Package ‘lpridge’

February 20, 2015

Version 1.0-7
Date 2013-04-17
Title Local Polynomial (Ridge) Regression
Author Burkhardt Seifert <seifert@ifspm.unizh.ch> (S original);
 Packaged for R by Martin Maechler
Maintainer Martin Maechler <maechler@stat.math.ethz.ch>
Description Local Polynomial Regression with Ridging.
Depends stats
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2013-04-17 14:06:37

R topics documented:

lpepa ... 1
lpridge ... 3

Index

lpepa Local polynomial regression fitting with Epanechnikov weights

Description

Fast and stable algorithm for nonparametric estimation of regression functions and their derivatives
via local polynomials with Epanechnikov weight function.

Usage

lpepa(x, y, bandwidth, deriv = 0, n.out = 200, x.out = NULL,
 order = deriv+1, mnew = 100, var = FALSE)
Arguments

- `x`: vector of design points, not necessarily ordered.
- `y`: vector of observations of the same length as `x`.
- `bandwidth`: bandwidth(s) for nonparametric estimation. Either a number or a vector of the same length as `x.out`.
- `deriv`: order of derivative of the regression function to be estimated; defaults to `deriv = 0`.
- `n.out`: number of output design points where the function has to be estimated. The default is `n.out=200`.
- `x.out`: vector of output design points where the function has to be estimated. The default value is an equidistant grid of `n.out` points from `min(x)` to `max(x)`.
- `order`: integer, order of the polynomial used for local polynomials. Must be ≤ 10 and defaults to `order = deriv+1`.
- `mnew`: integer forcing to restart the algorithm after `mnew` updating steps. The default is `mnew = 100`. For `mnew = 1` you get a numerically “super-stable” algorithm (see reference SBE\&G below).
- `var`: logical flag: if `true`, the variance of the estimator proportional to the residual variance is computed (see details).

Details

More details are described in the first reference SBE\&G (1994) below. In S\&G, a bad finite sample behaviour of local polynomials for random designs was found. For practical use, we therefore propose local polynomial regression fitting with ridging, as implemented in the function `lpridge`. In `lpepa`, several parameters described in SBE\&G are fixed either in the fortran routine or in the R-function. There, you find comments how to change them.

For `var=TRUE`, the variance of the estimator proportional to the residual variance is computed, i.e., the exact finite sample variance of the regression estimator is `var(est) = est.var * sigma^2`.

Value

a list including used parameters and estimator.

- `x`: vector of ordered design points.
- `y`: vector of observations ordered according to `x`.
- `bandwidth`: vector of bandwidths actually used for nonparametric estimation.
- `deriv`: order of derivative of the regression function estimated.
- `x.out`: vector of ordered output design points.
- `order`: order of the polynomial used for local polynomials.
- `mnew`: force to restart the algorithm after `mnew` updating steps.
- `var`: logical flag: whether the variance of the estimator was computed.
- `est`: estimator of the derivative of order `deriv` of the regression function.
- `est.var`: estimator of the variance of `est` (proportional to residual variance).

See Also

- **lpridge**, and also **lowess** and **loess** which do local linear and quadratic regression quite a bit differently.

Examples

```r
data(cars)
attach(cars)

epa.sd < lpepa(speed, dist, bandw=5) # local polynomials

plot(speed, dist, main = "data(cars) & lp epanechnikov regression")
lines(epa.sd$x.out, epa.sd$est, col="red")
lines(lowess(speed, dist, f=.5), col="orange")
detach()
```

Description

Fast and stable algorithm for nonparametric estimation of regression functions and their derivatives via local polynomials and local polynomial ridge regression with polynomial weight functions.
Usage

lpridge(x, y, bandwidth, deriv=0, n.out=200, x.out=NULL,
order = NULL, ridge = NULL, weight = "epa", mnew = 100,
var = FALSE)

