Package ‘longmemo’

February 20, 2015

Version 1.0-0
Date 2011-06-14
Author S scripts originally by Jan Beran <jan.beran@uni-konstanz.de>; Datasets via Brandon Whitcher <brandon@stat.washington.edu>. Toplevel R functions and much more by Martin Maechler.
Maintainer Martin Maechler <maechler@stat.math.ethz.ch>
Title Statistics for Long-Memory Processes (Jan Beran) -- Data and Functions
Description Datasets and Functionality from the textbook Jan Beran (1994). Statistics for Long-Memory Processes; Chapman & Hall.
Depends stats
Enhances fracdiff
Suggests sfsmisc
BuildResaveData no
License GPL (>= 2)
Repository CRAN
Date/Publication 2011-06-15 18:02:38
NeedsCompilation no

R topics documented:

CetaARIMA ... 2
CetaFGN ... 3
ckARMA0 ... 4
ckFGN0 ... 5
ethernetTraffic 5
FEXPest .. 6
llplot ... 8
NBSdiff1kg ... 8
NhemiTemp .. 9
NileMin ... 10
CetaARIMA

Covariance for fractional ARIMA

Description

Compute the covariance matrix of \(\eta \) for a fractional ARIMA process.

Usage

CetaARIMA(eta, p, q, m = 10000, delta = 1e-9)

Arguments

- \texttt{eta} parameter vector \(\eta = c(H, \phi, \psi) \).
- \texttt{p, q} integer scalars giving the AR and MA order respectively.
- \texttt{m} integer specifying the length of the Riemann sum, with step size \(2 \times \pi / m \).
- \texttt{delta} step size for numerical derivative computation.

Details

builds on calling \texttt{specARIMA(eta,p,q,m)}

Value

the (square) matrix containing covariances up to ...

Author(s)

Jan Beran (principal) and Martin Maechler (fine tuning)

References

Examples

\begin{verbatim}
(C.7 <- CetaARIMA(0.7, m = 256, p = 0, q = 0))
(C.5 <- CetaARIMA(eta = c(H = 0.5, phi=c(-.06, 0.42, -0.36), psi=0.776),
 m = 256, p = 3, q = 1))
\end{verbatim}
Covariance Matrix of Eta for Fractional Gaussian Noise

Description

Covariance matrix of \(\hat{\eta} \) for fractional Gaussian noise (fGn).

Usage

\[
\text{CetaFGN(eta, m = 10000, delta = 1e-9)}
\]

Arguments

- \(\text{eta} \): parameter vector \(\text{eta} = c(H, \, \cdot) \).
- \(\text{m} \): integer specifying the length of the Riemann sum, with step size \(2 \times \pi / \text{m} \). The default (10000) is realistic.
- \(\text{delta} \): step size for numerical derivative computation.

Details

Currently, the step size for numerical derivative is the same in all coordinate directions of \(\text{eta} \). In principle, this can be far from optimal.

Value

Variance-covariance matrix of the estimated parameter vector \(\hat{\eta} \).

Author(s)

Jan Beran (principal) and Martin Maechler (speedup, fine tuning)

See Also

- `specFGN`

Examples

\[
\begin{align*}
\text{C.7} & \leftarrow \text{CetaFGN(0.7, m = 256)} \\
\text{C.5} & \leftarrow \text{CetaFGN(eta = c(H = 0.5), m = 256)} \\
\text{C.5.} & \leftarrow \text{CetaFGN(eta = c(H = 0.5), m = 1024)}
\end{align*}
\]
ckARMA0

Covariances of a Fractional ARIMA(0,d,0) Process

Description
Compute the Autocovariances of a fractional ARIMA(0,d,0) process (d = H - 1/2).

Usage
ckARMA0(n, H)

Arguments
n sample size (length of time series).
H self-similarity ('Hurst') parameter.

Details
The theoretical formula,

\[C(k) = (-1)^k \Gamma(1 - 2d)/\Gamma(k + 1 - d)\Gamma(1 - k - d), \]

where \(d = H - 1/2 \), leads to over-/underflow for larger lags \(k \); hence use the asymptotical formula there.

Value
numeric vector of length \(n \) of covariances \(C(0) \ldots C(n - 1) \).

