, 1.25, 0.10,
               -0.10, -0.39, -0.20, -1.20, 0.10, 2.76, 0.52, -1.22, -0.20,
               -0.80, -0.10, 0.52, 1.40, 0.17, 0.19, -0.36, -0.39, -1.22,
               0.17, 3.17), 6, 6)
m3 <- c(0, 11, 16, 22, 25, 28)
S3 <- matrix(c(1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
               -0.20, -0.64, 0.26, 0.00, 0.00, -0.20, 1.04, -0.17, -0.10,
               0.00, 0.00, -0.64, -0.17, 1.50, -0.65, 0.00, 0.26, -0.10,
               -0.65, 1.32, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00), 6, 6)
m4 <- c(12, 9, 8, 5, 4, 2)
S4 <- diag(c(1, 1, 1, 1, 1))
data <- matrix(0, 40, 6)
data[1:10,] <- rmvnorm(10, m1, S1)
data[11:20,] <- rmvnorm(10, m2, S2)
data[21:30,] <- rmvnorm(10, m3, S3)
data[31:40,] <- rmvnorm(10, m4, S4)
clus <- longclustEM(data, 3, 5, linearMeans=TRUE)
plot(clus, data)
```

print.longclust

Brief overview of the longclust object

Description

Prints the number of components, probably matrix, degrees of freedom and the component means of the computed best model.

Usage

```r
## S3 method for class 'longclust'
print(x, ..., )
```

Arguments

- `x` An object of type longclust, computed by longclustEM.
- `...` Default Arguments
Author(s)

Paul D. McNicholas, K. Raju Jampani and Sanjeena Subedi

Examples

```r
library(mvtnorm)
m1 <- c(23, 34, 39, 45, 51, 56)
S1 <- matrix(c(1.00, -0.90, 0.18, -0.13, 0.10, -0.05, -0.90,
               -0.90, 0.18, -0.15, 0.07, 0.18, -0.26, 4.05, -2.84,
               -0.13, 0.18, -2.84, 2.29, -1.83, 0.91, 0.10,
               0.18, -0.26, 2.27, -1.83, 3.46, -1.73, -0.05, 0.07,
               -0.13, 4.05, -2.84, 2.29, -1.83, 0.91, 0.10,
               -0.90, 0.18, -0.15, 0.07, 0.18, -0.26, 4.05, -2.84,
               -0.13, 0.18, -1.83, 3.46, -1.73, -0.05, 0.07,
               0.10, -0.90, 4.05, -2.84, 2.29, -1.83, 0.91),
               6, 6)
m2 <- c(16, 18, 15, 17, 21, 17)
S2 <- matrix(c(1.00, 0.00, -0.50, -0.20, -0.20, 0.19, 0.00, 2.00,
               0.00, -1.20, -0.80, -0.36, -0.50, 0.00, 1.25, 0.10,
               -0.10, -0.20, 2.76, 0.52, -1.22, -0.20, -0.80,
               0.10, 0.17, 0.19, -0.36, -0.39, -1.22, 0.17, 3.17),
               6, 6)
m3 <- c(8, 11, 16, 22, 25, 28)
S3 <- matrix(c(1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
               -0.20, -0.64, 0.26, 0.00, 0.00, -0.20, 1.04,
               -0.17, -0.10, 0.00, 0.00, 0.00, 0.00, -0.10,
               -0.65, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00),
               6, 6)
m4 <- c(12, 9, 8, 5, 4, 2)
S4 <- diag(c(1, 1, 1, 1, 1, 1))
data <- matrix(0, 40, 6)
data[1:10,] <- rmvnorm(10, m1, S1)
data[11:20,] <- rmvnorm(10, m2, S2)
data[21:30,] <- rmvnorm(10, m3, S3)
data[31:40,] <- rmvnorm(10, m4, S4)
clus <- longclustEM(data, 3, 5, linearMeans=TRUE)
print(clus)

## The function is currently defined as
## function (tch, ...) {
##
## cat("Number of Clusters:", tch$Gbest, "\n")
## cat("z:\n")
## print(tch$zbest)
## cat("\n")
## for (g in 1:tch$Gbest) {
##
## cat("Cluster: ", g, "\n")
## cat("v: ", tch$mubest[g], "\n")
## cat("mean: ", tch$mubest[g,], "\n")
## }
## }
```

summary.longclust

Summary of the longclust object
Description

Prints all the items in the object.

Usage

```r
## S3 method for class 'longclust'
summary(object, ...)  
```

Arguments

- `object`: An object of type `longclust`, returned by `longclustEM`.
- `...`: Default arguments.

Author(s)

Paul D. McNicholas, K. R. Jampani and Sanjeena Subedi

Examples

```r
library(mvtnorm)
m1 <- c(23, 34, 39, 45, 51, 56)
S1 <- matrix(c(1.00, -0.90, 0.18, -0.13, 0.10, -0.05, -0.90,
1.31, -0.26, 0.18, -0.15, 0.07, 0.18, -0.26, 4.05, -2.84,
2.27, -1.13, -0.13, 0.18, -2.84, 2.29, -1.83, 0.91, 0.10,
-0.15, 2.27, -1.83, 3.46, -1.73, -0.05, 0.07, -1.13, 0.91,
-1.73, 1.57), 6, 6)
m2 <- c(16, 18, 15, 17, 21, 17)
S2 <- matrix(c(1.00, 0.00, -0.50, -0.20, -0.20, 0.19, 0.00,
2.00, 0.00, -1.20, -0.30, -0.50, 0.00, 1.25, 0.10,
-0.10, -0.39, -0.20, -1.20, 0.10, 2.76, 0.52, -1.22, -0.20,
-0.80, -0.10, 0.52, 1.40, 0.17, 0.19, -0.36, -0.39, -1.22,
0.17, 3.17), 6, 6)
m3 <- c(8, 11, 16, 22, 25, 28)
S3 <- matrix(c(1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.20, -0.64, 0.26, 0.00, 0.00, -0.20, 1.04, -0.17,
-0.10, 0.00, 0.00, -0.64, -0.17, 1.50, -0.65, 0.00, 0.00,
0.26, -0.10, -0.65, 1.32, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00), 6, 6)
m4 <- c(12, 9, 8, 5, 4, 2)
S4 <- diag(c(12, 11, 11, 11))
data <- matrix(0, 40, 6)
data[1:10,] <- rmvnorm(10, m1, S1)
data[11:20,] <- rmvnorm(10, m2, S2)
data[21:30,] <- rmvnorm(10, m3, S3)
data[31:40,] <- rmvnorm(10, m4, S4)
clus <- longclustEM(data, 3, 5, linearMeans=TRUE)
summary(clus)
```
Index

longclust (longclust-package), 2
longclust-package, 2
longclustEM, 2, 2
plot.longclust, 4
print.longclust, 5
summary.longclust, 6