Package ‘luca’

February 20, 2015

Title Likelihood inference from case-control data Under Covariate Assumptions (LUCA)

Version 1.0-5

Author Ji-Hyung Shin <shin@sfu.ca>, Brad McNeney <mcneney@stat.sfu.ca>, Jinko Graham <jgraham@stat.sfu.ca>

Maintainer Ji-Hyung Shin <shin@sfu.ca>

Depends R (>= 2.0.0), survival, genetics

Description Likelihood inference in case-control studies of a rare disease under independence or simple dependence of genetic and non-genetic covariates

License GPL-2

URL http://stat-db.stat.sfu.ca:8080/statgen/research/luca

Repository CRAN

Date/Publication 2009-05-05 18:08:53

NeedsCompilation no

R topics documented:

luca .. 1
lucaDat .. 4
summary.luca .. 5

Index 7

luca Likelihood-based case-control inference Under Covariate Assumptions (LUCA)
Description

In genetic association studies, there is increasing interest in understanding the joint effects of genetic and nongenetic factors. For rare diseases, the case-control study is the standard design and logistic regression is the standard method of inference. However, the power to detect statistical interaction is a concern, even with relatively large samples. LUCA implements maximum likelihood inference under

1. independence of the genetic factor and nongenetic attributes in the control population,
2. independence of the genetic factor and nongenetic attributes, plus Hardy-Weinberg proportions (HWP) in control genotype frequencies, or
3. simple dependence between the genetic and nongenetic covariates in the control population.

Maximum likelihood under covariate assumptions offers improved precision of interaction estimators compared to the standard logistic regression approach which makes no assumptions on the distribution of covariates.

Usage

luca(pen.model, gLabel, dat, HWP = FALSE, dep.model = NULL)

Arguments

pen.model an R formula specifying the disease penetrance model relating a genetic factor and a number of nongenetic attributes (the predictors or transformations thereof) to disease status. A typical pen.model has the form \(d \sim g + a + g:a \) where \(d \) is a binary disease response, \(g \) is a genetic factor, \(a \) is a (possibly continuous) nongenetic factor and \(g:a \) is the interaction between the genetic and nongenetic factors.

gLabel a character string specifying the name of the genetic factor in pen.model.

dat a data frame containing the variables in pen.model, currently, with no default value. Each row of dat is considered as one multivariate observation for a subject. Note that the genetic term must be a factor object, and also needs to be a genotype object in some cases (as described in the following arguments). Currently, the disease response variable must be numeric with values 0 (unaffected) and 1 (affected). Also, note that missing values are not allowed in the data frame.

HWP a logical value indicating whether the genotype frequencies in controls should be assumed to follow Hardy-Weinberg proportions. When TRUE, the genetic term must be a genotype object.

dep.model an R formula specifying the dependence between the genetic factor and nongenetic attributes. (See the Details section below for more on the dependence model.) When NULL (default), it indicates independence between the genetic factor and nongenetic attributes in controls. The argument HWP is ignored for a non-null dep.model. The genetic factor must be a genotype object when dep.model is provided.
Details

Inference for association parameters is obtained by fitting a conditional logistic regression model with appropriate match-sets comprised of “pseudo-individuals” having all possible values of the genetic factor and disease status but common value of the nongenetic attribute. The function `coxph.fit` from the `survival` package is used to fit the conditional logistic regression.

A dependence model such as \(g \sim a \) specifies a polychotomous regression model for the genetic factor \(g \) as a function of the nongenetic attribute \(a \). The polychotomous regression for \(g \) given \(a \) holds when the conditional distribution of \(a \) given \(g \) is from the exponential family of distributions, with a constant dispersion parameter across the levels of the genetic factor. Alternately, \(g \) and \(a \) may be conditionally independent given a third variable \(a_2 \). Typically, \(a_2 \) is also a term in the penetrance model (\(\text{pen.model} \)). To model conditional independence of \(g \) and \(a \) given \(a_2 \), specify the dependence model (\(\text{dep.model} \)) as \(g \sim a_2 \). See Shin, McNeney and Graham (2007) for details.

`luca` also allows dependence models of the form \(g \sim a_1 + a_2 + \ldots \) for multiple attributes \(a_1, a_2, \ldots \). However, there is no formal justification for the use of such a model to capture the dependence between \(g \) and multiple nongenetic attributes.