Author(s)
Jan Beran (principal) and Martin Maechler (speedup, fine tuning)

References
Jan Beran (1994), p.63, (2.35) and (2.39).

See Also
ckFGN0 which does the same for fractional Gaussian noise.

Examples
```r
str(c.8 <- ckARMA0(50, H = 0.8))
yl <- c(0, max(C.8))
plot(0:49, C.8, type = "h", ylim = yl)
plot(0:49, C.8, type = "h", log = "xy",
     main = "Log-Log ACF for ARIMA(0,d,0)")
```
ckFGN0

Covariances of a Fractional Gaussian Process

Description

Compute the Autocovariances of a fractional Gaussian process

Usage

`ckFGN0(n, H)`

Arguments

- `n` sample size (length of time series).
- `H` self-similarity (‘Hurst’) parameter.

Value

numeric vector of covariances upto lag n-1.

Author(s)

Jan Beran (principal) and Martin Maechler (fine tuning)

See Also

`ckARMA0` which does the same for a fractional ARIMA process.

Examples

```r
str(C.8 <- ckFGN0(50, H = 0.8))
plot(0:49, C.8, type = "h", ylim = 0:1)
plot(0:49, C.8, type = "h", log = "xy",
    main = "Log-Log ACF for frac.GaussNoise(H = 0.8)")
```

ethernetTraffic

Ethernet Traffic Data Set

Description

Ethernet traffic data from a LAN at Bellcore, Morristown (Leland et al. 1993, Leland and Wilson 1991). The data are listed in chronological sequence by row.

Usage

`data(ethernetTraffic)`
Format

A times series of length 4000.

Source

Jan Beran and Brandon Whitcher by E-mail in fall 1995.

Examples

```r
data(ethernetTraffic)
str(ethernetTraffic)
plot(ethernetTraffic)## definitely special
```

FEXPest

Fractional EXP (FEXP) Model Estimator

Description

Computes Beran’s Fractional EXP or ‘FEXP’ model estimator.

Usage

```r
FEXPest(x, order.poly, pvalmax, verbose = FALSE)
## S3 method for class 'FEXP'
print(x, digits =getOption("digits"), ...)
```

Arguments

- `x`: numeric vector representing a time series.
- `order.poly`: integer specifying the maximal polynomial order that should be taken into account. `order.poly = 0` is equivalent to a FARIMA(0,d,0) model.
- `pvalmax`: maximal P-value – the other iteration stopping criterion and “model selection tuning parameter”. Setting this to 1, will use `order.poly` alone, and hence the final model order will be `order.poly`.
- `verbose`: logical indicating if iteration output should be printed.
- `digits,...`: optional arguments for `print` method, see `print.default`.

Value

An object of class `FEXP` which is basically a list with components

- `call`: the function `call`.
- `n`: time series length `length(x)`.
- `H`: the “Hurst” parameter which is simply `(1-theta[2])/2.`
coefficients numeric 4-column matrix as returned from \texttt{summary.glm()}, with estimate of the full parameter vector θ, its standard error estimates, t- and P-values, as from the \texttt{glm(\ast, family = Gamma)} fit.

order.poly the effective polynomial order used.

max.order.poly the original order.poly (argument).

early.stop logical indicating if order.poly is less than max.order.poly, i.e., the highest order polynomial terms were dropped because of a non-significant P-value.

spec the spectral estimate $f(\omega_j)$, at the Fourier frequencies ω_j. Note that \texttt{.ffreq(x\cdotn)} recomputes the Fourier frequencies vector (from a fitted FEXP or WhittleEst model x).

yper raw periodogram of (centered and scaled x) at Fourier frequencies $I(\omega_j)$.

There currently are methods for \texttt{print()}, \texttt{plot} and \texttt{lines} (see \texttt{plot.FEXP}) for objects of class "FEXP".

Author(s)

Martin Maechler, using Beran’s “main program” in Beran(1994), p.234 ff

References

See Also

\texttt{WhittleEst}; the plot method, \texttt{plot.FEXP}.