Arguments

x vector of design points, not necessarily ordered.
y vector of observations of the same length as x.
bandwidth bandwidth for nonparametric estimation. Either a number or a vector of the
same length as x.out.
deriv order of derivative of the regression function to be estimated; default is 0.
n.out number of output design points at which to evaluate the estimator; defaults to
200.
x.out vector of output design points at which to evaluate the estimator; By default, an
equidistant grid of n.out points from min(x) to max(x).
order order of the polynomial used for local polynomials. The default value is deriv + 1.
ridge ridging parameter. The default value performs a slight ridging (see "Details").
ridge = 0 leads to the local polynomial estimator without ridging.
weight kernel weight function. The default value is weight = "epa" for Epanechnikov
weights. Other weights are "bi" for biweights (square of "epa") and "tri" for
triweights (cube of "epa"). If weight is a vector, it is interpreted as vector of co-
efficients of the polynomial weight function. Thus, weight = "epa" is equivalent
to weight = c(1,0,-1).
mnew force to restart the algorithm after mnew updating steps. The default value is
mnew = 100. For mnew = 1 you get a numerically "super-stable" algorithm (see referen
c SBE\&G below).
var logical flag: if TRUE, the variance of the estimator proportional to the residual
variance is computed (see "Details" below).

Details

described in the reference SBE\&G below. Several parameters described there are fixed either in
the fortran routine or in the R-function. There, you find comments how to change them.

In S\&G, a bad finite sample behavior of local polynomials for random design was found, and
ridging of the estimator was proposed. In lpridge(), we use a ridging matrix corresponding to the
smoothness assumption "The squared difference of the derivative of order deriv of the regression
function at the point of estimation and the weighted mean of design points is bounded by the residual
variance divided by the ridge parameter."

Thus, without any smoothness assumption, ridge = 0 would be appropriate, and for a nearly
constant derivative of order deriv, a ridge parameter going to infinity behaves well. For equidistant
design, ridging influences the estimator only at the boundary. Asymptotically, the influence of any
non-increasing ridge parameter vanishes.
So far, our experience with the choice of a ridging parameter is limited. Therefore we have chosen a default value which performs a slight modification of the local polynomial estimator (with denotations $h = \text{bandwidth}$, $d = \text{deriv}$, and where $n_0 = \text{length}(x) \times \text{mean(bandwidth)}/\text{diff(range(x))}$ is a mean number of observations in a smoothing interval):

$$\text{ridge} = 5 \sqrt{n_0} h^{2d}/(2d + 3)(2d + 5)$$

For var=TRUE, the variance of the estimator proportional to the residual variance is computed, i.e., the exact finite sample variance of the regression estimator is $\text{var(est)} = \text{est.var} \times \sigma^2$.

Value

- A list including used parameters and estimator.

- `x` vector of ordered design points.

- `y` vector of observations ordered according to `x`.

- `bandwidth` vector of bandwidths actually used for nonparametric estimation.

- `deriv` order of derivative of the regression function estimated.

- `x.nout` vector of ordered output design points.

- `order` order of the polynomial used for local polynomials.

- `ridge` ridging parameter used.

- `weight` vector of coefficients of the kernel weight function.

- `mnew` force to restart the algorithm after `mnew` updating steps.

- `var` logical flag: whether the variance of the estimator was computed.

- `est` estimator of the derivative of order `deriv` of the regression function.

- `est.var` estimator of the variance of `est` (proportional to residual variance).

References

The same as for `lpepa`.

Examples

```r
data(cars)
attach(cars)
plot(speed, dist, main = "data(cars) & lPRIDGE Regression")

myfit <- lpridge(speed, dist, bandw = 5L, ridge=0L) # local polynomials
lines(myfit$x.out, myfit$est, col=2)

myridge <- lpridge(speed, dist, bandw = 5L) # local pol. ridge
lines(myridge$x.out, myridge$est, col=3)

mtext("bandw = 5")
legend(5, 120, c("ridge = 0", "default ridging"), col = 2:3, lty = 1)
detach()
```
Index

*Topic smooth
 lpepa, 1
 lpridge, 3

loess, 3
lowess, 3
lpepa, 1, 5
lpridge, 2, 3, 3