Value

An object of class "luca" with the following components:

- `call`: the function call
- `coefficients`: estimates of parameters in the covariate model (labelled as `covmod.XX`) and the penetrance model (labelled as `penmod.YY` where YY denotes the name of a term in the model). The covariate model parameters depend on the covariate assumptions and are 1) control-population log-odds for each level of the genetic factor relative to a baseline level under independence, 2) control-population log-odds for each allele relative to a baseline allele under independence plus HWP, or 3) the parameters from the polychotomous regression model under dependence (see the Details section for a description of this model).
- `var`: the variance-covariance matrix of the parameter estimates.
- `iter`: number of iterations in the iterative search for parameter estimates.

The function `summary.luca` (or `summary`) can be used to obtain a summary of the results in a similar style to the `lm` and `glm` summaries.

Warning

Inference is not robust to misspecification of the covariate assumptions. There should be strong \textit{a priori} evidence to support any assumptions that are made. Alternately, `luca` may be used to screen for “interesting” interactions that are followed up with logistic regression using data from a larger study.

Author(s)

Ji-Hyung Shin, Brad McNeney, Jinko Graham
References

See Also

summary.luca, glm, coxph, clogit

Examples

data(lucaDat)
typical penetrance model:
pen.model<-formula(d-I(allele.count(g,"C"))+a+a2+I(allele.count(g,"C")):a)

#1. Assuming independence and HWP
fitHWP<-luca(pen.model=pen.model, gLabel="g", dat=lucaDat, HWP=TRUE)
fitHWP$coef
fitHWP$var
summary.luca(fitHWP) # OR 'summary(fitHWP)'

#2. Assuming independence only
fitDefault<-luca(pen.model=pen.model, gLabel="g", dat=lucaDat)
fitDefault$coef
fitDefault$var

#3. Allowing for dependence between genetic and nongenetic factors

General dependence model
fitDep1<-luca(pen.model=pen.model, gLabel="g", dat=lucaDat,
dep.model=formula(g-a))
fitDep1$coef
fitDep1$var

When 'g' and 'a' are conditionally independent given the third variable 'a2':
fitDep2<-luca(pen.model=pen.model, gLabel="g", dat=lucaDat,
dep.model=formula(g-a2))
fitDep2$coef
fitDep2$var

lucaDat Simulated data for a hypothetical binary trait

Description

Simulated data used to illustrate the luca package.

Usage

data(lucaDat)
Format

A data frame with 1000 observations on the following 4 variables:

[.1] d numeric disease status (1=yes, 0=no)
[.2] g factor genetic factor with levels A/A, A/C, C/C
[.3] a numeric first non-genetic attribute
[.4] a2 numeric second non-genetic attribute

Examples

data(lucaDat)

summary.luca Summarize results of the luca function

Description

Summary function for reporting the results of the luca function in a similar style to the lm and glm summaries.

Usage

S3 method for class 'luca'
summary(object, ...)

Arguments

object a list of class luca output by the luca function
...
additional arguments to the summary function (currently unused)

Value

call function call
coefficients Table of estimated coefficients, standard errors and Wald tests for each variable

References

See Also

luca
Examples

data(lucaDat)
pen.model <- formula(d ~ I(allele.count(g, "C")) +
a + a2 + I(allele.count(g, "C")):a2)
fitdep <- luca(pen.model = pen.model, gLabel = "g",
dat = lucaDat, dep.model = formula(g ~ a))
Summarize the results:
summary.luca(fitdep) # or just summary(fitdep)
#Returns:
#Call:
#luca(dat = lucaDat, pen.model = pen.model, gLabel = "g", dep.model =
#formula(g ~ a))
#
#Coefficients:
Estimate Std. Error z value Pr(>|z|)
#I(allele.count(g, "C")) 0.61738385 0.10820323 5.705780 1.158115e-08
#a 0.11629696 0.07815014 1.488122 1.367187e-01
#a2 -0.03087368 0.10787965 -0.286186 7.747354e-01
#I(allele.count(g, "C")):a2 0.31879401 0.08236130 3.870677 1.085334e-04
Index

*Topic **datasets**
 lucaDat, 4
*Topic **methods**
 luca, 1
 summary.luca, 5

clogit, 4
coxph, 4
coxph.fit, 3

factor, 2
genotype, 2
glm, 4

luca, 1, 5
lucaDat, 4

summary.luca, 3, 4, 5