Examples

data(videoVBR)
(fE <- FEXPest(videoVBR, order = 3, pvalmax = .5))
(fE3 <- FEXPest(videoVBR, order = 3, pvalmax = 1))

(fE7 <- FEXPest(videoVBR, order = 3, pvalmax = 0.10))
#-- this also chose order 2, as "FE" :
all.equal(fE$coef,
 fE7$coef) # -> TRUE

confint(fE)
confint(fE7, level = 0.99)
NBSdiff1kg

Description

NBS weight measurements - deviation from 1 kg in micrograms, see the references. The data are listed in chronological sequence by row.

Usage

data(NBSdiff1kg)

Format

A time series of length 289.

Source

Jan Beran and Brandon Whitcher by E-mail in fall 1995.
References

Pollak, M., Croakin, C., and Hagwood, C. (1993). Surveillance schemes with applications to mass calibration. NIST report 5158; Gaithersburg, MD.

Examples

data(NBSdiff1kg)
plot(NBSdiff1kg)

NhemiTemp Northern Hemisphere Temperature

Description

Monthly temperature for the northern hemisphere for the years 1854–1989, from the data base held at the Climate Research Unit of the University of East Anglia, Norwich, England. The numbers consist of the temperature (degrees C) difference from the monthly average over the period 1950–1979.

Usage

data(NhemiTemp)

Format

Time-Series (ts) of length 1632, frequency 12, starting 1854, ending 1990.

Source

Jan Beran and Brandon Whitcher by E-mail in fall 1995.

References

Examples

data(NhemiTemp)
plot(NhemiTemp)
mean(window(NhemiTemp, 1950, 1979)) # (about) 0 `by definition'
NileMin
Nile River Minima, yearly 622–1284

Description
Yearly minimal water levels of the Nile river for the years 622 to 1281, measured at the Roda gauge near Cairo, (Tousson, p. 366–385).

Usage
```
data(NileMin)
```

Format
Time-Series (`ts`) of length 663.

Source
The original Nile river data supplied by Beran only contained only 500 observations (622 to 1121). However, the book claimed to have 660 observations (622 to 1281). First added the remaining observations from the book by hand, and still came up short with only 653 observations (622 to 1264). Finally have 663 observations : years 622–1284 (as in orig. source)

References

Examples
```
data(NileMin)
plot(NileMin, main = "Nile River Minima 622 - 1284")
```

per
Simple Periodogram Estimate

Description
Simply estimate the periodogram via the Fast Fourier Transform.

Usage
```
per(z)
```
Arguments

z numeric vector with the series to compute the periodogram from.

Details

This is basically the same as
spec.pgram(z, fast = FALSE, detrend = FALSE, taper = 0)$spec, and not really recommended to use — exactly for the reason that spec.pgram has the defaults differently, fast = TRUE, detrend = TRUE, taper = 0.1, see that help page.

Value

class numeric vector of length 1 + floor(n/2) where n = length(z).

Author(s)

Jan Beran (principal) and Martin Maechler (fine tuning)

See Also

a more versatile periodogram estimate by spec.pgram.

Examples

data(NileMin)
plot(10*log10(per(NileMin)), type='l')

Description

(S3) methods for the generic functions plot and lines applied to fractional EXP (FEXP) and "WhittleEst" (FEXPest) models. plot() plots the data periodogram and the ‘FEXP’ model estimated spectrum, where lines() and does the latter.

Usage

S3 method for class 'FEXP'
plot(x, log = "xy", type = "l",
 col.spec = 4, lwd.spec = 2, xlab = NULL, ylab = expression(hat(f)(nu)),
 main = paste(deparse(x$call)[1]), sub = NULL, ...)

(With identical argument list:)
S3 method for class 'WhittleEst'
plot(x, log = "xy", type = "l",
 col.spec = 4, lwd.spec = 2, xlab = NULL, ylab = expression(hat(f)(nu)),
 main = paste(deparse(x$call)[1]), sub = NULL, ...)
S3 method for class 'FEXP'
```
lines(x, type = "l", col = 4, lwd = 2, ...)
```
S3 method for class 'WhittleEst'
```
lines(x, type = "l", col = 4, lwd = 2, ...)
```

Arguments

- `x`
 An \(\mathcal{R} \) object of class "FEXP", as from `FEXPest()`.

- `log`
 Character specifying log scale should be used, see `plot.default`. Note that the default log-log scale is particularly sensible for long-range dependence.

- `type`
 Plot type for the periodogram, see `plot.default`.

- `col`, `lwd`
 Graphical parameters used for drawing the estimated spectrum, see `lines`.

- `xlab`, `ylab`, `main`, `sub`
 Labels for annotating the plot, see `title`, each with a sensible default.

- `...`
 Further arguments passed to `plot.default`.

Author(s)

Martin Maechler

See Also

`FEXPest`, `WhittleEst`, `plot.default` and `spectrum`.

Examples

```r
data(videoVBR)
fE <- FEXPest(videoVBR, order = 3, pvalmax = .5)
plot(fE)
fE3 <- FEXPest(videoVBR, order = 3, pvalmax = 1)#-> order 3
lines(fE3, col = "red3", lty=2)

f.GN <- WhittleEst(videoVBR)
f.am21 <- WhittleEst(videoVBR, model = "FARIMA",
   start = list(H = .5, AR = c(.5,0), MA = .5))
lines(f.GN, col = "blue4")
lines(f.am21, col = "goldenrod")

#--- Using a tapered periodogram ---------
spVBR <- spec.pgram(videoVBR, fast=FALSE, plot=FALSE)
fam21 <- WhittleEst(periodogram.x = head(spVBR$spec, -1),
   n = length(videoVBR), model = "FARIMA",
   start = list(H = .5, AR = c(.5,0), MA = .5))
fam21
f.am21 # similar but slightly different

plot(fam21)
```
Qeta

Now, comparing to traditional ("log-X", not "log-log") spectral plot:

plot(fam21, log="y")

Compared to the standard R spectral plot:

if(dev.interactive(TRUE)) getOption("device")()

plot(spvBVR, log = "yes", col="gray50")

all.equal(.ffreq(fes$n) / (2*pi) -> ffr,

head(spvBVR$freq, -1))

lines(ffr., fam21$spec, col=4, lwd=2)

Need to adjust for different 'theta1':

lines(ffr., f.am21$spec * fam21$theta1 / f.am21$theta1,

col = adjustcolor("tomato", 0.6), lwd=2)

Qeta

Approximate Log Likelihood for Fractional Gaussian Noise / Fractional ARIMA

Description

Qeta() (= $\tilde{Q}(\eta)$ of Beran(1994), p.117) is up to scaling the negative log likelihood function of the specified model, i.e., fractional Gaussian noise or fractional ARIMA.

Usage

Qeta(eta, model = c("fGn","fARIMA"), n, yper, pq.ARIMA, give.B.only = FALSE)

Arguments

eta parameter vector = (H, phi[1:p], psi[1:q]).
model character specifying the kind model class.
n data length
yper numeric vector of length (n-1)/2, the periodogram of the (scaled) data, see per.
pq.ARIMA integer, = c(p,q) specifying models orders of AR and MA parts — only used when model = "fARIMA".
give.B.only logical, indicating if only the B component (of the Values list below) should be returned. Is set to TRUE for the Whittle estimator minimization.

Details

Calculation of A, B and $T_n = A/B^2$ where

$A = 2\pi/n \sum_j 2 * [I(\lambda_j)/f(\lambda_j)]$, $B = 2\pi/n \sum_j 2 * [I(\lambda_j)/f(\lambda_j)]^2$ and the sum is taken over all Fourier frequencies $\lambda_j = 2\pi * j/n$, $(j = 1, \ldots, (n-1)/2)$. f is the spectral density of fractional Gaussian noise or fractional ARIMA(p,d,q) with self-similarity parameter H.

\[
cov(X(t), X(t+k)) = \int \exp(iuk)f(u)du
\]
Value

a list with components

- **n** = input
- **H** *(input)* Hurst parameter, = eta[1].
- **eta** = input
- **A, B** defined as above.
- **Tn** the goodness of fit test statistic \(T_n = A/B^2 \) defined in Beran (1992)
- **z** the standardized test statistic
- **pval** the corresponding p-value \(P(W > z) \)
- **theta1** the scale parameter

\[
\hat{\theta}_1 = \frac{\hat{\sigma}_1^2}{2\pi}
\]

such that \(f() = \theta f_1() \) and \(\text{integral}(\log[f_1(.)]) = 0 \).

- **spec** scaled spectral density \(f_1 \) at the Fourier frequencies \(\omega_j \), see `FEXPest`; a numeric vector.

Note

yper[1] must be the periodogram \(I(\lambda_1) \) at the frequency \(2\pi/n \), i.e., not the frequency zero!

Author(s)

Jan Beran (principal) and Martin Maechler (fine tuning)

References

See Also

`WhittleEst` computes an approximate MLE for fractional Gaussian noise / fractional ARIMA, by minimizing Qeta.

Examples

data(NileMin)
y <- NileMin
n <- length(y)
yper <- per(scale(y))[2:(1+ (n-1) %/% 2)]
eta <- c(H = 0.3)
q.res <- Qeta(eta, n=n, yper=yper)
str(q.res)
Description

Simulation of a Gaussian series $X(1), \ldots, X(n)$. Whereas `simgauss` works from autocovariances, the others call it, for simulating a fractional ARIMA(0,d,0) process ($d = H - 1/2$), or fractional Gaussian noise, respectively.

Usage

```r
simARMA0(n, H)
simFGN0(n, H)
simgauss(autocov)
```

Arguments

- `n` length of time series
- `H` self-similarity parameter
- `autocov` numeric vector of auto covariances $\gamma(0), \ldots, \gamma(n - 1)$.

Details

`simgauss` implements the method by Davies and Harte which is relatively fast using the FFT `fft` twice.

To simulate ARIMA(p, d, q), (for d in (-1/2, 1,2), you can use

```r
arima.sim(n, model = list(ar = ..., ma = ...), innov = simARMA0(n, H = d + 1/2), n.start = 0).
```

Value

The simulated series $X(1), \ldots, X(n)$, an `R` object of class "ts", constructed from `ts()`.

Author(s)

Jan Beran (original) and Martin Maechler (`simgauss`, speedup, simplification).

References

Beran (1994), 11.3.3, p.216 f, referring to

See Also

`ckARMA0` on which `simARMA0` relies, and `ckFGN0` on which `simFGN0` relies.
specARIMA

Spectral Density of Fractional ARMA Process

Description

Calculate the spectral density of a fractional ARMA process with standard normal innovations and self-similarity parameter H.

Usage

specARIMA(eta, p, q, m)

Arguments

eta parameter vector eta = c(H, phi, psi).

p, q integers giving AR and MA order respectively.

m sample size determining Fourier frequencies.

Details

at the Fourier frequencies 2 * pi * j/n, (j = 1, ..., (n - 1)),
cov(X(t),X(t+k)) = (sigma/(2*pi))*integral(exp(iuk)*g(u)du).
— or rather – FIXME –
1. cov(X(t),X(t+k)) = integral[exp(iuk)*f(u)du]
2. f() = theta1 * f*() ; spec = f*(), and integral[log(f*())] = 0

Value

an object of class "spec" (see also spectrum) with components

freq the Fourier frequencies (in (0, pi)) at which the spectrum is computed, see freq in specFGN.

spec the scaled values spectral density f(\lambda) values at the freq values of \lambda.

f*(\lambda) = f(\lambda)/\theta_1 adjusted such \int log(f*(\lambda))d\lambda = 0.

theta1 the scale factor \theta_1.

pq a vector of length two, = c(p, q).

eta a named vector c(H=H, phi=phi, psi=psi) from input.

method a character indicating the kind of model used.
specFGN

Author(s)

Jan Beran (principal) and Martin Maechler (fine tuning)

References

Beran (1994) and more, see

See Also

The spectral estimate for fractional Gaussian noise, specFGN. In general, spectrum and spec.ar.

Examples

```r
str(r.7 <- specARIMA(0.7, m = 256, p = 0, q = 0))
str(r.5 <- specARIMA(eta = c(H = 0.5, phi=c(-.06, 0.4, -0.36), psi=0.776),
                     m = 256, p = 3, q = 1))
plot(r.7)
plot(r.5)
```

Description

Calculation of the spectral density \(f \) of normalized fractional Gaussian noise with self-similarity parameter \(H \) at the Fourier frequencies \(2\pi j/m \) (\(j=1,...,(m-1) \)).

Usage

specFGN(\(\eta, m, nsum = 200 \))

Arguments

- \(\eta \): parameter vector \(\eta = c(H, \ast) \).
- \(m \): sample size determining Fourier frequencies.
- \(nsum \): length of approximating Riemans sum.

Details

Note that

1. \(\text{cov}(X(t),X(t+k)) = \text{integral}[\exp(ik) f(u)du] \)
2. \(f=\text{theta1} \ast \text{spec} \) and \(\text{integral}[\log(\text{spec})]=0 \).
Value

an object of class "spec" (see also spectrum) with components

freq the Fourier frequencies \(\omega_j \in (0, \pi) \) at which the spectrum is computed. Note that \(\omega_j = \frac{2\pi j}{m} \) for \(j = 1, \ldots, m - 1 \), and \(m = \lfloor \frac{n-1}{2} \rfloor \).

spec the scaled values spectral density \(f(\lambda) \) values at the freq values of \(\lambda \).
\[f^*(\lambda) = \frac{f(\lambda)}{\theta_1} \]
adjusted such \(\int \log(f^*(\lambda))d\lambda = 0 \).

theta1 the scale factor \(\theta_1 \).

H the self-similarity parameter from input.

method a character indicating the kind of model used.

Author(s)

Jan Beran (principal) and Martin Maechler (fine tuning)

References

See Also

The spectral estimate for fractional ARIMA, specARIMA; more generally, spectrum.

Examples

```r
str(rg.7 <- specFGN(0.7, m = 100))
str(rg.7f <- specFGN(0.7, m = 100, nsum = 10000))
all.equal(rg.7, rg.7f)# different in about 5th digit only
str(rg.5 <- specFGN(0.5, m = 100))# { H = 0.5 <-> white noise ! }

plot(rg.7) # work around plot.spec() 'bug' in R < 1.6.0
plot(rg.5, add = TRUE, col = "blue")
```

Description

Amount of coded information (variable bit rate) per frame for a certain video sequence. There were about 25 frames per second.

Usage

```r
data(videoVBR)
```
Format

a time-series of length 1000.

References

Examples

data(videoVBR)
plot(log(videoVBR), main="VBR Data (log)")

WhittleEst

Whittle Estimator for Fractional Gaussian Noise / Fractional ARIMA

Description

Computes Whittle’s approximate MLE for fractional Gaussian noise or fractional ARIMA (=: fARIMA) models, according to Beran’s prescript.

Usage

```r
WhittleEst(x, periodogr.x = per(if(scale) x/sd(x) else x)[2:(n+1) %/% 2], n = length(x), scale = FALSE, model = c("fGn", "fARIMA"), p, q, start = list(H= 0.5, AR= numeric(), MA=numeric()), verbose = getOption("verbose"))
```

```r
## S3 method for class 'WhittleEst'
print(x, digits = getOption("digits"), ...)
```

Arguments

- **x**
 numeric vector representing a time series. Maybe omitted if `periodogr.x` and `n` are specified instead.
- **periodogr.x**
 the (raw) periodogram of `x`; the default, as by Beran, uses `per`; but tapering etc may be an alternative, see also `spec.pgram`.
- **n**
 length of the time series, `length(x)`.
scale logical indicating if x should be standardized to (sd) scale 1; originally, scale = TRUE used to be built-in; for compatibility with other methods, notably plotting spectra, scale = FALSE seems a more natural default.

model numeric vector representing a time series.

p, q optional integers specifying the AR and MA orders of the fARIMA model, i.e., only applicable when model is "fARIMA".

start list of starting values; currently necessary for model = "fARIMA" and with a reasonable default for model = "fGn".

verbose logical indicating if iteration output should be printed.

digits,... optional arguments for print method, see print.default.

Value

An object of class WhittleEst which is basically a list with components

call the function call.

model = input

n time series length length(x).

p, q for "fARIMA": order of AR and MA parts, respectively.

coefficients numeric 4-column matrix of coefficients with estimate of the full parameter vector \(\eta \), its standard error estimates, z- and P-values. This includes the Hurst parameter \(H \).

theta1 the scale parameter \(\hat{\theta}_1 \), see Qeta.

vcov the variance-covariance matrix for \(\eta \).

periodogr.x = input (with default).

spec the spectral estimate \(\hat{f}(\omega_j) \).

There is a print method, and coef, confint or vcov methods work as well for objects of class "WhittleEst".

Author(s)

Martin Maechler, based on Beran’s “main program” in Beran(1994).

References

See Also

Qeta is the function minimized by these Whittle estimators.

FEXPest for an alternative model with Hurst parameter, also estimated by a “Whittle” approximate MLE, i.e., a Whittle’s estimator in the more general sense.

The plot method, plot.WhittleEst.
Examples

data(NileMin)
(f.Gn.N <- WhittleEst(NileMin)) # H = 0.837
(f.A00.N <- WhittleEst(NileMin, model = "fARIMA", p=0, q=0)) # H = 0.899
confint(f.Gn.N)
confint(f.A00.N)

data(videoVBR)
(f.GN <- WhittleEst(videoVBR))

similar (but faster !)
(f.am00 <- WhittleEst(videoVBR, model = "fARIMA", p=0, q=0))
rbind(f.am00$coef,
 f.GN$coef)# really similar

f.am11 <- WhittleEst(videoVBR, model = "fARIMA",
 start= list(H=.5, AR = .5, MA=.5))
f.am11
vcov(f.am11)

op <- if(require("sfsmisc"))
 mult.fig(3, main = "Whittle Estimators for videoVBR data")$old.par else
 par(mar=c(3,1), mgp=c(1.5, 0.6, 0), mar=c(4,4,2,1)+.1)
plot(f.GN)
plot(f.am00)
plot(f.am11)
par(op)

et <- as.list(coef(f.am11))
etAR <- c(et$AR, 0, 0) # two more AR coefficients ..
f.am31 <- WhittleEst(videoVBR, model = "fARIMA", start = et)
lines(f.am31, col = "red3") ## drawing on top of ARMA(1,1) above - *small* diff

f.am31 # not all three are "significant"
round(cov2cor(vcov(f.am31)), 3) # and they are highly correlated

et <- as.list(coef(f.am31))
etAR <- unname(unlist(et[c("AR1", "AR2")]))
f.am21 <- WhittleEst(videoVBR, model = "fARIMA",
 start = c(et[c("H","AR","MA")]))
f.am21
lines(f.am21, col = adjustcolor("gold", .4), lwd=4)

#---?plot WhittleEst for an example using 'periodogr.x'
Index

*Topic datasets
 ethernetTraffic, 5
 NBSdiff1kg, 8
 NhemiTemp, 9
 NileMin, 10
 videoVBR, 18

*Topic hplot
 llplot, 8
 plot.FEXP, 11

*Topic models
 CetaARIMA, 2
 Qeta, 13
 specARIMA, 16
 specFGN, 17

*Topic ts
 CetaARIMA, 2
 CetaFGN, 3
 ckARMA0, 4
 ckFGN0, 5
 FEXPest, 6
 llplot, 8
 per, 10
 Qeta, 13
 simGauss, 15
 specARIMA, 16
 specFGN, 17
 WhittleEst, 19

arima.sim, 15

call, 6, 20
CetaARIMA, 2
CetaFGN, 3
ckARMA0, 4, 5, 15
ckFGN0, 4, 5, 15
coef, 20
confint, 20
ethernetTraffic, 5
FEXPest, 6, 11, 12, 14, 20
fft, 15

glm, 7

lines, 7, 11, 12
lines.FEXP (plot.FEXP), 11
lines.WhittleEst (plot.FEXP), 11
llplot, 8
llxplot (llplot), 8

NBSdiff1kg, 8
NhemiTemp, 9
NileMin, 10
nobs (WhittleEst), 19

per, 10, 13, 19
plot, 7, 11
plot.default, 12
plot.FEXP, 7, 11
plot.WhittleEst, 20
plot.WhittleEst (plot.FEXP), 11
print, 7, 20
print.default, 6, 20
print.FEXP (FEXPest), 6
print.WhittleEst (WhittleEst), 19

Qeta, 13, 20

sd, 20
simARMA0 (simGauss), 15
simFGN0 (simGauss), 15
simGauss, 15
spec.ar, 17
spec.pgram, 11, 19
specARIMA, 2, 16, 18
specFGN, 3, 16, 17, 17
spectrum, 8, 12, 16–18
summaryglm, 7

title, 12
ts, 9, 10, 15
INDEX

vcov, 20
videoVBR, 18

WhittleEst, 7, 12, 14, 19